Simple RTC class based on DS1307. Emphasis on simple. Allows you to run at 100k or 400k Hz (for newer DS1307 capable devices). MapTime() allows you to set the time() service to the same as the RTC. Uses struct tm throughout so you can use traditional time functions for manipulation.
RTclock.cpp
- Committer:
- vtraveller
- Date:
- 2014-08-09
- Revision:
- 4:04a51e4dbf4c
- Parent:
- 3:ed1628b05d37
- Child:
- 5:d71d6e5a7eee
File content as of revision 4:04a51e4dbf4c:
#include "mbed.h" #include "RTclock.h" const char * RTclock::m_aWeekDays[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" }; RTclock::RTclock(PinName in_nSDA, PinName in_nSCL, bool in_bHiSpeed) : RTclock_parent(in_nSDA,in_nSCL) { // Frequency depends on chip - most are 100KHz frequency(in_bHiSpeed ? 400000 : 100000); } RTclock::~RTclock() { } int RTclock::BcdToDecimal(int in_nBCD) { return ((in_nBCD & 0xF0) >> 4) * 10 + (in_nBCD & 0x0F); } int RTclock::DecimalToBcd(int in_nDecimal) { return (in_nDecimal % 10) + ((in_nDecimal / 10) << 4); } bool RTclock::GetTime(tm & out_sTM) { char aBuffer[7]; bool b12hour = false; if (!read(0, aBuffer, 7)) return false; b12hour = ((aBuffer[2] & 64) == 64); out_sTM.tm_sec = BcdToDecimal(aBuffer[0] & 0x7F); out_sTM.tm_min = BcdToDecimal(aBuffer[1]); if (b12hour) { // remove 12 hours if PM bit is set and past midday out_sTM.tm_hour = BcdToDecimal(aBuffer[2] & 31); if ((aBuffer[2] & 32) && out_sTM.tm_hour > 12) out_sTM.tm_hour -= 12; } else { out_sTM.tm_hour = BcdToDecimal(aBuffer[2] & 63); } out_sTM.tm_wday = aBuffer[3]; out_sTM.tm_mday = BcdToDecimal(aBuffer[4]); out_sTM.tm_mon = BcdToDecimal(aBuffer[5]); out_sTM.tm_year = (BcdToDecimal(aBuffer[6]) + 2000) - 1900; // Returns from 2000, need form 1900 for time function out_sTM.tm_isdst = 0; return true; } const char * RTclock::GetWeekday(int in_nWeekDay) { return m_aWeekDays[in_nWeekDay]; } bool RTclock::MapTime() { tm sTM; if (!GetTime(sTM)) return false; // Convert and set internal time time_t nTime = ::mktime(&sTM); ::set_time(nTime); return true; } bool RTclock::read(int in_nAddress, char * out_pBuffer, int in_nLength) { char aBuffer[2] = { (char)in_nAddress, 0 }; if (0 != RTclock_parent::write(0xd0, aBuffer, 1)) return false; if (0 != RTclock_parent::read(0xd0, out_pBuffer, in_nLength)) return false; return true; } bool RTclock::SetTime(const tm & in_sTM) { char aBuffer[7]; // Preserve flags that were in register if (!read(0,aBuffer,7)) return false; aBuffer[0] &= 0x7F; aBuffer[0] = (aBuffer[0] & 0x80) | (DecimalToBcd(in_sTM.tm_sec)& 0x7f); aBuffer[1] = DecimalToBcd(in_sTM.tm_min); aBuffer[2] = (aBuffer[2] & 196) | (DecimalToBcd(in_sTM.tm_hour) & 0x3F); aBuffer[3] = in_sTM.tm_wday; aBuffer[4] = DecimalToBcd(in_sTM.tm_mday); aBuffer[5] = DecimalToBcd(in_sTM.tm_mon); aBuffer[6] = DecimalToBcd(in_sTM.tm_year + 1900 -2000); // Write new date and time SetRunning(false); bool bSuccess = write(0, aBuffer, 7); if (bSuccess) SetRunning(true); return bSuccess; } bool RTclock::SetRunning(bool in_bEnable) { char nRunning; if (!read(0, &nRunning, 1)) return false; // Set running if (in_bEnable) { nRunning &= 0x7F; } else { nRunning |= 0x80; } return write(0, &nRunning, 1); } bool RTclock::SetSquareWaveOutput ( bool in_bEnable, ESquareWaveRates in_nRateSelect ) { char nValue; // Read register if (!read(7, &nValue, 1)) return false; // Protect control bits nValue = (nValue & 0x80) | (in_bEnable ? 0x10 : 0) | ((char)in_nRateSelect & 0x03); return write(7, &nValue, 1); } bool RTclock::write(int in_nAddress, const char * in_pBuffer, int in_nLength) { char aBuffer[10]; aBuffer[0] = in_nAddress & 0xff; for (size_t i = 0 ; i < in_nLength; i++) aBuffer[i + 1] = in_pBuffer[i]; return RTclock_parent::write(0xd0, aBuffer, in_nLength + 1); }