Added mutex for multiple SPI devices on the same SPI bus
Fork of cc3000_hostdriver_mbedsocket by
cc3000.cpp
- Committer:
- Kojto
- Date:
- 2013-09-21
- Revision:
- 4:15b58c119a0a
- Parent:
- 3:ad95e296bfbf
- Child:
- 11:5e3771b29385
File content as of revision 4:15b58c119a0a:
/***************************************************************************** * * C++ interface/implementation created by Martin Kojtal (0xc0170). Thanks to * Jim Carver and Frank Vannieuwkerke for their inital cc3000 mbed port and * provided help. * * This version of "host driver" uses CC3000 Host Driver Implementation. Thus * read the following copyright: * * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. * * Neither the name of Texas Instruments Incorporated nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #include "cc3000.h" #include "cc3000_event.h" namespace mbed_cc3000 { /* TODO this prefix remove? verify */ static uint8_t cc3000_prefix[] = {'T', 'T', 'T'}; cc3000 *cc3000::_inst; cc3000::cc3000(PinName cc3000_irq, PinName cc3000_en, PinName cc3000_cs, SPI cc3000_spi, IRQn_Type irq_port) : _event(_simple_link, _hci, _spi, *this), _socket(_simple_link, _hci, _event), _spi(cc3000_irq, cc3000_en, cc3000_cs, cc3000_spi, irq_port, _event, _simple_link), _hci(_spi), _nvmem(_hci, _event, _simple_link), _netapp(_simple_link, _nvmem, _hci, _event), _wlan(_simple_link, _event, _spi, _hci) { /* TODO - pIRQ riorities ?? */ _simple_link.set_tx_complete_signal(1); _status.dhcp = 0; _status.connected = 0; _status.socket = 0; _status.dhcp_configured = 0; _status.smart_config_complete = 0; _status.stop_smart_config = 0; _status.ok_to_shut_down = 0; _inst = this; } cc3000::~cc3000() { } void cc3000::usync_callback(int32_t event_type, uint8_t * data, uint8_t length) { if (event_type == HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE) { _status.smart_config_complete = 1; _status.stop_smart_config = 1; } if (event_type == HCI_EVNT_WLAN_UNSOL_CONNECT) { _status.connected = 1; } if (event_type == HCI_EVNT_WLAN_UNSOL_DISCONNECT) { _status.connected = 0; _status.dhcp = 0; _status.dhcp_configured = 0; } if (event_type == HCI_EVNT_WLAN_UNSOL_DHCP) { if ( *(data + NETAPP_IPCONFIG_MAC_OFFSET) == 0) { _status.dhcp = 1; } else { _status.dhcp = 0; } } if (event_type == HCI_EVENT_CC3000_CAN_SHUT_DOWN) { _status.ok_to_shut_down = 1; } if (event_type == HCI_EVNT_WLAN_ASYNC_PING_REPORT) { memcpy(&_ping_report, data, length); } if (event_type == HCI_EVNT_BSD_TCP_CLOSE_WAIT) { uint8_t socketnum; socketnum = data[0]; if (socketnum < MAX_SOCKETS) { _closed_sockets[socketnum] = true; /* clients socket is closed */ } } } void cc3000::start_smart_config(const uint8_t *smart_config_key) { // Reset all the previous configuration _wlan.ioctl_set_connection_policy(0, 0, 0); _wlan.ioctl_del_profile(255); //Wait until CC3000 is disconected while (_status.connected == 1) { wait_us(5); _event.hci_unsolicited_event_handler(); } // Trigger the Smart Config process _wlan.smart_config_set_prefix(cc3000_prefix); // Start the Smart Config process with AES disabled _wlan.smart_config_start(0); #if (CC3000_DEBUG == 1) printf("DEBUG: Waiting for smartconfig to be completed.\n"); #endif // Wait for Smart config finished while (_status.smart_config_complete == 0) { wait_ms(100); } #if (CC3000_DEBUG == 1) printf("DEBUG: Smartconfig finished.\n"); #endif #ifndef CC3000_UNENCRYPTED_SMART_CONFIG // create new entry for AES encryption key _nvmem.create_entry(NVMEM_AES128_KEY_FILEID, 16); // write AES key to NVMEM _security.aes_write_key((uint8_t *)(&smart_config_key[0])); // Decrypt configuration information and add profile _wlan.smart_config_process(); #endif // Configure to connect automatically to the AP retrieved in the // Smart config process _wlan.ioctl_set_connection_policy(0, 1, 1); // reset the CC3000 _wlan.stop(); wait(2); _wlan.start(0); wait(2); // Mask out all non-required events _wlan.set_event_mask(HCI_EVNT_WLAN_KEEPALIVE|HCI_EVNT_WLAN_UNSOL_INIT|HCI_EVNT_WLAN_ASYNC_PING_REPORT); } bool cc3000::connect_secure(const uint8_t *ssid, const uint8_t *key, int32_t security_mode) { uint32_t ret; _wlan.disconnect(); wait_ms(3); ret = _wlan.connect(security_mode, ssid, strlen((const char *)ssid), 0, (uint8_t *)key, strlen((const char *)key)); if (ret == 0) { /* TODO static internal cc3000 state 0 to TRUE */ ret = true; } else { ret = false; } return ret; } bool cc3000::connect_to_AP(const uint8_t *ssid, const uint8_t *key, int32_t security_mode) { Timer t; /* TODO static? */ bool ret = true; t.start(); while (is_connected() == false) { if (key == 0) { if (connect_open(ssid)) { break; } } else { #ifndef CC3000_TINY_DRIVER if (connect_secure(ssid,key,security_mode)) { break; } #else return false; /* secure connection not supported with TINY_DRIVER */ #endif } /* timeout 10 seconds */ if (t.read_ms() > 10000){ ret = false; #if (CC3000_DEBUG == 1) printf("Connection to AP failed.\n"); #endif break; } } return ret; } void cc3000::start(uint8_t patch) { _wlan.start(patch); _wlan.set_event_mask(HCI_EVNT_WLAN_UNSOL_INIT | HCI_EVNT_WLAN_KEEPALIVE); } void cc3000::stop(void) { _wlan.stop(); } void cc3000::restart(uint8_t patch) { _wlan.stop(); wait_ms(500); _wlan.start(patch); } bool cc3000::connect_open(const uint8_t *ssid) { uint32_t ret; _wlan.disconnect(); wait_ms(3); #ifndef CC3000_TINY_DRIVER ret = _wlan.connect(0,ssid, strlen((const char *)ssid), 0, 0, 0); #else ret = _wlan.connect(ssid, strlen((const char *)ssid)); #endif if (ret == 0) { ret = true; } else { ret = false; } return ret; } bool cc3000::is_connected() { return _status.connected; } bool cc3000::is_dhcp_configured() { return _status.dhcp; } bool cc3000::is_smart_confing_completed() { return _status.smart_config_complete; } void cc3000::get_mac_address(uint8_t address[6]) { _nvmem.get_mac_address(address); } void cc3000::set_mac_address(uint8_t address[6]) { _nvmem.set_mac_address(address); } void cc3000::get_user_file_info(uint8_t *info_file, size_t size) { _nvmem.read( NVMEM_USER_FILE_1_FILEID, size, 0, info_file); } #ifndef CC3000_TINY_DRIVER bool cc3000::get_ip_config(tNetappIpconfigRetArgs *ip_config) { if ((_status.dhcp == false) || (_status.connected == false)) { return false; } _netapp.ipconfig(ip_config); return true; } #endif cc3000_client cc3000::create_tcp_client(uint32_t ip_address, uint16_t port) { sockaddr socket_address = {0}; int32_t tcp_socket; tcp_socket = _socket.socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (tcp_socket == -1) { #if (CC3000_DEBUG == 1) printf("DEBUG: Failed to create new socket (tcp).\n"); #endif return cc3000_client(*this); } socket_address.family = AF_INET; socket_address.data[0] = (port & 0xFF00) >> 8; socket_address.data[1] = (port & 0x00FF); socket_address.data[2] = ip_address >> 24; socket_address.data[3] = ip_address >> 16; socket_address.data[4] = ip_address >> 8; socket_address.data[5] = ip_address; if (_socket.connect(tcp_socket, &socket_address, sizeof(socket_address)) == -1) { #if (CC3000_DEBUG == 1) printf("DEBUG: Failed to connect (tcp).\n"); #endif _socket.closesocket(tcp_socket); return cc3000_client(*this); } return cc3000_client(*this, tcp_socket); } cc3000_client cc3000::create_udp_client(uint32_t ip_address, uint16_t port) { sockaddr socket_address = {0}; int32_t udp_socket; udp_socket = _socket.socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); if (udp_socket == -1) { #if (CC3000_DEBUG == 1) printf("DEBUG: Failed to create new socket (udp).\n"); #endif return cc3000_client(*this); } socket_address.family = AF_INET; socket_address.data[0] = (port & 0xFF00) >> 8; socket_address.data[1] = (port & 0x00FF); socket_address.data[2] = ip_address >> 24; socket_address.data[3] = ip_address >> 16; socket_address.data[4] = ip_address >> 8; socket_address.data[5] = ip_address; if (_socket.connect(udp_socket, &socket_address, sizeof(socket_address)) == -1) { #if (CC3000_DEBUG == 1) printf("DEBUG: Failed to connect (udp).\n"); #endif _socket.closesocket(udp_socket); return cc3000_client(*this); } return cc3000_client(*this, udp_socket); } cc3000_server cc3000::create_tcp_server(uint32_t ip_address, uint16_t port) { sockaddr socket_address = {0}; int32_t tcp_socket; tcp_socket = _socket.socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (tcp_socket == -1) { #if (CC3000_DEBUG == 1) printf("Failed to create new socket.\n"); #endif return cc3000_server(*this, socket_address); } socket_address.family = AF_INET; socket_address.data[0] = (port & 0xFF00) >> 8; socket_address.data[1] = (port & 0x00FF); socket_address.data[2] = ip_address >> 24; socket_address.data[3] = ip_address >> 16; socket_address.data[4] = ip_address >> 8; socket_address.data[5] = ip_address; if (_socket.bind(tcp_socket, &socket_address, sizeof(socket_address)) != 0) { #if (CC3000_DEBUG == 1) printf("DEBUG: Failed to bind the new socket.\n"); #endif return cc3000_server(*this, socket_address); } if (_socket.listen(tcp_socket, 1) != 0) { /* 1 client */ #if (CC3000_DEBUG == 1) printf("DEBUG: Failed to listen on the new socket.\n"); #endif return cc3000_server(*this, socket_address); } return cc3000_server(*this, socket_address, tcp_socket); } void cc3000::delete_profiles(void) { tUserFS user_info; _wlan.ioctl_set_connection_policy(0, 0, 0); _wlan.ioctl_del_profile(255); get_user_file_info((uint8_t *)&user_info, sizeof(user_info)); user_info.FTC = 0; set_user_file_info((uint8_t *)&user_info, sizeof(user_info)); } void cc3000::set_user_file_info(uint8_t *info_file, size_t size) { _nvmem.write( NVMEM_USER_FILE_1_FILEID, size, 0, info_file); } bool cc3000::disconnect(void){ if (_wlan.disconnect()) { return false; } else { return true; } } uint32_t cc3000::ping(uint32_t ip, uint8_t attempts, uint16_t timeout, uint8_t size) { uint32_t reversed_ip = (ip >> 24) | (ip >> 8) & 0xFF00 | (ip << 8) & 0xFF0000 | (ip << 24); _ping_report.packets_received = 0; if (_netapp.ping_send(&reversed_ip, attempts, size, timeout) == -1) { #if (CC3000_DEBUG == 1) printf("DEBUG: Failed to send ping.\n"); #endif return 0; } wait_ms(timeout*attempts*2); /* known issue of cc3000 - sent number is send + received */ #if (CC3000_DEBUG == 1) printf("DEBUG: Sent: %d \n",_ping_report.packets_sent); printf("DEBUG: Received: %d \n",_ping_report.packets_received); printf("DEBUG: Min time: %d \n",_ping_report.min_round_time); printf("DEBUG: Max time: %d \n",_ping_report.max_round_time); printf("DEBUG: Avg time: %d \n",_ping_report.avg_round_time); #endif return _ping_report.packets_received; } /* Conversion between uint types and C strings */ uint8_t* UINT32_TO_STREAM_f (uint8_t *p, uint32_t u32) { *(p)++ = (uint8_t)(u32); *(p)++ = (uint8_t)((u32) >> 8); *(p)++ = (uint8_t)((u32) >> 16); *(p)++ = (uint8_t)((u32) >> 24); return p; } uint8_t* UINT16_TO_STREAM_f (uint8_t *p, uint16_t u16) { *(p)++ = (uint8_t)(u16); *(p)++ = (uint8_t)((u16) >> 8); return p; } uint16_t STREAM_TO_UINT16_f(uint8_t *p, uint16_t offset) { return (uint16_t)((uint16_t)((uint16_t) (*(p + offset + 1)) << 8) + (uint16_t)(*(p + offset))); } uint32_t STREAM_TO_UINT32_f(uint8_t *p, uint16_t offset) { return (uint32_t)((uint32_t)((uint32_t) (*(p + offset + 3)) << 24) + (uint32_t)((uint32_t) (*(p + offset + 2)) << 16) + (uint32_t)((uint32_t) (*(p + offset + 1)) << 8) + (uint32_t)(*(p + offset))); } } /* end of mbed_cc3000 namespace */