USBDevice library with Blue Pill STM32F103C8T6 board support.
Dependents: STM32F103C8T6_USBSerial_Demo lightweight-weather-station
Fork of USBDevice by
Diff: targets/TARGET_NXP/USBHAL_LPC11U.cpp
- Revision:
- 71:53949e6131f6
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/targets/TARGET_NXP/USBHAL_LPC11U.cpp Thu Jul 27 12:14:04 2017 +0100 @@ -0,0 +1,738 @@ +/* Copyright (c) 2010-2011 mbed.org, MIT License +* +* Permission is hereby granted, free of charge, to any person obtaining a copy of this software +* and associated documentation files (the "Software"), to deal in the Software without +* restriction, including without limitation the rights to use, copy, modify, merge, publish, +* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the +* Software is furnished to do so, subject to the following conditions: +* +* The above copyright notice and this permission notice shall be included in all copies or +* substantial portions of the Software. +* +* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING +* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, +* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +*/ + +#if defined(TARGET_LPC11UXX) || defined(TARGET_LPC11U6X) || defined(TARGET_LPC1347) || defined(TARGET_LPC1549) + +#if defined(TARGET_LPC1347) || defined(TARGET_LPC1549) +#define USB_IRQ USB_IRQ_IRQn +#else +#define USB_IRQ USB_IRQn +#endif + +#include "USBHAL.h" + +USBHAL * USBHAL::instance; +#if defined(TARGET_LPC1549) +static uint8_t usbmem[2048] __attribute__((aligned(2048))); +#endif + +// Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1) +#define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1) + +// Convert physical endpoint number to register bit +#define EP(endpoint) (1UL<<endpoint) + +// Convert physical to logical +#define PHY_TO_LOG(endpoint) ((endpoint)>>1) + +// Get endpoint direction +#define IN_EP(endpoint) ((endpoint) & 1U ? true : false) +#define OUT_EP(endpoint) ((endpoint) & 1U ? false : true) + +// USB RAM +#if defined(TARGET_LPC1549) +#define USB_RAM_START ((uint32_t)usbmem) +#define USB_RAM_SIZE sizeof(usbmem) +#else +#define USB_RAM_START (0x20004000) +#define USB_RAM_SIZE (0x00000800) +#endif + +// SYSAHBCLKCTRL +#if defined(TARGET_LPC1549) +#define CLK_USB (1UL<<23) +#else +#define CLK_USB (1UL<<14) +#define CLK_USBRAM (1UL<<27) +#endif + +// USB Information register +#define FRAME_NR(a) ((a) & 0x7ff) // Frame number + +// USB Device Command/Status register +#define DEV_ADDR_MASK (0x7f) // Device address +#define DEV_ADDR(a) ((a) & DEV_ADDR_MASK) +#define DEV_EN (1UL<<7) // Device enable +#define SETUP (1UL<<8) // SETUP token received +#define PLL_ON (1UL<<9) // PLL enabled in suspend +#define DCON (1UL<<16) // Device status - connect +#define DSUS (1UL<<17) // Device status - suspend +#define DCON_C (1UL<<24) // Connect change +#define DSUS_C (1UL<<25) // Suspend change +#define DRES_C (1UL<<26) // Reset change +#define VBUSDEBOUNCED (1UL<<28) // Vbus detected + +// Endpoint Command/Status list +#define CMDSTS_A (1UL<<31) // Active +#define CMDSTS_D (1UL<<30) // Disable +#define CMDSTS_S (1UL<<29) // Stall +#define CMDSTS_TR (1UL<<28) // Toggle Reset +#define CMDSTS_RF (1UL<<27) // Rate Feedback mode +#define CMDSTS_TV (1UL<<27) // Toggle Value +#define CMDSTS_T (1UL<<26) // Endpoint Type +#define CMDSTS_NBYTES(n) (((n)&0x3ff)<<16) // Number of bytes +#define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff) // Buffer start address + +#define BYTES_REMAINING(s) (((s)>>16)&0x3ff) // Bytes remaining after transfer + +// USB Non-endpoint interrupt sources +#define FRAME_INT (1UL<<30) +#define DEV_INT (1UL<<31) + +static volatile int epComplete = 0; + +// One entry for a double-buffered logical endpoint in the endpoint +// command/status list. Endpoint 0 is single buffered, out[1] is used +// for the SETUP packet and in[1] is not used +typedef struct { + uint32_t out[2]; + uint32_t in[2]; +} PACKED EP_COMMAND_STATUS; + +typedef struct { + uint8_t out[MAX_PACKET_SIZE_EP0]; + uint8_t in[MAX_PACKET_SIZE_EP0]; + uint8_t setup[SETUP_PACKET_SIZE]; +} PACKED CONTROL_TRANSFER; + +typedef struct { + uint32_t maxPacket; + uint32_t buffer[2]; + uint32_t options; +} PACKED EP_STATE; + +static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS]; + +// Pointer to the endpoint command/status list +static EP_COMMAND_STATUS *ep = NULL; + +// Pointer to endpoint 0 data (IN/OUT and SETUP) +static CONTROL_TRANSFER *ct = NULL; + +// Shadow DEVCMDSTAT register to avoid accidentally clearing flags or +// initiating a remote wakeup event. +static volatile uint32_t devCmdStat; + +// Pointers used to allocate USB RAM +static uint32_t usbRamPtr = USB_RAM_START; +static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here + +#define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m)) + +void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size); +void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) { + if (size > 0) { + do { + *dst++ = *src++; + } while (--size > 0); + } +} + + +USBHAL::USBHAL(void) { + NVIC_DisableIRQ(USB_IRQ); + + // fill in callback array + epCallback[0] = &USBHAL::EP1_OUT_callback; + epCallback[1] = &USBHAL::EP1_IN_callback; + epCallback[2] = &USBHAL::EP2_OUT_callback; + epCallback[3] = &USBHAL::EP2_IN_callback; + epCallback[4] = &USBHAL::EP3_OUT_callback; + epCallback[5] = &USBHAL::EP3_IN_callback; + epCallback[6] = &USBHAL::EP4_OUT_callback; + epCallback[7] = &USBHAL::EP4_IN_callback; + +#if defined(TARGET_LPC1549) + /* Set USB PLL input to system oscillator */ + LPC_SYSCON->USBPLLCLKSEL = 0x01; + + /* Setup USB PLL (FCLKIN = 12MHz) * 4 = 48MHz + MSEL = 3 (this is pre-decremented), PSEL = 1 (for P = 2) + FCLKOUT = FCLKIN * (MSEL + 1) = 12MHz * 4 = 48MHz + FCCO = FCLKOUT * 2 * P = 48MHz * 2 * 2 = 192MHz (within FCCO range) */ + LPC_SYSCON->USBPLLCTRL = (0x3 | (1UL << 6)); + + /* Powerup USB PLL */ + LPC_SYSCON->PDRUNCFG &= ~(CLK_USB); + + /* Wait for PLL to lock */ + while(!(LPC_SYSCON->USBPLLSTAT & 0x01)); + + /* enable USB main clock */ + LPC_SYSCON->USBCLKSEL = 0x02; + LPC_SYSCON->USBCLKDIV = 1; + + /* Enable AHB clock to the USB block. */ + LPC_SYSCON->SYSAHBCLKCTRL1 |= CLK_USB; + + /* power UP USB Phy */ + LPC_SYSCON->PDRUNCFG &= ~(1UL << 9); + + /* Reset USB block */ + LPC_SYSCON->PRESETCTRL1 |= (CLK_USB); + LPC_SYSCON->PRESETCTRL1 &= ~(CLK_USB); + +#else + #if defined(TARGET_LPC11U35_401) || defined(TARGET_LPC11U35_501) + // USB_VBUS input with pull-down + LPC_IOCON->PIO0_3 = 0x00000009; + #endif + + // nUSB_CONNECT output + LPC_IOCON->PIO0_6 = 0x00000001; + + // Enable clocks (USB registers, USB RAM) + LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM; + + // Ensure device disconnected (DCON not set) + LPC_USB->DEVCMDSTAT = 0; +#endif + // to ensure that the USB host sees the device as + // disconnected if the target CPU is reset. + wait(0.3); + + // Reserve space in USB RAM for endpoint command/status list + // Must be 256 byte aligned + usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256); + ep = (EP_COMMAND_STATUS *)usbRamPtr; + usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS); + LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00; + + // Reserve space in USB RAM for Endpoint 0 + // Must be 64 byte aligned + usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64); + ct = (CONTROL_TRANSFER *)usbRamPtr; + usbRamPtr += sizeof(CONTROL_TRANSFER); + LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000; + + // Setup command/status list for EP0 + ep[0].out[0] = 0; + ep[0].in[0] = 0; + ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup); + + // Route all interrupts to IRQ, some can be routed to + // USB_FIQ if you wish. + LPC_USB->INTROUTING = 0; + + // Set device address 0, enable USB device, no remote wakeup + devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS; + LPC_USB->DEVCMDSTAT = devCmdStat; + + // Enable interrupts for device events and EP0 + LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT) | FRAME_INT; + instance = this; + + //attach IRQ handler and enable interrupts + NVIC_SetVector(USB_IRQ, (uint32_t)&_usbisr); +} + +USBHAL::~USBHAL(void) { + // Ensure device disconnected (DCON not set) + LPC_USB->DEVCMDSTAT = 0; + // Disable USB interrupts + NVIC_DisableIRQ(USB_IRQ); +} + +void USBHAL::connect(void) { + NVIC_EnableIRQ(USB_IRQ); + devCmdStat |= DCON; + LPC_USB->DEVCMDSTAT = devCmdStat; +} + +void USBHAL::disconnect(void) { + NVIC_DisableIRQ(USB_IRQ); + devCmdStat &= ~DCON; + LPC_USB->DEVCMDSTAT = devCmdStat; +} + +void USBHAL::configureDevice(void) { + // Not required +} + +void USBHAL::unconfigureDevice(void) { + // Not required +} + +void USBHAL::EP0setup(uint8_t *buffer) { + // Copy setup packet data + USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE); +} + +void USBHAL::EP0read(void) { + // Start an endpoint 0 read + + // The USB ISR will call USBDevice_EP0out() when a packet has been read, + // the USBDevice layer then calls USBBusInterface_EP0getReadResult() to + // read the data. + + ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \ + | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out); +} + +uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) { + // Complete an endpoint 0 read + uint32_t bytesRead; + + // Find how many bytes were read + bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]); + + // Copy data + USBMemCopy(buffer, ct->out, bytesRead); + return bytesRead; +} + + +void USBHAL::EP0readStage(void) { + // Not required +} + +void USBHAL::EP0write(uint8_t *buffer, uint32_t size) { + // Start and endpoint 0 write + + // The USB ISR will call USBDevice_EP0in() when the data has + // been written, the USBDevice layer then calls + // USBBusInterface_EP0getWriteResult() to complete the transaction. + + // Copy data + USBMemCopy(ct->in, buffer, size); + + // Start transfer + ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \ + | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in); +} + + +EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) { + uint8_t bf = 0; + uint32_t flags = 0; + + //check which buffer must be filled + if (LPC_USB->EPBUFCFG & EP(endpoint)) { + // Double buffered + if (LPC_USB->EPINUSE & EP(endpoint)) { + bf = 1; + } else { + bf = 0; + } + } + + // if isochronous endpoint, T = 1 + if(endpointState[endpoint].options & ISOCHRONOUS) + { + flags |= CMDSTS_T; + } + + //Active the endpoint for reading + ep[PHY_TO_LOG(endpoint)].out[bf] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \ + | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out) | flags; + return EP_PENDING; +} + +EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) { + + uint8_t bf = 0; + + if (!(epComplete & EP(endpoint))) + return EP_PENDING; + else { + epComplete &= ~EP(endpoint); + + //check which buffer has been filled + if (LPC_USB->EPBUFCFG & EP(endpoint)) { + // Double buffered (here we read the previous buffer which was used) + if (LPC_USB->EPINUSE & EP(endpoint)) { + bf = 0; + } else { + bf = 1; + } + } + + // Find how many bytes were read + *bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[bf])); + + // Copy data + USBMemCopy(data, ct->out, *bytesRead); + return EP_COMPLETED; + } +} + +void USBHAL::EP0getWriteResult(void) { + // Not required +} + +void USBHAL::EP0stall(void) { + ep[0].in[0] = CMDSTS_S; + ep[0].out[0] = CMDSTS_S; +} + +void USBHAL::setAddress(uint8_t address) { + devCmdStat &= ~DEV_ADDR_MASK; + devCmdStat |= DEV_ADDR(address); + LPC_USB->DEVCMDSTAT = devCmdStat; +} + +EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) { + uint32_t flags = 0; + uint32_t bf; + + // Validate parameters + if (data == NULL) { + return EP_INVALID; + } + + if (endpoint > LAST_PHYSICAL_ENDPOINT) { + return EP_INVALID; + } + + if ((endpoint==EP0IN) || (endpoint==EP0OUT)) { + return EP_INVALID; + } + + if (size > endpointState[endpoint].maxPacket) { + return EP_INVALID; + } + + if (LPC_USB->EPBUFCFG & EP(endpoint)) { + // Double buffered + if (LPC_USB->EPINUSE & EP(endpoint)) { + bf = 1; + } else { + bf = 0; + } + } else { + // Single buffered + bf = 0; + } + + // Check if already active + if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) { + return EP_INVALID; + } + + // Check if stalled + if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) { + return EP_STALLED; + } + + // Copy data to USB RAM + USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size); + + // Add options + if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) { + flags |= CMDSTS_RF; + } + + if (endpointState[endpoint].options & ISOCHRONOUS) { + flags |= CMDSTS_T; + } + + // Add transfer + ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \ + endpointState[endpoint].buffer[bf]) \ + | CMDSTS_NBYTES(size) | CMDSTS_A | flags; + + return EP_PENDING; +} + +EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) { + uint32_t bf; + + // Validate parameters + if (endpoint > LAST_PHYSICAL_ENDPOINT) { + return EP_INVALID; + } + + if (OUT_EP(endpoint)) { + return EP_INVALID; + } + + if (LPC_USB->EPBUFCFG & EP(endpoint)) { + // Double buffered // TODO: FIX THIS + if (LPC_USB->EPINUSE & EP(endpoint)) { + bf = 1; + } else { + bf = 0; + } + } else { + // Single buffered + bf = 0; + } + + // Check if endpoint still active + if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) { + return EP_PENDING; + } + + // Check if stalled + if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) { + return EP_STALLED; + } + + return EP_COMPLETED; +} + +void USBHAL::stallEndpoint(uint8_t endpoint) { + + // FIX: should this clear active bit? + if (IN_EP(endpoint)) { + ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S; + ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S; + } else { + ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S; + ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S; + } +} + +void USBHAL::unstallEndpoint(uint8_t endpoint) { + if (LPC_USB->EPBUFCFG & EP(endpoint)) { + // Double buffered + if (IN_EP(endpoint)) { + ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0 + ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0 + + if (LPC_USB->EPINUSE & EP(endpoint)) { + ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0 + } else { + ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0 + } + } else { + ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0 + ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0 + + if (LPC_USB->EPINUSE & EP(endpoint)) { + ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0 + } else { + ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0 + } + } + } else { + // Single buffered + if (IN_EP(endpoint)) { + ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0 + } else { + ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0 + } + } +} + +bool USBHAL::getEndpointStallState(unsigned char endpoint) { + if (IN_EP(endpoint)) { + if (LPC_USB->EPINUSE & EP(endpoint)) { + if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) { + return true; + } + } else { + if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) { + return true; + } + } + } else { + if (LPC_USB->EPINUSE & EP(endpoint)) { + if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) { + return true; + } + } else { + if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) { + return true; + } + } + } + + return false; +} + +bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) { + uint32_t tmpEpRamPtr; + + if (endpoint > LAST_PHYSICAL_ENDPOINT) { + return false; + } + + // Not applicable to the control endpoints + if ((endpoint==EP0IN) || (endpoint==EP0OUT)) { + return false; + } + + // Allocate buffers in USB RAM + tmpEpRamPtr = epRamPtr; + + // Must be 64 byte aligned + tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64); + + if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) { + // Out of memory + return false; + } + + // Allocate first buffer + endpointState[endpoint].buffer[0] = tmpEpRamPtr; + tmpEpRamPtr += maxPacket; + + if (!(options & SINGLE_BUFFERED)) { + // Must be 64 byte aligned + tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64); + + if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) { + // Out of memory + return false; + } + + // Allocate second buffer + endpointState[endpoint].buffer[1] = tmpEpRamPtr; + tmpEpRamPtr += maxPacket; + } + + // Commit to this USB RAM allocation + epRamPtr = tmpEpRamPtr; + + // Remaining endpoint state values + endpointState[endpoint].maxPacket = maxPacket; + endpointState[endpoint].options = options; + + // Enable double buffering if required + if (options & SINGLE_BUFFERED) { + LPC_USB->EPBUFCFG &= ~EP(endpoint); + } else { + // Double buffered + LPC_USB->EPBUFCFG |= EP(endpoint); + } + + // Enable interrupt + LPC_USB->INTEN |= EP(endpoint); + + // Enable endpoint + unstallEndpoint(endpoint); + return true; +} + +void USBHAL::remoteWakeup(void) { + // Clearing DSUS bit initiates a remote wakeup if the + // device is currently enabled and suspended - otherwise + // it has no effect. + LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS; +} + + +static void disableEndpoints(void) { + uint32_t logEp; + + // Ref. Table 158 "When a bus reset is received, software + // must set the disable bit of all endpoints to 1". + + for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) { + ep[logEp].out[0] = CMDSTS_D; + ep[logEp].out[1] = CMDSTS_D; + ep[logEp].in[0] = CMDSTS_D; + ep[logEp].in[1] = CMDSTS_D; + } + + // Start of USB RAM for endpoints > 0 + epRamPtr = usbRamPtr; +} + + + +void USBHAL::_usbisr(void) { + instance->usbisr(); +} + +void USBHAL::usbisr(void) { + // Start of frame + if (LPC_USB->INTSTAT & FRAME_INT) { + // Clear SOF interrupt + LPC_USB->INTSTAT = FRAME_INT; + + // SOF event, read frame number + SOF(FRAME_NR(LPC_USB->INFO)); + } + + // Device state + if (LPC_USB->INTSTAT & DEV_INT) { + LPC_USB->INTSTAT = DEV_INT; + + if (LPC_USB->DEVCMDSTAT & DSUS_C) { + // Suspend status changed + LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C; + if (LPC_USB->DEVCMDSTAT & DSUS) { + suspendStateChanged(1); + } else { + suspendStateChanged(0); + } + } + + if (LPC_USB->DEVCMDSTAT & DRES_C) { + // Bus reset + LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C; + + // Disable endpoints > 0 + disableEndpoints(); + + // Bus reset event + busReset(); + } + } + + // Endpoint 0 + if (LPC_USB->INTSTAT & EP(EP0OUT)) { + // Clear EP0OUT/SETUP interrupt + LPC_USB->INTSTAT = EP(EP0OUT); + + // Check if SETUP + if (LPC_USB->DEVCMDSTAT & SETUP) { + // Clear Active and Stall bits for EP0 + // Documentation does not make it clear if we must use the + // EPSKIP register to achieve this, Fig. 16 and NXP reference + // code suggests we can just clear the Active bits - check with + // NXP to be sure. + ep[0].in[0] = 0; + ep[0].out[0] = 0; + + // Clear EP0IN interrupt + LPC_USB->INTSTAT = EP(EP0IN); + + // Clear SETUP (and INTONNAK_CI/O) in device status register + LPC_USB->DEVCMDSTAT = devCmdStat | SETUP; + + // EP0 SETUP event (SETUP data received) + EP0setupCallback(); + } else { + // EP0OUT ACK event (OUT data received) + EP0out(); + } + } + + if (LPC_USB->INTSTAT & EP(EP0IN)) { + // Clear EP0IN interrupt + LPC_USB->INTSTAT = EP(EP0IN); + + // EP0IN ACK event (IN data sent) + EP0in(); + } + + for (uint8_t num = 2; num < 5*2; num++) { + if (LPC_USB->INTSTAT & EP(num)) { + LPC_USB->INTSTAT = EP(num); + epComplete |= EP(num); + if ((instance->*(epCallback[num - 2]))()) { + epComplete &= ~EP(num); + } + } + } +} + +#endif