Simple RTC class based on DS1307. Emphasis on simple. Allows you to run at 100k or 400k Hz (for newer DS1307 capable devices). MapTime() allows you to set the time() service to the same as the RTC. Uses struct tm throughout so you can use traditional time functions for manipulation.

Dependents:   AdaFruit_RGBLCD

RTclock.cpp

Committer:
vtraveller
Date:
2014-10-09
Revision:
16:f7e4b4cbfb9e
Parent:
15:1645f55bd0ee
Child:
17:bdc15c054ac1

File content as of revision 16:f7e4b4cbfb9e:

#include "mbed.h"
#include "RTclock.h"

RTclock::RTclock(I2C & in_cI2C, uint8_t in_nAddress, EClockType in_eClockType)
    : m_bTwelveHour(false)
    , m_cI2C(in_cI2C)
    , m_nAddress(in_nAddress)
    , m_eClockType(in_eClockType)
{        
}

RTclock::~RTclock()
{
}

int RTclock::bcdToDecimal(int in_nBCD)
{
    return ((in_nBCD & 0xF0) >> 4) * 10 + (in_nBCD & 0x0F);
}

int RTclock::decimalToBcd(int in_nDecimal)
{
    return (in_nDecimal % 10) + ((in_nDecimal / 10) << 4);
}

bool RTclock::getTime(tm & out_sTM)
{
    char aBuffer[7];
    
    if (!read(0, aBuffer, 7)) return false;

    m_bTwelveHour = ((aBuffer[2] & 0x40) == 0x40);
    
    out_sTM.tm_sec = bcdToDecimal(aBuffer[0] & 0x7f);
    out_sTM.tm_min = bcdToDecimal(aBuffer[1]);
    
    if (m_bTwelveHour)
    {
        // add 12 hours if PM bit is set and past midday
        out_sTM.tm_hour = bcdToDecimal(aBuffer[2] & 0x1f);
        
        bool bPM = (0 != (aBuffer[2] & 0x20));
        if (bPM && 12 != out_sTM.tm_hour) out_sTM.tm_hour += 12;
        if (!bPM && 12 == out_sTM.tm_hour) out_sTM.tm_hour = 0;
    }
    else
    {
        out_sTM.tm_hour = bcdToDecimal(aBuffer[2] & 0x3f);
    }
    
    out_sTM.tm_wday = aBuffer[3] % 7;
    out_sTM.tm_mday = bcdToDecimal(aBuffer[4]);
    out_sTM.tm_mon  = bcdToDecimal(aBuffer[5]);
    out_sTM.tm_year = (bcdToDecimal(aBuffer[6]) + 2000) - 1900;   //  Returns from 2000, need form 1900 for time function
    out_sTM.tm_isdst = 0;
    
    return true;
}

bool RTclock::isTwelveHour()
{
    return m_bTwelveHour;
}

bool RTclock::mapTime()
{
    tm sTM;
    if (!getTime(sTM)) return false;
    
    // Convert and set internal time
    time_t nTime = ::mktime(&sTM);
    ::set_time(nTime);
    
    return true;
}

bool RTclock::read(uint8_t in_nAddress, char * out_pBuffer, int in_nLength)
{
    if (0 != m_cI2C.write(m_nAddress, (char *)&in_nAddress, 1)) return false;
    if (0 != m_cI2C.read(m_nAddress, out_pBuffer, in_nLength)) return false;
    
    return true;
}

bool RTclock::setTime(const tm  & in_sTM, bool in_bTwelveHour)
{
    char aBuffer[7];

    // Preserve flags that were in register
    if (!read(0,aBuffer,7)) return false;
    
    m_bTwelveHour = in_bTwelveHour;
    
    // We always have tm in 24hr form - so adjut if 12hr clock
    int nHour = in_sTM.tm_hour;
    if (in_bTwelveHour) nHour %= 12;
    
    switch (m_eClockType)
    {
        case eDS1311:
            aBuffer[0] &= 0x7f;
            aBuffer[0] = (aBuffer[0] & 0x80) | (decimalToBcd(in_sTM.tm_sec)& 0x7f);
            aBuffer[1] = decimalToBcd(in_sTM.tm_min);    
            aBuffer[2] = (aBuffer[2] & 0xc4) | (decimalToBcd(nHour) & 0x3f);
            aBuffer[3] = in_sTM.tm_wday;
            aBuffer[4] = decimalToBcd(in_sTM.tm_mday);
            aBuffer[5] = decimalToBcd(in_sTM.tm_mon);
            aBuffer[6] = decimalToBcd(in_sTM.tm_year + 1900 - 2000);
        
            // Handle the 12hr clock bits
            if (in_bTwelveHour)
            {
                // Turn on 12hr clock
                aBuffer[2] |= 0x40;
                
                // Set am/pm bit based on hours
                if (in_sTM.tm_hour >= 12) aBuffer[2] |= 0x20; else aBuffer[2] &= ~0x20;        
            }
            else
            {
                aBuffer[2] &= ~64;
            }
            break;
            
        case eDS3231:
            aBuffer[0] = decimalToBcd(in_sTM.tm_sec) & 0x7f;
            aBuffer[1] = decimalToBcd(in_sTM.tm_min) & 0x7f;    
            aBuffer[2] = decimalToBcd(nHour) & (m_bTwelveHour ? 0x1f : 0x3f);
            aBuffer[3] = in_sTM.tm_wday;
            aBuffer[4] = decimalToBcd(in_sTM.tm_mday);
            aBuffer[5] = decimalToBcd(in_sTM.tm_mon) & ~0x80 /* 2000+ */;
            aBuffer[6] = decimalToBcd(in_sTM.tm_year + 1900 - 2000);
        
            // Handle the 12hr clock bits
            if (in_bTwelveHour)
            {
                // Turn on 12hr clock
                aBuffer[2] |= 0x40;
                
                // Set am/pm bit based on hours
                if (in_sTM.tm_hour >= 12) aBuffer[2] |= 0x20;
            }
            break;
    }        
    
    // Write new date and time
    setRunning(false);
    
    bool bSuccess = write(0, aBuffer, 7);
    
    if (bSuccess) setRunning(true);

    return bSuccess;
}

bool RTclock::setRunning(bool in_bEnable)
{
    char nRunning;
    
    if (!read(0, &nRunning, 1)) return false;

    // Set running
    if (in_bEnable)
    { 
        nRunning &= 0x7F;
    }
    else
    {
        nRunning |= 0x80;
    }
    
    return write(0, &nRunning, 1);
}

bool RTclock::setSquareWaveOutput
(
    bool                in_bEnable,
    ESquareWaveRates    in_nRateSelect
)
{
    char nValue;
    
    // Read register    
    if (!read(7, &nValue, 1)) return false;
    
    //  Protect control bits
    nValue = (nValue & 0x80) | (in_bEnable ? 0x10 : 0) | ((char)in_nRateSelect & 0x03);
    
    return write(7, &nValue, 1);
}

bool RTclock::write(uint8_t in_nAddress, const char * in_pBuffer, int in_nLength)
{    
    char aBuffer[10];
    
    aBuffer[0] = in_nAddress & 0xff;
    
    for (size_t i = 0 ; i < in_nLength; i++)
        aBuffer[i + 1] = in_pBuffer[i];

    return m_cI2C.write(m_nAddress, aBuffer, in_nLength + 1);
}