Measure EMG, publish on HID Scope
Dependencies: HIDScope mbed mbed-dsp
Fork of EMG by
Diff: main.cpp
- Revision:
- 19:dbc1bca498e3
- Parent:
- 18:fed07cc1f8f6
- Child:
- 20:f7d281e3112b
--- a/main.cpp Mon Sep 29 11:42:37 2014 +0000 +++ b/main.cpp Mon Sep 29 12:01:13 2014 +0000 @@ -6,42 +6,18 @@ //Define objects AnalogIn emg0(PTB1); //Analog input -PwmOut red(LED_RED); //PWM output Ticker log_timer; MODSERIAL pc(USBTX,USBRX); HIDScope scope(2); arm_biquad_casd_df1_inst_f32 lowpass; +//constants for 5Hz lowpass float lowpass_const[] = {0.02008337 , 0.04016673 , 0.02008337 , 1.56101808 , -0.64135154}; -float lowpass_states[4]; arm_biquad_casd_df1_inst_f32 highpass; +//constants for 0.5Hz highpass float highpass_const[] = {0.97803048, -1.95606096, 0.97803048, 1.95557824 , -0.95654368}; -volatile float highpass_states[4]; - -/* -typedef struct second_order_constants -{ - float b[3]; - float a[3]; -} second_order_constants_t; -typedef struct second_order_values -{ - float x_1,x_2; - float y_1,y_2; -} second_order_values_t; - -//constants -second_order_constants_t highpass= {{0.97803048, -1.95606096, 0.97803048},{1, -1.95557824, 0.95654368}}; -second_order_constants_t lowpass={{ 0.02008337 , 0.04016673 , 0.02008337},{1.0, -1.56101808, 0.64135154}}; -//type for values -second_order_values_t highpass_values, lowpass_values; - - -//function definition -float second_order(float x, second_order_constants_t constants, second_order_values_t &values); -*/ /** Looper function * functions used for Ticker and Timeout should be of type void <name>(void) @@ -63,57 +39,36 @@ float filtered_emg; float emg_value_f32; /*put raw emg value both in red and in emg_value*/ - red.write(emg0.read()); // read float value (0..1 = 0..3.3V) emg_value = emg0.read_u16(); // read direct ADC result, converted to 16 bit integer (0..2^16 = 0..65536 = 0..3.3V) emg_value_f32 = emg0.read(); - //filtered_emg = second_order((float)emg_value,highpass, highpass_values); + + //process emg arm_biquad_cascade_df1_f32(&highpass, &emg_value_f32, &filtered_emg, 1 ); filtered_emg = fabs(filtered_emg); arm_biquad_cascade_df1_f32(&lowpass, &filtered_emg, &filtered_emg, 1 ); - /*send value to PC. Line below is used to prevent buffer overrun */ - scope.set(0,emg_value); - //scope.set(1,second_order(fabs(filtered_emg), lowpass, lowpass_values)); - scope.set(1,filtered_emg); + + /*send value to PC. */ + scope.set(0,emg_value); //uint value + scope.set(1,filtered_emg); //processed float scope.send(); - /**When not using the LED, the above could also have been done this way: - * pc.printf("%u\n", emg0.read_u16()); - */ } int main() { - /*setup baudrate. Choose the same in your program on PC side*/ - //pc.baud(115200); - /*set the period for the PWM to the red LED*/ - red.period_ms(2); + + //set up filters. Use external array for constants + arm_biquad_cascade_df1_init_f32(&lowpass,1 , lowpass_const, lowpass.pState); + arm_biquad_cascade_df1_init_f32(&highpass,1 ,highpass_const,highpass.pState); + /**Here you attach the 'void looper(void)' function to the Ticker object * The looper() function will be called every 0.01 seconds. * Please mind that the parentheses after looper are omitted when using attach. */ - //set up filters - arm_biquad_cascade_df1_init_f32(&lowpass,1 , lowpass_const, lowpass_states); - arm_biquad_cascade_df1_init_f32(&highpass,1 ,highpass_const, (float *)highpass_states); log_timer.attach(looper, 0.005); while(1) //Loop { /*Empty!*/ /*Everything is handled by the interrupt routine now!*/ } -} - - -/* -float second_order(float x, second_order_constants_t constants, second_order_values_t &values) -{ - float y = 0; - float b_terms, a_terms; - b_terms = (constants.b[0]*x) + (constants.b[1]*values.x_1) + (constants.b[2]*values.x_2); - a_terms = (constants.a[1]*values.y_1) + (constants.a[2]*values.y_2); - y=(1./constants.a[0])* (b_terms-a_terms); - values.x_2 = values.x_1; - values.x_1 = x; - values.y_2 = values.y_1; - values.y_1 = y; - return y; -}*/ \ No newline at end of file +} \ No newline at end of file