Added mutex for multiple SPI devices on the same SPI bus

Fork of cc3000_hostdriver_mbedsocket by Martin Kojtal

cc3000_spi.cpp

Committer:
Kojto
Date:
2013-09-19
Revision:
0:615c697c33b0
Child:
20:30b6ed7bf8fd

File content as of revision 0:615c697c33b0:

/*****************************************************************************
*
*  C++ interface/implementation created by Martin Kojtal (0xc0170). Thanks to
*  Jim Carver and Frank Vannieuwkerke for their inital cc3000 mbed port and
*  provided help.
*
*  This version of "host driver" uses CC3000 Host Driver Implementation. Thus
*  read the following copyright:
*
*  Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*    Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
*
*    Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the
*    distribution.
*
*    Neither the name of Texas Instruments Incorporated nor the names of
*    its contributors may be used to endorse or promote products derived
*    from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
*  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
*  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
*  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
*  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
*  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include "cc3000.h"
#include "cc3000_spi.h"

namespace mbed_cc3000 {

cc3000_spi::cc3000_spi(PinName cc3000_irq, PinName cc3000_en, PinName cc3000_cs, SPI cc3000_spi, IRQn_Type irq_port, cc3000_event &event, cc3000_simple_link &simple_link)
  : _wlan_irq(cc3000_irq), _wlan_en(cc3000_en), _wlan_cs(cc3000_cs), _wlan_spi(cc3000_spi), _irq_port(irq_port),
    _event(event), _simple_link(simple_link) {
    /* TODO = clear pending interrupts for PORTS. This is dependent on the used chip */

    _wlan_spi.format(8,1);
    _wlan_spi.frequency(12000000);
    _function_pointer =  _wlan_irq.fall(this, &cc3000_spi::WLAN_IRQHandler);

    _wlan_en = 0;
    _wlan_cs = 1;
}

cc3000_spi::~cc3000_spi() {

}

void cc3000_spi::wlan_irq_enable()
{
    NVIC_EnableIRQ(_irq_port);
}

void cc3000_spi::wlan_irq_disable() {
    NVIC_DisableIRQ(_irq_port);
}

void cc3000_spi::wlan_irq_set(uint8_t value) {
    if (value)
    {
        _wlan_en = 1;
    }
    else
    {
        _wlan_en = 0;
    }
}

uint32_t cc3000_spi::wlan_irq_read() {
    return _wlan_irq.read();
}

void cc3000_spi::close() {
    if (_simple_link.get_received_buffer() != 0)
    {
      _simple_link.set_received_buffer(0);
    }
    wlan_irq_disable();
}

// void cc3000_spi::SpiReceiveHandler() {
//     _simple_link.usEventOrDataReceived = 1;
//     //_simple_link.pucReceivedData = (unsigned char *)pvBuffer;

//     hci_unsolicited_event_handler();
// }


/* TODO
    pRxPacket, pTxPacket do we need to hold this pointer ?
    SPIRxHandler - remove?
*/
void cc3000_spi::open() {
   _spi_info.spi_state = eSPI_STATE_POWERUP;
   //_spi_info.SPIRxHandler = pfRxHandler;
   _spi_info.tx_packet_length = 0;
   _spi_info.rx_packet_length = 0;
   //_rx_buffer[CC3000_RX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
   //_tx_buffer[CC3000_TX_BUFFER_SIZE - 1] = CC3000_BUFFER_MAGIC_NUMBER;
    wlan_irq_enable();
}

uint32_t cc3000_spi::first_write(uint8_t *buffer, uint16_t length) {
    _wlan_cs = 0;
    wait_us(50);

    /* first 4 bytes of the data */
    write_synchronous(buffer, 4);
    wait_us(50);
    write_synchronous(buffer + 4, length - 4);
    _spi_info.spi_state = eSPI_STATE_IDLE;
    _wlan_cs = 1;

    return 0;
}


uint32_t cc3000_spi::write(uint8_t *buffer, uint16_t length) {
    uint8_t pad = 0;
 // check the total length of the packet in order to figure out if padding is necessary
   if(!(length & 0x0001))
   {
      pad++;
   }
   buffer[0] = WRITE;
   buffer[1] = HI(length + pad);
   buffer[2] = LO(length + pad);
   buffer[3] = 0;
   buffer[4] = 0;

   length += (SPI_HEADER_SIZE + pad);

   // The magic number resides at the end of the TX/RX buffer (1 byte after the allocated size)
   // If the magic number is overwitten - buffer overrun occurred - we will be stuck here forever!
   uint8_t * transmit_buffer = _simple_link.get_transmit_buffer();
   if (transmit_buffer[CC3000_TX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
   {
      while (1);
   }

   if (_spi_info.spi_state == eSPI_STATE_POWERUP)
   {
      while (_spi_info.spi_state != eSPI_STATE_INITIALIZED);
   }

   if (_spi_info.spi_state == eSPI_STATE_INITIALIZED)
   {
      // TX/RX transaction over SPI after powerup: IRQ is low - send read buffer size command
      first_write(buffer, length);
   }
   else
   {
      // Prevent occurence of a race condition when 2 back to back packets are sent to the
      // device, so the state will move to IDLE and once again to not IDLE due to IRQ
      wlan_irq_disable();

      while (_spi_info.spi_state != eSPI_STATE_IDLE);

      _spi_info.spi_state = eSPI_STATE_WRITE_IRQ;
      //_spi_info.pTxPacket = buffer;
      _spi_info.tx_packet_length = length;

      // Assert the CS line and wait until the IRQ line is active, then initialize the write operation
      _wlan_cs = 0;

      wlan_irq_enable();
   }

   // Wait until the transaction ends
   while (_spi_info.spi_state != eSPI_STATE_IDLE);

   return 0;
}

void cc3000_spi::write_synchronous(uint8_t *data, uint16_t size) {
   while(size)
   {
        _wlan_spi.write(*data++);
        size--;
   }
}

void cc3000_spi::read_synchronous(uint8_t *data, uint16_t size) {
   for (uint32_t i = 0; i < size; i++)
   {
        data[i] = _wlan_spi.write(0x03);;
   }
}

uint32_t cc3000_spi::read_data_cont() {
   long data_to_recv;
   unsigned char *evnt_buff, type;

   //determine the packet type
   evnt_buff = _simple_link.get_received_buffer();
   data_to_recv = 0;
   STREAM_TO_UINT8((uint8_t *)(evnt_buff + SPI_HEADER_SIZE), HCI_PACKET_TYPE_OFFSET, type);

    switch(type)
    {
        case HCI_TYPE_DATA:
        {
         // Read the remaining data..
         STREAM_TO_UINT16((uint8_t *)(evnt_buff + SPI_HEADER_SIZE), HCI_DATA_LENGTH_OFFSET, data_to_recv);
         if (!((HEADERS_SIZE_EVNT + data_to_recv) & 1))
         {
              data_to_recv++;
         }

         if (data_to_recv)
         {
               read_synchronous(evnt_buff + 10, data_to_recv);
         }
            break;
        }
        case HCI_TYPE_EVNT:
        {
         // Calculate the rest length of the data
            STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_EVENT_LENGTH_OFFSET, data_to_recv);
         data_to_recv -= 1;
         // Add padding byte if needed
         if ((HEADERS_SIZE_EVNT + data_to_recv) & 1)
         {
               data_to_recv++;
         }

         if (data_to_recv)
         {
               read_synchronous(evnt_buff + 10, data_to_recv);
         }

         _spi_info.spi_state = eSPI_STATE_READ_EOT;
            break;
        }
    }
    return (0);
}

void cc3000_spi::write_wlan_en(uint8_t value) {
    if (value) {
        _wlan_en = 1;
    } else {
        _wlan_en = 0;
    }
}

void cc3000_spi::WLAN_IRQHandler() {
   if (_spi_info.spi_state == eSPI_STATE_POWERUP)
   {
      // Inform HCI Layer that IRQ occured after powerup
      _spi_info.spi_state = eSPI_STATE_INITIALIZED;
   }
   else if (_spi_info.spi_state == eSPI_STATE_IDLE)
   {
      _spi_info.spi_state = eSPI_STATE_READ_IRQ;
      /* IRQ line goes low - acknowledge it */
       _wlan_cs = 0;
      read_synchronous(_simple_link.get_received_buffer(), 10);
      _spi_info.spi_state = eSPI_STATE_READ_EOT;


      // The header was read - continue with the payload read
      if (!read_data_cont())
      {
          // All the data was read - finalize handling by switching to the task
          // Trigger Rx processing
          wlan_irq_disable();
          _wlan_cs = 1;
          // The magic number resides at the end of the TX/RX buffer (1 byte after the allocated size)
          // If the magic number is overwitten - buffer overrun occurred - we will be stuck here forever!
          uint8_t *received_buffer = _simple_link.get_received_buffer();
          if (received_buffer[CC3000_RX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
              {
                  while (1);
              }
              _spi_info.spi_state = eSPI_STATE_IDLE;
              _event.received_handler(received_buffer + SPI_HEADER_SIZE);
      }
   }
   else if (_spi_info.spi_state == eSPI_STATE_WRITE_IRQ)
   {
      write_synchronous(_simple_link.get_transmit_buffer(), _spi_info.tx_packet_length);
      _spi_info.spi_state = eSPI_STATE_IDLE;
      _wlan_cs = 1;
   }
}

}