A TextLCD interface for driving 4-bit HD44780-based LCDs.

Fork of TextLCD by Wim Huiskamp

Committer:
vm2m
Date:
Fri Jan 06 14:51:48 2017 +0000
Revision:
42:14e1718fba52
Parent:
41:111ca62e8a59
Add support for PCA9538 expander

Who changed what in which revision?

UserRevisionLine numberNew contents of line
wim 37:ce348c002929 1 /* mbed TextLCD Library, for LCDs based on HD44780 controllers
simon 6:e4cb7ddee0d3 2 * Copyright (c) 2007-2010, sford, http://mbed.org
wim 14:0c32b66b14b8 3 * 2013, v01: WH, Added LCD types, fixed LCD address issues, added Cursor and UDCs
wim 14:0c32b66b14b8 4 * 2013, v02: WH, Added I2C and SPI bus interfaces
wim 15:b70ebfffb258 5 * 2013, v03: WH, Added support for LCD40x4 which uses 2 controllers
wim 18:bd65dc10f27f 6 * 2013, v04: WH, Added support for Display On/Off, improved 4bit bootprocess
wim 18:bd65dc10f27f 7 * 2013, v05: WH, Added support for 8x2B, added some UDCs
wim 19:c747b9e2e7b8 8 * 2013, v06: WH, Added support for devices that use internal DC/DC converters
wim 20:e0da005a777f 9 * 2013, v07: WH, Added support for backlight and include portdefinitions for LCD2004 Module from DFROBOT
wim 22:35742ec80c24 10 * 2014, v08: WH, Refactored in Base and Derived Classes to deal with mbed lib change regarding 'NC' defined pins
wim 25:6162b31128c9 11 * 2014, v09: WH/EO, Added Class for Native SPI controllers such as ST7032
wim 26:bd897a001012 12 * 2014, v10: WH, Added Class for Native I2C controllers such as ST7032i, Added support for MCP23008 I2C portexpander, Added support for Adafruit module
wim 30:033048611c01 13 * 2014, v11: WH, Added support for native I2C controllers such as PCF21XX, Improved the _initCtrl() method to deal with differences between all supported controllers
wim 32:59c4b8f648d4 14 * 2014, v12: WH, Added support for native I2C controller PCF2119 and native I2C/SPI controllers SSD1803, ST7036, added setContrast method (by JH1PJL) for supported devices (eg ST7032i)
wim 34:e5a0dcb43ecc 15 * 2014, v13: WH, Added support for controllers US2066/SSD1311 (OLED), added setUDCBlink() method for supported devices (eg SSD1803), fixed issue in setPower()
wim 34:e5a0dcb43ecc 16 * 2014, v14: WH, Added support for PT6314 (VFD), added setOrient() method for supported devices (eg SSD1803, US2066), added Double Height lines for supported devices,
wim 34:e5a0dcb43ecc 17 * added 16 UDCs for supported devices (eg PCF2103), moved UDC defines to TextLCD_UDC file, added TextLCD_Config.h for feature and footprint settings.
wim 35:311be6444a39 18 * 2014, v15: WH, Added AC780 support, added I2C expander modules, fixed setBacklight() for inverted logic modules. Fixed bug in LCD_SPI_N define
wim 36:9f5f86dfd44a 19 * 2014, v16: WH, Added ST7070 and KS0073 support, added setIcon(), clrIcon() and setInvert() method for supported devices
wim 37:ce348c002929 20 * 2015, v17: WH, Clean up low-level _writeCommand() and _writeData(), Added support for alternative fonttables (eg PCF21XX), Added ST7066_ACM controller for ACM1602 module
wim 38:cbe275b0b647 21 * 2015, v18: WH, Performance improvement I2C portexpander
wim 38:cbe275b0b647 22 * 2015, v19: WH, Fixed Adafruit I2C/SPI portexpander pinmappings, fixed SYDZ Backlight
wim 39:e9c2319de9c5 23 * 2015, v20: WH, Fixed occasional Init fail caused by insufficient wait time after ReturnHome command (0x02), Added defines to reduce memory footprint (eg LCD_ICON),
wim 40:d3496c3ea301 24 * Fixed and Added more fonttable support for PCF2119R_3V3, Added HD66712 controller.
wim 41:111ca62e8a59 25 * 2015, v21: WH, Added LCD32x2 defines and code, Fixed KS0073 DL=1 init for SPI, Added defines to reduce memory footprint (LCD_TWO_CTRL, LCD_CONTRAST, LCD_UTF8_FONT)
wim 41:111ca62e8a59 26 * Added SPLC792A controller, Added UTF8_2_LCD decode for Cyrilic font (By Andriy Ribalko). Added setFont()
simon 1:ac48b187213c 27 *
simon 1:ac48b187213c 28 * Permission is hereby granted, free of charge, to any person obtaining a copy
simon 1:ac48b187213c 29 * of this software and associated documentation files (the "Software"), to deal
simon 1:ac48b187213c 30 * in the Software without restriction, including without limitation the rights
simon 1:ac48b187213c 31 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
simon 1:ac48b187213c 32 * copies of the Software, and to permit persons to whom the Software is
simon 1:ac48b187213c 33 * furnished to do so, subject to the following conditions:
simon 1:ac48b187213c 34 *
simon 1:ac48b187213c 35 * The above copyright notice and this permission notice shall be included in
simon 1:ac48b187213c 36 * all copies or substantial portions of the Software.
simon 1:ac48b187213c 37 *
simon 1:ac48b187213c 38 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
simon 1:ac48b187213c 39 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
simon 1:ac48b187213c 40 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
simon 1:ac48b187213c 41 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
simon 1:ac48b187213c 42 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
simon 1:ac48b187213c 43 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
simon 1:ac48b187213c 44 * THE SOFTWARE.
simon 1:ac48b187213c 45 */
wim 34:e5a0dcb43ecc 46 #include "mbed.h"
simon 1:ac48b187213c 47 #include "TextLCD.h"
wim 34:e5a0dcb43ecc 48 #include "TextLCD_UDC.inc"
wim 41:111ca62e8a59 49 #include "TextLCD_UTF8.inc"
wim 34:e5a0dcb43ecc 50
wim 21:9eb628d9e164 51 /** Create a TextLCD_Base interface
wim 15:b70ebfffb258 52 *
wim 21:9eb628d9e164 53 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 21:9eb628d9e164 54 * @param ctrl LCD controller (default = HD44780)
wim 15:b70ebfffb258 55 */
wim 21:9eb628d9e164 56 TextLCD_Base::TextLCD_Base(LCDType type, LCDCtrl ctrl) : _type(type), _ctrl(ctrl) {
wim 30:033048611c01 57
wim 30:033048611c01 58 // Extract LCDType data
wim 30:033048611c01 59
wim 41:111ca62e8a59 60 // Columns encoded in b15..b8
wim 41:111ca62e8a59 61 _nr_cols = (_type & LCD_T_COL_MSK) >> LCD_T_COL_SHFT;
wim 41:111ca62e8a59 62
wim 41:111ca62e8a59 63 // Rows encoded in b23..b16
wim 41:111ca62e8a59 64 _nr_rows = (_type & LCD_T_ROW_MSK) >> LCD_T_ROW_SHFT;
wim 41:111ca62e8a59 65
wim 41:111ca62e8a59 66 // Addressing mode encoded in b27..b24
wim 30:033048611c01 67 _addr_mode = _type & LCD_T_ADR_MSK;
wim 37:ce348c002929 68
wim 37:ce348c002929 69 // Font table, encoded in LCDCtrl
wim 39:e9c2319de9c5 70 _font = _ctrl & LCD_C_FNT_MSK;
wim 14:0c32b66b14b8 71 }
wim 14:0c32b66b14b8 72
wim 21:9eb628d9e164 73 /** Init the LCD Controller(s)
wim 21:9eb628d9e164 74 * Clear display
wim 36:9f5f86dfd44a 75 * @param _LCDDatalength dl sets the datalength of data/commands
wim 36:9f5f86dfd44a 76 * @return none
wim 21:9eb628d9e164 77 */
wim 36:9f5f86dfd44a 78 void TextLCD_Base::_init(_LCDDatalength dl) {
wim 38:cbe275b0b647 79
wim 38:cbe275b0b647 80 wait_ms(100); // Wait 100ms to ensure powered up
wim 15:b70ebfffb258 81
wim 41:111ca62e8a59 82 #if (LCD_TWO_CTRL == 1)
wim 15:b70ebfffb258 83 // Select and configure second LCD controller when needed
wim 15:b70ebfffb258 84 if(_type==LCD40x4) {
wim 30:033048611c01 85 _ctrl_idx=_LCDCtrl_1; // Select 2nd controller
wim 36:9f5f86dfd44a 86 _initCtrl(dl); // Init 2nd controller
wim 15:b70ebfffb258 87 }
wim 41:111ca62e8a59 88 #endif
wim 15:b70ebfffb258 89
wim 15:b70ebfffb258 90 // Select and configure primary LCD controller
wim 27:22d5086f6ba6 91 _ctrl_idx=_LCDCtrl_0; // Select primary controller
wim 36:9f5f86dfd44a 92 _initCtrl(dl); // Init primary controller
wim 28:30fa94f7341c 93
wim 32:59c4b8f648d4 94 // Clear whole display and Reset Cursor location
wim 32:59c4b8f648d4 95 // Note: This will make sure that some 3-line displays that skip topline of a 4-line configuration
wim 32:59c4b8f648d4 96 // are cleared and init cursor correctly.
wim 32:59c4b8f648d4 97 cls();
wim 15:b70ebfffb258 98 }
wim 15:b70ebfffb258 99
wim 21:9eb628d9e164 100 /** Init the LCD controller
wim 36:9f5f86dfd44a 101 * Set number of lines, fonttype, no cursor etc
wim 36:9f5f86dfd44a 102 * The controller is accessed in 4-bit parallel mode either directly via mbed pins or through I2C or SPI expander.
wim 36:9f5f86dfd44a 103 * Some controllers also support native I2C or SPI interfaces.
wim 36:9f5f86dfd44a 104 *
wim 41:111ca62e8a59 105 * @param _LCDDatalength dl sets the 4 or 8 bit datalength of data/commands. Required for some native serial modes that dont work when DL=0.
wim 36:9f5f86dfd44a 106 * @return none
wim 30:033048611c01 107 *
wim 30:033048611c01 108 * Note: some configurations are commented out because they have not yet been tested due to lack of hardware
wim 21:9eb628d9e164 109 */
wim 36:9f5f86dfd44a 110 void TextLCD_Base::_initCtrl(_LCDDatalength dl) {
wim 32:59c4b8f648d4 111 int _bias_lines=0; // Set Bias and lines (Instr Set 1), temporary variable.
wim 32:59c4b8f648d4 112 int _lines=0; // Set lines (Ext Instr Set), temporary variable.
wim 36:9f5f86dfd44a 113
wim 26:bd897a001012 114 this->_setRS(false); // command mode
simon 1:ac48b187213c 115
wim 37:ce348c002929 116 if (dl == _LCD_DL_4) {
wim 37:ce348c002929 117 // The Controller could be in 8 bit mode (power-on reset) or in 4 bit mode (warm reboot) at this point.
wim 37:ce348c002929 118 // Follow this procedure to make sure the Controller enters the correct state. The hardware interface
wim 37:ce348c002929 119 // between the uP and the LCD can only write the 4 most significant bits (Most Significant Nibble, MSN).
wim 37:ce348c002929 120 // In 4 bit mode the LCD expects the MSN first, followed by the LSN.
wim 37:ce348c002929 121 //
wim 38:cbe275b0b647 122 // Current state: 8 bit mode | 4 bit mode, MSN is next | 4 bit mode, LSN is next
wim 37:ce348c002929 123 //-------------------------------------------------------------------------------------------------
wim 38:cbe275b0b647 124 _writeNibble(0x3); // set 8 bit mode (MSN) and dummy LSN, | set 8 bit mode (MSN), | set dummy LSN,
wim 38:cbe275b0b647 125 // remains in 8 bit mode | remains in 4 bit mode | remains in 4 bit mode
wim 37:ce348c002929 126 wait_ms(15); //
wim 37:ce348c002929 127
wim 38:cbe275b0b647 128 _writeNibble(0x3); // set 8 bit mode (MSN) and dummy LSN, | set dummy LSN, | set 8bit mode (MSN),
wim 38:cbe275b0b647 129 // remains in 8 bit mode | change to 8 bit mode | remains in 4 bit mode
wim 37:ce348c002929 130 wait_ms(15); //
wim 33:900a94bc7585 131
wim 38:cbe275b0b647 132 _writeNibble(0x3); // set 8 bit mode (MSN) and dummy LSN, | set 8 bit mode (MSN) and dummy LSN, | set dummy LSN,
wim 38:cbe275b0b647 133 // remains in 8 bit mode | remains in 8 bit mode | change to 8 bit mode
wim 37:ce348c002929 134 wait_ms(15); //
wim 37:ce348c002929 135
wim 37:ce348c002929 136 // Controller is now in 8 bit mode
wim 37:ce348c002929 137
wim 37:ce348c002929 138 _writeNibble(0x2); // Change to 4-bit mode (MSN), the LSN is undefined dummy
wim 37:ce348c002929 139 wait_us(40); // most instructions take 40us
wim 37:ce348c002929 140
wim 37:ce348c002929 141 // Controller is now in 4-bit mode
wim 37:ce348c002929 142 // Note: 4/8 bit mode is ignored for most native SPI and I2C devices. They dont use the parallel bus.
wim 37:ce348c002929 143 // However, _writeNibble() method is void anyway for native SPI and I2C devices.
wim 38:cbe275b0b647 144 }
wim 38:cbe275b0b647 145 else {
wim 38:cbe275b0b647 146 // Reset in 8 bit mode, final Function set will follow
wim 38:cbe275b0b647 147 _writeCommand(0x30); // Function set 0 0 1 DL=1 N F x x
wim 39:e9c2319de9c5 148 wait_ms(1); // most instructions take 40us
wim 37:ce348c002929 149 }
wim 25:6162b31128c9 150
wim 29:a3663151aa65 151 // Device specific initialisations: DC/DC converter to generate VLCD or VLED, number of lines etc
wim 19:c747b9e2e7b8 152 switch (_ctrl) {
wim 32:59c4b8f648d4 153
wim 36:9f5f86dfd44a 154 case KS0073:
wim 36:9f5f86dfd44a 155 // Initialise Display configuration
wim 36:9f5f86dfd44a 156 switch (_type) {
wim 41:111ca62e8a59 157 // case LCD6x1:
wim 36:9f5f86dfd44a 158 case LCD8x1: //8x1 is a regular 1 line display
wim 41:111ca62e8a59 159 // case LCD8x2B: //8x1 is a 16x1 line display
wim 36:9f5f86dfd44a 160 case LCD12x1:
wim 36:9f5f86dfd44a 161 case LCD16x1:
wim 36:9f5f86dfd44a 162 case LCD20x1:
wim 36:9f5f86dfd44a 163 case LCD24x1:
wim 36:9f5f86dfd44a 164 // case LCD32x1: // EXT pin is High, extension driver needed
wim 41:111ca62e8a59 165 // case LCD40x1: // EXT pin is High, extension driver needed
wim 41:111ca62e8a59 166 // case LCD52x1: // EXT pin is High, extension driver needed
wim 41:111ca62e8a59 167 _function = dl | 0x02; // Set function, 0 0 1 DL, N, RE(0), DH, REV
wim 41:111ca62e8a59 168 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 169 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 170 // N=0 (1-line mode), N=1 (2-line mode), dont care for 4 line mode
wim 41:111ca62e8a59 171 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 172 // DH=1 (Disp shift enable, special mode for KS0073)
wim 41:111ca62e8a59 173 // REV=0 (Reverse normal, special mode for KS0073)
wim 41:111ca62e8a59 174
wim 41:111ca62e8a59 175 _function_1 = dl | 0x04; // Set function, 0 0 1 DL, N, RE(1), BE, LP (Ext Regs)
wim 41:111ca62e8a59 176 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 177 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 178 // N=0 (1-line mode), N=1 (2-line mode), dont care for 4 line mode
wim 41:111ca62e8a59 179 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 180 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0073)
wim 41:111ca62e8a59 181 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 182
wim 36:9f5f86dfd44a 183 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 41:111ca62e8a59 184 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0073)
wim 36:9f5f86dfd44a 185 break;
wim 36:9f5f86dfd44a 186
wim 36:9f5f86dfd44a 187 // case LCD12x3D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 188 // case LCD12x3D1: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 189 case LCD12x4D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 190 // case LCD16x3D: // Special mode for KS0073, KS0078
wim 41:111ca62e8a59 191 // case LCD16x3D1: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 192 // case LCD16x4D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 193 case LCD20x4D: // Special mode for KS0073, KS0078
wim 41:111ca62e8a59 194 _function = dl | 0x02; // Set function, 0 0 1 DL, N, RE(0), DH, REV
wim 41:111ca62e8a59 195 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 196 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 197 // N=0 (1-line mode), N=1 (2-line mode), dont care for 4 line mode
wim 41:111ca62e8a59 198 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 199 // DH=1 (Disp shift enable, special mode for KS0073)
wim 41:111ca62e8a59 200 // REV=0 (Reverse normal, special mode for KS0073)
wim 36:9f5f86dfd44a 201
wim 41:111ca62e8a59 202 _function_1 = dl | 0x04; // Set function, 0 0 1 DL, N, RE(1), BE, LP (Ext Regs)
wim 41:111ca62e8a59 203 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 204 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 205 // N=0 (1-line mode), N=1 (2-line mode), dont care for 4 line mode
wim 41:111ca62e8a59 206 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 207 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0073)
wim 41:111ca62e8a59 208 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 209
wim 36:9f5f86dfd44a 210 _function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 41:111ca62e8a59 211 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0073)
wim 36:9f5f86dfd44a 212 break;
wim 36:9f5f86dfd44a 213
wim 41:111ca62e8a59 214 // case LCD6x2:
wim 41:111ca62e8a59 215 case LCD8x2:
wim 41:111ca62e8a59 216 case LCD16x2:
wim 41:111ca62e8a59 217 // case LCD16x1C:
wim 41:111ca62e8a59 218 case LCD20x2:
wim 41:111ca62e8a59 219 case LCD24x2:
wim 41:111ca62e8a59 220 case LCD32x2:
wim 41:111ca62e8a59 221 // All other LCD types are initialised as 2 Line displays
wim 41:111ca62e8a59 222 _function = dl | 0x0A; // Set function, 0 0 1 DL, N, RE(0), DH, REV
wim 41:111ca62e8a59 223 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 224 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 225 // N=1 (2-line mode), N=0 (1-line mode)
wim 41:111ca62e8a59 226 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 227 // DH=1 (Disp shift enable, special mode for KS0073)
wim 41:111ca62e8a59 228 // REV=0 (Reverse normal, special mode for KS0073)
wim 36:9f5f86dfd44a 229
wim 41:111ca62e8a59 230 _function_1 = dl | 0x0C; // Set function, 0 0 1 DL, N, RE(1), BE, LP (Ext Regs)
wim 41:111ca62e8a59 231 // Note: 4 bit mode is NOT ignored for native SPI !
wim 41:111ca62e8a59 232 // DL=1 (8 bits bus), DL=0 (4 bits bus)
wim 41:111ca62e8a59 233 // N=1 (2 line mode), N=0 (1-line mode)
wim 41:111ca62e8a59 234 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 41:111ca62e8a59 235 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0073)
wim 41:111ca62e8a59 236 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 237
wim 36:9f5f86dfd44a 238 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 36:9f5f86dfd44a 239 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0073)
wim 36:9f5f86dfd44a 240 break;
wim 41:111ca62e8a59 241
wim 41:111ca62e8a59 242 default:
wim 41:111ca62e8a59 243 error("Error: LCD Controller type does not support this Display type\n\r");
wim 41:111ca62e8a59 244 break;
wim 36:9f5f86dfd44a 245 } // switch type
wim 36:9f5f86dfd44a 246
wim 36:9f5f86dfd44a 247 // init special features
wim 36:9f5f86dfd44a 248 _writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 36:9f5f86dfd44a 249 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 36:9f5f86dfd44a 250 // N=0 (1 line mode), N=1 (2 line mode)
wim 36:9f5f86dfd44a 251 // RE=1 (Ena Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 252 // BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for KS0073)
wim 36:9f5f86dfd44a 253 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 36:9f5f86dfd44a 254
wim 36:9f5f86dfd44a 255 _writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 36:9f5f86dfd44a 256 // FW=0 (5-dot font, special mode for KS0073)
wim 36:9f5f86dfd44a 257 // BW=0 (Cur BW invert disable, special mode for KS0073)
wim 36:9f5f86dfd44a 258 // NW=0 (1,2 Line), NW=1 (4 line, special mode for KS0073)
wim 36:9f5f86dfd44a 259
wim 36:9f5f86dfd44a 260 _writeCommand(0x10); // Scroll/Shift set 0001 DS/HS4 DS/HS3 DS/HS2 DS/HS1 (Ext Regs)
wim 36:9f5f86dfd44a 261 // Dotscroll/Display shift enable (Special mode for KS0073)
wim 36:9f5f86dfd44a 262
wim 36:9f5f86dfd44a 263 _writeCommand(0x80); // Scroll Quantity set 1 0 SQ5 SQ4 SQ3 SQ2 SQ1 SQ0 (Ext Regs)
wim 36:9f5f86dfd44a 264 // Scroll quantity (Special mode for KS0073)
wim 36:9f5f86dfd44a 265
wim 36:9f5f86dfd44a 266 _writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 36:9f5f86dfd44a 267 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 36:9f5f86dfd44a 268 // N=0 (1 line mode), N=1 (2 line mode)
wim 36:9f5f86dfd44a 269 // RE=0 (Dis. Extended Regs, special mode for KS0073)
wim 36:9f5f86dfd44a 270 // DH=1 (Disp shift enable/disable, special mode for KS0073)
wim 36:9f5f86dfd44a 271 // REV=0 (Reverse/Normal, special mode for KS0073)
wim 36:9f5f86dfd44a 272 break; // case KS0073 Controller
wim 36:9f5f86dfd44a 273
wim 36:9f5f86dfd44a 274
wim 29:a3663151aa65 275 case KS0078:
wim 29:a3663151aa65 276 // Initialise Display configuration
wim 29:a3663151aa65 277 switch (_type) {
wim 29:a3663151aa65 278 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 279 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 280 // case LCD12x1:
wim 29:a3663151aa65 281 case LCD16x1:
wim 30:033048611c01 282 // case LCD20x1:
wim 29:a3663151aa65 283 case LCD24x1:
wim 41:111ca62e8a59 284 _function = dl | 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 285 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 286 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 287 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 288 // DH=1 (Disp shift enable, special mode for KS0078)
wim 32:59c4b8f648d4 289 // REV=0 (Reverse normal, special mode for KS0078)
wim 32:59c4b8f648d4 290
wim 41:111ca62e8a59 291 _function_1 = dl | 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 292 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 293 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 294 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 295 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 296 // 0
wim 30:033048611c01 297
wim 32:59c4b8f648d4 298 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 299 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
wim 29:a3663151aa65 300 break;
wim 29:a3663151aa65 301
wim 36:9f5f86dfd44a 302 // case LCD12x3D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 303 // case LCD12x3D1: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 304 // case LCD12x4D: // Special mode for KS0073, KS0078 and PCF21XX
wim 36:9f5f86dfd44a 305 // case LCD16x3D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 306 // case LCD16x4D: // Special mode for KS0073, KS0078
wim 36:9f5f86dfd44a 307 // case LCD20x4D: // Special mode for KS0073, KS0078
wim 30:033048611c01 308 // case LCD24x3D: // Special mode for KS0078
wim 30:033048611c01 309 // case LCD24x3D1: // Special mode for KS0078
wim 30:033048611c01 310 case LCD24x4D: // Special mode for KS0078
wim 41:111ca62e8a59 311 _function = dl | 0x02; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 312 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 313 // N=0 (dont care for 4 line mode)
wim 32:59c4b8f648d4 314 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 315 // DH=1 (Disp shift enable, special mode for KS0078)
wim 32:59c4b8f648d4 316 // REV=0 (Reverse normal, special mode for KS0078)
wim 32:59c4b8f648d4 317
wim 41:111ca62e8a59 318 _function_1 = dl | 0x04; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 319 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 320 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 321 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 322 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 323 // 0
wim 29:a3663151aa65 324
wim 32:59c4b8f648d4 325 _function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 326 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
wim 30:033048611c01 327 break;
wim 33:900a94bc7585 328
wim 41:111ca62e8a59 329 // case LCD6x2:
wim 41:111ca62e8a59 330 case LCD8x2:
wim 41:111ca62e8a59 331 case LCD16x2:
wim 41:111ca62e8a59 332 // case LCD16x1C:
wim 41:111ca62e8a59 333 case LCD20x2:
wim 41:111ca62e8a59 334 case LCD24x2:
wim 41:111ca62e8a59 335 case LCD32x2:
wim 41:111ca62e8a59 336 case LCD40x2:
wim 30:033048611c01 337 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 41:111ca62e8a59 338 _function = dl | 0x0A; // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 339 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 340 // N=1 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 341 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 342 // DH=1 (Disp shift enable, special mode for KS0078)
wim 32:59c4b8f648d4 343 // REV=0 (Reverse normal, special mode for KS0078)
wim 32:59c4b8f648d4 344
wim 41:111ca62e8a59 345 _function_1 = dl | 0x0C; // Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 346 // DL=0 (4 bits bus)
wim 32:59c4b8f648d4 347 // N=1 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 348 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 349 // BE=0 (Blink Enable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 350 // 0
wim 30:033048611c01 351
wim 32:59c4b8f648d4 352 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 353 // NW=0 (1,2 line), NW=1 (4 Line, special mode for KS0078)
wim 29:a3663151aa65 354 break;
wim 41:111ca62e8a59 355
wim 41:111ca62e8a59 356 default:
wim 41:111ca62e8a59 357 error("Error: LCD Controller type does not support this Display type\n\r");
wim 41:111ca62e8a59 358 break;
wim 29:a3663151aa65 359 } // switch type
wim 29:a3663151aa65 360
wim 32:59c4b8f648d4 361 // init special features
wim 32:59c4b8f648d4 362 _writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE 0 (Ext Regs)
wim 32:59c4b8f648d4 363 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 32:59c4b8f648d4 364 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 365 // RE=1 (Ena Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 366 // BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for KS0078)
wim 32:59c4b8f648d4 367 // 0
wim 32:59c4b8f648d4 368
wim 32:59c4b8f648d4 369 _writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 32:59c4b8f648d4 370 // FW=0 (5-dot font, special mode for KS0078)
wim 32:59c4b8f648d4 371 // BW=0 (Cur BW invert disable, special mode for KS0078)
wim 32:59c4b8f648d4 372 // NW=0 (1,2 Line), NW=1 (4 line, special mode for KS0078)
wim 32:59c4b8f648d4 373
wim 32:59c4b8f648d4 374 _writeCommand(0x10); // Scroll/Shift set 0001 DS/HS4 DS/HS3 DS/HS2 DS/HS1 (Ext Regs)
wim 32:59c4b8f648d4 375 // Dotscroll/Display shift enable (Special mode for KS0078)
wim 32:59c4b8f648d4 376
wim 32:59c4b8f648d4 377 _writeCommand(0x80); // Scroll Quantity set 1 0 SQ5 SQ4 SQ3 SQ2 SQ1 SQ0 (Ext Regs)
wim 32:59c4b8f648d4 378 // Scroll quantity (Special mode for KS0078)
wim 32:59c4b8f648d4 379
wim 32:59c4b8f648d4 380 _writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 32:59c4b8f648d4 381 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 32:59c4b8f648d4 382 // N=0 (1 line mode), N=1 (2 line mode)
wim 32:59c4b8f648d4 383 // RE=0 (Dis. Extended Regs, special mode for KS0078)
wim 32:59c4b8f648d4 384 // DH=1 (Disp shift enable/disable, special mode for KS0078)
wim 32:59c4b8f648d4 385 // REV=0 (Reverse/Normal, special mode for KS0078)
wim 29:a3663151aa65 386 break; // case KS0078 Controller
wim 29:a3663151aa65 387
wim 26:bd897a001012 388 case ST7032_3V3:
wim 26:bd897a001012 389 // ST7032 controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 41:111ca62e8a59 390 // Note: very similar to SPLC792A
wim 26:bd897a001012 391 case ST7032_5V:
wim 32:59c4b8f648d4 392 // ST7032 controller: Disable Voltage booster for VLCD. VDD=5V
wim 41:111ca62e8a59 393
wim 29:a3663151aa65 394 // Initialise Display configuration
wim 29:a3663151aa65 395 switch (_type) {
wim 29:a3663151aa65 396 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 397 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 398 // case LCD12x1:
wim 29:a3663151aa65 399 case LCD16x1:
wim 30:033048611c01 400 // case LCD20x1:
wim 32:59c4b8f648d4 401 case LCD24x1:
wim 32:59c4b8f648d4 402 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=0 (1-line display mode), F=0 (5*7dot), 0, IS
wim 32:59c4b8f648d4 403 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 404 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 405 break;
wim 28:30fa94f7341c 406
wim 32:59c4b8f648d4 407 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 408 case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 409 case LCD12x4D: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 410 case LCD16x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 411 case LCD24x4D: // Special mode for KS0078
wim 32:59c4b8f648d4 412 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 413 break;
wim 29:a3663151aa65 414
wim 32:59c4b8f648d4 415 default:
wim 32:59c4b8f648d4 416 // All other LCD types are initialised as 2 Line displays
wim 32:59c4b8f648d4 417 _function = 0x08; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=1 (2-line display mode), F=0 (5*7dot), 0, IS
wim 32:59c4b8f648d4 418 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 419 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 420 break;
wim 32:59c4b8f648d4 421 } // switch type
wim 32:59c4b8f648d4 422
wim 32:59c4b8f648d4 423 // init special features
wim 33:900a94bc7585 424 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 33:900a94bc7585 425
wim 33:900a94bc7585 426 _writeCommand(0x1C); // Internal OSC frequency adjustment Framefreq=183HZ, Bias will be 1/4 (Instr Set=1)
wim 41:111ca62e8a59 427 // Note: Bias and Osc register not available on SPLC792A
wim 32:59c4b8f648d4 428
wim 32:59c4b8f648d4 429 _contrast = LCD_ST7032_CONTRAST;
wim 32:59c4b8f648d4 430 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast Low bits, 0 1 1 1 C3 C2 C1 C0 (IS=1)
wim 32:59c4b8f648d4 431
wim 32:59c4b8f648d4 432
wim 32:59c4b8f648d4 433 if (_ctrl == ST7032_3V3) {
wim 41:111ca62e8a59 434 // _icon_power = 0x04; // Icon display off (Bit3=0), Booster circuit is turned on (Bit2=1) (IS=1)
wim 41:111ca62e8a59 435 _icon_power = 0x0C; // Icon display on (Bit3=1), Booster circuit is turned on (Bit2=1) (IS=1)
wim 41:111ca62e8a59 436 // Note: Booster circuit always on for SPLC792A, Bit2 is dont care
wim 32:59c4b8f648d4 437 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 438 }
wim 32:59c4b8f648d4 439 else {
wim 36:9f5f86dfd44a 440 // _icon_power = 0x00; // Icon display off, Booster circuit is turned off (IS=1)
wim 36:9f5f86dfd44a 441 _icon_power = 0x08; // Icon display on, Booster circuit is turned off (IS=1)
wim 32:59c4b8f648d4 442 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 443 }
wim 32:59c4b8f648d4 444 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Icon, Booster and Contrast High bits, 0 1 0 1 Ion Bon C5 C4 (IS=1)
wim 32:59c4b8f648d4 445 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 446
wim 32:59c4b8f648d4 447 _writeCommand(0x68 | (LCD_ST7032_RAB & 0x07)); // Voltage follower, 0 1 1 0 FOn=1, Ampl ratio Rab2=1, Rab1=0, Rab0=0 (IS=1)
wim 32:59c4b8f648d4 448 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 449
wim 32:59c4b8f648d4 450 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 451
wim 32:59c4b8f648d4 452 break; // case ST7032_3V3 Controller
wim 32:59c4b8f648d4 453 // case ST7032_5V Controller
wim 32:59c4b8f648d4 454
wim 32:59c4b8f648d4 455 case ST7036_3V3:
wim 32:59c4b8f648d4 456 // ST7036 controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 32:59c4b8f648d4 457 // Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G)
wim 32:59c4b8f648d4 458 case ST7036_5V:
wim 32:59c4b8f648d4 459 // ST7036 controller: Disable Voltage booster for VLCD. VDD=5V
wim 32:59c4b8f648d4 460 // Note: supports 1,2 (LCD_T_A) or 3 lines (LCD_T_G)
wim 32:59c4b8f648d4 461
wim 32:59c4b8f648d4 462 // Initialise Display configuration
wim 32:59c4b8f648d4 463 switch (_type) {
wim 32:59c4b8f648d4 464 case LCD8x1: //8x1 is a regular 1 line display
wim 32:59c4b8f648d4 465 case LCD8x2B: //8x2D is a special case of 16x1
wim 32:59c4b8f648d4 466 // case LCD12x1:
wim 32:59c4b8f648d4 467 case LCD16x1:
wim 32:59c4b8f648d4 468 case LCD24x1:
wim 32:59c4b8f648d4 469 _function = 0x00; // Set function, 0 0 1 DL=0 (4-bit Databus), N=0 (1 Line), DH=0 (5x7font), IS2, IS1 (Select Instruction Set)
wim 32:59c4b8f648d4 470 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 471 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 472
wim 32:59c4b8f648d4 473 _bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD
wim 32:59c4b8f648d4 474 break;
wim 32:59c4b8f648d4 475
wim 32:59c4b8f648d4 476 // case LCD12x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 477 case LCD16x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 478 _function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set)
wim 32:59c4b8f648d4 479 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 480 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 481
wim 32:59c4b8f648d4 482 _bias_lines = 0x05; // Bias: 1/5, 3-Lines LCD
wim 32:59c4b8f648d4 483 break;
wim 32:59c4b8f648d4 484
wim 32:59c4b8f648d4 485 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 486 // case LCD16x3D1: // Special mode for SSD1803
wim 30:033048611c01 487 case LCD12x4D: // Special mode for PCF2116
wim 30:033048611c01 488 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 489 error("Error: LCD Controller type does not support this Display type\n\r");
wim 29:a3663151aa65 490 break;
wim 28:30fa94f7341c 491
wim 29:a3663151aa65 492 default:
wim 32:59c4b8f648d4 493 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 32:59c4b8f648d4 494 _function = 0x08; // Set function, 0 0 1 DL=0 (4-bit Databus), N=1 (2 Line), DH=0 (5x7font), IS2,IS1 (Select Instruction Set)
wim 32:59c4b8f648d4 495 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 496 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 497
wim 32:59c4b8f648d4 498 _bias_lines = 0x04; // Bias: 1/5, 1 or 2-Lines LCD
wim 32:59c4b8f648d4 499 break;
wim 32:59c4b8f648d4 500 } // switch type
wim 32:59c4b8f648d4 501
wim 29:a3663151aa65 502
wim 32:59c4b8f648d4 503 // init special features
wim 33:900a94bc7585 504 _writeCommand(0x20 | _function | 0x01); // Set function, IS2,IS1 = 01 (Select Instr Set = 1)
wim 32:59c4b8f648d4 505 _writeCommand(0x10 | _bias_lines); // Set Bias and 1,2 or 3 lines (Instr Set 1)
wim 29:a3663151aa65 506
wim 32:59c4b8f648d4 507 _contrast = LCD_ST7036_CONTRAST;
wim 32:59c4b8f648d4 508 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast, 0 1 1 1 C3 C2 C1 C0 (Instr Set 1)
wim 32:59c4b8f648d4 509
wim 32:59c4b8f648d4 510 if (_ctrl == ST7036_3V3) {
wim 36:9f5f86dfd44a 511 _icon_power = 0x0C; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=1 Bon=1 C5 C4 (Instr Set 1)
wim 36:9f5f86dfd44a 512 // _icon_power = 0x04; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=1 C5 C4 (Instr Set 1)
wim 32:59c4b8f648d4 513 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 514 }
wim 32:59c4b8f648d4 515 else {
wim 36:9f5f86dfd44a 516 _icon_power = 0x08; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=1 Bon=0 C5 C4 (Instr Set 1)
wim 36:9f5f86dfd44a 517 // _icon_power = 0x00; // Set Icon, Booster, Contrast High bits, 0 1 0 1 Ion=0 Bon=0 C5 C4 (Instr Set 1)
wim 32:59c4b8f648d4 518 }
wim 29:a3663151aa65 519
wim 32:59c4b8f648d4 520 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Contrast C5, C4 (Instr Set 1)
wim 32:59c4b8f648d4 521 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 522
wim 32:59c4b8f648d4 523 _writeCommand(0x68 | (LCD_ST7036_RAB & 0x07)); // Voltagefollower On = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 0 1 (Instr Set 1)
wim 32:59c4b8f648d4 524 wait_ms(10); // Wait 10ms to ensure powered up
wim 28:30fa94f7341c 525
wim 32:59c4b8f648d4 526 _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instruction Set = 0)
wim 32:59c4b8f648d4 527
wim 32:59c4b8f648d4 528 break; // case ST7036_3V3 Controller
wim 32:59c4b8f648d4 529 // case ST7036_5V Controller
wim 36:9f5f86dfd44a 530
wim 36:9f5f86dfd44a 531 case ST7070:
wim 36:9f5f86dfd44a 532 // Initialise Display configuration
wim 36:9f5f86dfd44a 533 switch (_type) {
wim 36:9f5f86dfd44a 534 case LCD8x1: //8x1 is a regular 1 line display
wim 36:9f5f86dfd44a 535 case LCD8x2B: //8x2D is a special case of 16x1
wim 36:9f5f86dfd44a 536 // case LCD12x1:
wim 36:9f5f86dfd44a 537 case LCD16x1:
wim 36:9f5f86dfd44a 538 case LCD24x1:
wim 36:9f5f86dfd44a 539 _function = dl | 0x00; // Set function, 0 0 1 DL=0 (4-bit Databus), N=0 (1 Line), EXT=0, x, x
wim 36:9f5f86dfd44a 540 // Note: 4 bit mode is NOT ignored for native SPI !
wim 36:9f5f86dfd44a 541 // Saved to allow switch between Instruction sets at later time
wim 36:9f5f86dfd44a 542 break;
wim 36:9f5f86dfd44a 543
wim 36:9f5f86dfd44a 544 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 36:9f5f86dfd44a 545 // case LCD16x3D1: // Special mode for SSD1803
wim 36:9f5f86dfd44a 546 case LCD12x4D: // Special mode for PCF2116
wim 36:9f5f86dfd44a 547 case LCD24x4D: // Special mode for KS0078
wim 36:9f5f86dfd44a 548 // case LCD12x3G: // Special mode for ST7036
wim 36:9f5f86dfd44a 549 case LCD16x3G: // Special mode for ST7036
wim 36:9f5f86dfd44a 550 error("Error: LCD Controller type does not support this Display type\n\r");
wim 36:9f5f86dfd44a 551 break;
wim 36:9f5f86dfd44a 552
wim 36:9f5f86dfd44a 553 default:
wim 36:9f5f86dfd44a 554 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 36:9f5f86dfd44a 555 _function = dl | 0x08; // Set function, 0 0 1 DL, N=1 (2 Line), EXT=0, x, x
wim 36:9f5f86dfd44a 556 // Note: 4 bit mode is NOT ignored for native SPI !
wim 36:9f5f86dfd44a 557 // Saved to allow switch between Instruction sets at later time
wim 36:9f5f86dfd44a 558 break;
wim 36:9f5f86dfd44a 559 } // switch type
wim 36:9f5f86dfd44a 560
wim 36:9f5f86dfd44a 561 // _writeCommand(0x00); // NOP, make sure to sync SPI
wim 36:9f5f86dfd44a 562
wim 36:9f5f86dfd44a 563 // init special features
wim 36:9f5f86dfd44a 564 _writeCommand(0x20 | _function | 0x04); // Set function, 0 0 1 DL N EXT=1 x x (Select Instr Set = 1)
wim 36:9f5f86dfd44a 565
wim 36:9f5f86dfd44a 566 _writeCommand(0x04 | 0x00); // Set Bias resistors 0 0 0 0 0 1 Rb1,Rb0= 0 0 (Extern Res) (Instr Set 1)
wim 36:9f5f86dfd44a 567
wim 36:9f5f86dfd44a 568 _writeCommand(0x40 | 0x00); // COM/SEG directions 0 1 0 0 C1, C2, S1, S2 (Instr Set 1)
wim 36:9f5f86dfd44a 569 // C1=1: Com1-8 -> Com8-1; C2=1: Com9-16 -> Com16-9
wim 36:9f5f86dfd44a 570 // S1=1: Seg1-40 -> Seg40-1; S2=1: Seg41-80 -> Seg80-41
wim 36:9f5f86dfd44a 571
wim 36:9f5f86dfd44a 572 _writeCommand(0x20 | _function); // Set function, EXT=0 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 573
wim 36:9f5f86dfd44a 574 break; // case ST7070 Controller
wim 36:9f5f86dfd44a 575
wim 32:59c4b8f648d4 576 case SSD1803_3V3:
wim 32:59c4b8f648d4 577 // SSD1803 controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 32:59c4b8f648d4 578 // Note: supports 1,2, 3 or 4 lines
wim 32:59c4b8f648d4 579 // case SSD1803_5V:
wim 32:59c4b8f648d4 580 // SSD1803 controller: No Voltage booster for VLCD. VDD=5V
wim 32:59c4b8f648d4 581
wim 29:a3663151aa65 582 // Initialise Display configuration
wim 29:a3663151aa65 583 switch (_type) {
wim 29:a3663151aa65 584 case LCD8x1: //8x1 is a regular 1 line display
wim 30:033048611c01 585 case LCD8x2B: //8x2D is a special case of 16x1
wim 29:a3663151aa65 586 // case LCD12x1:
wim 29:a3663151aa65 587 case LCD16x1:
wim 29:a3663151aa65 588 case LCD24x1:
wim 32:59c4b8f648d4 589 _function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 590 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 591 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 592 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 593 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 594 // DH=0 Double Height disable
wim 32:59c4b8f648d4 595 // IS=0
wim 32:59c4b8f648d4 596
wim 33:900a94bc7585 597 _function_1 = 0x02; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 598 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 599 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 600 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 601 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 602 // BE=0 Blink Enable off, special feature of SSD1803
wim 32:59c4b8f648d4 603 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 604
wim 32:59c4b8f648d4 605 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 606 // NW=0 1-Line LCD (N=0)
wim 29:a3663151aa65 607 break;
wim 32:59c4b8f648d4 608
wim 33:900a94bc7585 609 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 610 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 611 case LCD16x3D: // Special mode for KS0078
wim 32:59c4b8f648d4 612 // case LCD16x3D1: // Special mode for SSD1803
wim 32:59c4b8f648d4 613 // case LCD20x3D: // Special mode for SSD1803
wim 32:59c4b8f648d4 614 _function = 0x00; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 615 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 616 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 617 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 618 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 619 // DH=0 Double Height disable
wim 32:59c4b8f648d4 620 // IS=0
wim 32:59c4b8f648d4 621
wim 33:900a94bc7585 622 _function_1 = 0x02; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 623 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 624 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 625 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 626 // N=0 1 Line / 3 Line
wim 32:59c4b8f648d4 627 // BE=0 Blink Enable off, special feature of SSD1803
wim 32:59c4b8f648d4 628 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 629
wim 32:59c4b8f648d4 630 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 631 // NW=1 3-Line LCD (N=0)
wim 29:a3663151aa65 632 break;
wim 30:033048611c01 633
wim 39:e9c2319de9c5 634 // case LCD10x2D: // Special mode for SSD1803, 4-line mode but switch to double height font
wim 39:e9c2319de9c5 635 case LCD10x4D: // Special mode for SSD1803
wim 32:59c4b8f648d4 636 case LCD20x4D: // Special mode for SSD1803
wim 32:59c4b8f648d4 637 _function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 638 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 639 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 640 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 641 // N=1 4 Line
wim 32:59c4b8f648d4 642 // DH=0 Double Height disable
wim 32:59c4b8f648d4 643 // IS=0
wim 32:59c4b8f648d4 644
wim 33:900a94bc7585 645 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 646 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 647 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 648 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 649 // N=1 4 Line
wim 32:59c4b8f648d4 650 // BE=0 Blink Enable off, special feature of SSD1803
wim 32:59c4b8f648d4 651 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 652
wim 32:59c4b8f648d4 653 _lines = 0x01; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 654 // NW=1 4-Line LCD (N=1)
wim 32:59c4b8f648d4 655 break;
wim 32:59c4b8f648d4 656
wim 33:900a94bc7585 657 case LCD16x3G: // Special mode for ST7036
wim 32:59c4b8f648d4 658 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 659 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 660 break;
wim 30:033048611c01 661
wim 29:a3663151aa65 662 default:
wim 30:033048611c01 663 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 32:59c4b8f648d4 664 _function = 0x08; // Set function 0 0 1 DL N DH RE(0) IS
wim 32:59c4b8f648d4 665 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 666 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 667 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 668 // N=1 2 line / 4 Line
wim 32:59c4b8f648d4 669 // DH=0 Double Height disable
wim 36:9f5f86dfd44a 670 // RE=0
wim 32:59c4b8f648d4 671 // IS=0
wim 29:a3663151aa65 672
wim 33:900a94bc7585 673 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 674 // Saved to allow switch between Instruction sets at later time
wim 32:59c4b8f648d4 675 // DL=0 4-bit Databus,
wim 32:59c4b8f648d4 676 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 32:59c4b8f648d4 677 // N=1 2 line / 4 Line
wim 32:59c4b8f648d4 678 // BE=0 Blink Enable off, special feature of SSD1803
wim 36:9f5f86dfd44a 679 // RE=1
wim 32:59c4b8f648d4 680 // REV=0 Reverse off, special feature of SSD1803
wim 32:59c4b8f648d4 681
wim 32:59c4b8f648d4 682 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 32:59c4b8f648d4 683 // NW=0 2-Line LCD (N=1)
wim 32:59c4b8f648d4 684 break;
wim 32:59c4b8f648d4 685 } // switch type
wim 32:59c4b8f648d4 686
wim 32:59c4b8f648d4 687
wim 32:59c4b8f648d4 688 // init special features
wim 33:900a94bc7585 689 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 690 // Select Extended Instruction Set
wim 33:900a94bc7585 691
wim 33:900a94bc7585 692 _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 693 // _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 694 wait_ms(5); // Wait to ensure completion or SSD1803 fails to set Top/Bottom after reset..
wim 33:900a94bc7585 695
wim 33:900a94bc7585 696 _writeCommand(0x08 | _lines); // Set ext function 0 0 0 0 1 FW BW NW 1,2,3 or 4 lines (Ext Instr Set)
wim 32:59c4b8f648d4 697
wim 32:59c4b8f648d4 698 _writeCommand(0x10); // Double Height and Bias, 0 0 0 1 UD2=0, UD1=0, BS1=0 Bias 1/5, DH=0 (Ext Instr Set)
wim 32:59c4b8f648d4 699
wim 32:59c4b8f648d4 700 // _writeCommand(0x76); // Set TC Control, 0 1 1 1 0 1 1 0 (Ext Instr Set)
wim 32:59c4b8f648d4 701 // _writeData(0x02); // Set TC data, 0 0 0 0 0 TC2,TC1,TC0 = 0 1 0 (Ext Instr Set)
wim 32:59c4b8f648d4 702
wim 32:59c4b8f648d4 703 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS=1 Select Instruction Set 1
wim 32:59c4b8f648d4 704 // Select Std Instr set, Select IS=1
wim 32:59c4b8f648d4 705
wim 32:59c4b8f648d4 706 _contrast = LCD_SSD1_CONTRAST;
wim 32:59c4b8f648d4 707 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast 0 1 1 1 C3, C2, C1, C0 (Instr Set 1)
wim 32:59c4b8f648d4 708
wim 36:9f5f86dfd44a 709 // _icon_power = 0x04; // Icon off, Booster on (Instr Set 1)
wim 36:9f5f86dfd44a 710 _icon_power = 0x0C; // Icon on, Booster on (Instr Set 1)
wim 32:59c4b8f648d4 711 // Saved to allow contrast change at later time
wim 32:59c4b8f648d4 712 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Power, Icon and Contrast, 0 1 0 1 Ion Bon C5 C4 (Instr Set 1)
wim 32:59c4b8f648d4 713 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 714
wim 32:59c4b8f648d4 715 _writeCommand(0x68 | (LCD_SSD1_RAB & 0x07)); // Set Voltagefollower 0 1 1 0 Don = 1, Ampl ratio Rab2, Rab1, Rab0 = 1 1 0 (Instr Set 1)
wim 32:59c4b8f648d4 716 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 717
wim 33:900a94bc7585 718 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 32:59c4b8f648d4 719 // Select Extended Instruction Set 1
wim 32:59c4b8f648d4 720 _writeCommand(0x10); // Shift/Scroll enable, 0 0 0 1 DS4/HS4 DS3/HS3 DS2/HS2 DS1/HS1 (Ext Instr Set 1)
wim 32:59c4b8f648d4 721
wim 32:59c4b8f648d4 722
wim 32:59c4b8f648d4 723 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 32:59c4b8f648d4 724 // Select Std Instr set, Select IS=0
wim 32:59c4b8f648d4 725
wim 32:59c4b8f648d4 726 break; // case SSD1803 Controller
wim 32:59c4b8f648d4 727
wim 29:a3663151aa65 728
wim 32:59c4b8f648d4 729 // Note1: The PCF21XX family of controllers has several types that dont have an onboard voltage generator for V-LCD.
wim 32:59c4b8f648d4 730 // You must supply this LCD voltage externally and not try to enable VGen.
wim 32:59c4b8f648d4 731 // Note2: The early versions of PCF2116 controllers (eg PCF2116C) can not generate sufficiently negative voltage for the LCD at a VDD of 3V3.
wim 32:59c4b8f648d4 732 // You must supply this voltage externally and not enable VGen or you must use a higher VDD (e.g. 5V) and enable VGen.
wim 32:59c4b8f648d4 733 // More recent versions of the controller (eg PCF2116K) have an improved VGen that will work with 3V3.
wim 32:59c4b8f648d4 734 // Note3: See datasheet, PCF2116 and other types provide a V0 pin to control the LCD contrast voltage that is provided by VGen. This pins allows
wim 32:59c4b8f648d4 735 // contrast control similar to that of pin 3 on the standard 14pin LCD module connector.
wim 32:59c4b8f648d4 736 // You can disable VGen by connecting Vo to VDD. VLCD will then be used directly as LCD voltage.
wim 32:59c4b8f648d4 737 // Note4: PCF2113 and PCF2119 are different wrt to VLCD generator! There is no V0 pin. The contrast voltage is software controlled by setting the VA and VB registers.
wim 32:59c4b8f648d4 738 // Vgen is automatically switched off when the contrast voltage VA or VB is set to 0x00. Note that certain limits apply to allowed values for VA and VB.
wim 32:59c4b8f648d4 739 // Note5: See datasheet, members of the PCF21XX family support different numbers of rows/columns. Not all can support 3 or 4 rows.
wim 32:59c4b8f648d4 740 // Note6: See datasheet, the PCF21XX-C and PCF21XX-K use a non-standard character set. This may result is strange looking text when not corrected..
wim 32:59c4b8f648d4 741
wim 34:e5a0dcb43ecc 742 case PCF2103_3V3:
wim 34:e5a0dcb43ecc 743 // PCF2103 controller: No Voltage generator for VLCD, VDD=3V3..5V, VLCD input controls contrast voltage.
wim 34:e5a0dcb43ecc 744 // Initialise Display configuration
wim 34:e5a0dcb43ecc 745 switch (_type) {
wim 34:e5a0dcb43ecc 746 case LCD24x1:
wim 34:e5a0dcb43ecc 747 _function = 0x00; //FUNCTION SET 0 0 1 DL=0 4-bit, 0, M=0 1-line/24 chars display mode, 0, H=0
wim 34:e5a0dcb43ecc 748 //Note: 4 bit mode is ignored for I2C mode
wim 34:e5a0dcb43ecc 749 break;
wim 34:e5a0dcb43ecc 750
wim 34:e5a0dcb43ecc 751 // case LCD12x1D: //Special mode for PCF21XX, Only top line used
wim 34:e5a0dcb43ecc 752 case LCD12x2:
wim 34:e5a0dcb43ecc 753 _function = 0x04; //FUNCTION SET 0 0 1 DL=0 4-bit, 0, M=1 2-line/12 chars display mode, 0, H=0
wim 34:e5a0dcb43ecc 754 //Note: 4 bit mode is ignored for I2C mode
wim 34:e5a0dcb43ecc 755 break;
wim 34:e5a0dcb43ecc 756
wim 34:e5a0dcb43ecc 757 default:
wim 34:e5a0dcb43ecc 758 error("Error: LCD Controller type does not support this Display type\n\r");
wim 34:e5a0dcb43ecc 759 break;
wim 34:e5a0dcb43ecc 760
wim 34:e5a0dcb43ecc 761 } // switch type
wim 34:e5a0dcb43ecc 762
wim 34:e5a0dcb43ecc 763 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 34:e5a0dcb43ecc 764 wait_ms(10); // Wait 10ms to ensure powered up
wim 34:e5a0dcb43ecc 765
wim 34:e5a0dcb43ecc 766 // Note: Display from GA628 shows 12 chars. This is actually the right half of a 24x1 display. The commons have been connected in reverse order.
wim 34:e5a0dcb43ecc 767 _writeCommand(0x05); // Display Conf Set 0000 0, 1, P=0, Q=1 (Instr. Set 1)
wim 34:e5a0dcb43ecc 768
wim 34:e5a0dcb43ecc 769 _writeCommand(0x02); // Screen Config 0000 001, L=0 (Instr. Set 1)
wim 34:e5a0dcb43ecc 770 _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=0 (no Icon blink), 0 (Instr. Set 1)
wim 34:e5a0dcb43ecc 771
wim 34:e5a0dcb43ecc 772 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 34:e5a0dcb43ecc 773
wim 36:9f5f86dfd44a 774 #if(0)
wim 34:e5a0dcb43ecc 775 // Select CG RAM
wim 34:e5a0dcb43ecc 776 _writeCommand(0x40); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 34:e5a0dcb43ecc 777 // Store UDC/Icon pattern:
wim 34:e5a0dcb43ecc 778 // 3 x 8 rows x 5 bits = 120 bits for Normal pattern (UDC 0..2) and
wim 34:e5a0dcb43ecc 779 // 3 x 8 rows x 5 bits = 120 bits for Blink pattern (UDC 4..6)
wim 34:e5a0dcb43ecc 780 for (int i=0; i<(8 * 8); i++) {
wim 34:e5a0dcb43ecc 781 // _writeData(0x1F); // All On
wim 34:e5a0dcb43ecc 782 _writeData(0x00); // All Off
wim 34:e5a0dcb43ecc 783 }
wim 36:9f5f86dfd44a 784 #endif
wim 34:e5a0dcb43ecc 785 break; // case PCF2103_3V3 Controller
wim 34:e5a0dcb43ecc 786
wim 30:033048611c01 787 case PCF2113_3V3:
wim 32:59c4b8f648d4 788 // PCF2113 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
wim 29:a3663151aa65 789 // Initialise Display configuration
wim 29:a3663151aa65 790 switch (_type) {
wim 29:a3663151aa65 791 // case LCD12x1:
wim 33:900a94bc7585 792 // _function = 0x02; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=0 1-line/12 chars display mode, SL=1, IS=0
wim 32:59c4b8f648d4 793 // Note: 4 bit mode is ignored for I2C mode
wim 29:a3663151aa65 794 case LCD24x1:
wim 33:900a94bc7585 795 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=0 1-line/24 chars display mode, SL=0, IS=0
wim 32:59c4b8f648d4 796 // Note: 4 bit mode is ignored for I2C mode
wim 30:033048611c01 797 break;
wim 30:033048611c01 798
wim 30:033048611c01 799 case LCD12x2:
wim 33:900a94bc7585 800 _function = 0x04; // FUNCTION SET 0 0 1 DL=0 4 bit, 0, M=1 2-line/12 chars display mode, SL=0, IS=0
wim 30:033048611c01 801 break;
wim 30:033048611c01 802
wim 30:033048611c01 803 default:
wim 30:033048611c01 804 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 805 break;
wim 30:033048611c01 806
wim 30:033048611c01 807 } // switch type
wim 30:033048611c01 808
wim 32:59c4b8f648d4 809 // Init special features
wim 33:900a94bc7585 810 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 33:900a94bc7585 811
wim 33:900a94bc7585 812 _writeCommand(0x04); // Display Conf Set 0000 0, 1, P=0, Q=0 (Instr. Set 1)
wim 33:900a94bc7585 813 _writeCommand(0x10); // Temp Compensation Set 0001 0, 0, TC1=0, TC2=0 (Instr. Set 1)
wim 33:900a94bc7585 814 // _writeCommand(0x42); // HV GEN 0100 S1=1, S2=0 (2x multiplier) (Instr. Set 1)
wim 33:900a94bc7585 815 _writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV Gen 0100 S1=1, S2=0 (2x multiplier) (Instr. Set 1)
wim 32:59c4b8f648d4 816
wim 32:59c4b8f648d4 817 _contrast = LCD_PCF2_CONTRAST;
wim 33:900a94bc7585 818 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) 1, V=0, VA=contrast
wim 33:900a94bc7585 819 _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) 1, V=1, VB=contrast
wim 32:59c4b8f648d4 820 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 821
wim 33:900a94bc7585 822 _writeCommand(0x02); // Screen Config 0000 001, L=0 (Instr. Set 1)
wim 33:900a94bc7585 823 _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=0 (no icon blink) DM=0 (no direct mode) (Instr. Set 1)
wim 33:900a94bc7585 824
wim 33:900a94bc7585 825 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 32:59c4b8f648d4 826
wim 30:033048611c01 827 break; // case PCF2113_3V3 Controller
wim 30:033048611c01 828
wim 30:033048611c01 829
wim 32:59c4b8f648d4 830 // case PCF2113_5V:
wim 32:59c4b8f648d4 831 // PCF2113 controller: No Voltage generator for VLCD. VDD=5V. Contrast voltage controlled by VA or VB.
wim 32:59c4b8f648d4 832 //@TODO
wim 32:59c4b8f648d4 833
wim 30:033048611c01 834
wim 30:033048611c01 835 case PCF2116_3V3:
wim 32:59c4b8f648d4 836 // PCF2116 controller: Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage.
wim 30:033048611c01 837 // Initialise Display configuration
wim 30:033048611c01 838 switch (_type) {
wim 30:033048611c01 839 // case LCD12x1:
wim 30:033048611c01 840 // case LCD12x2:
wim 30:033048611c01 841 case LCD24x1:
wim 34:e5a0dcb43ecc 842 _writeCommand(0x22); //FUNCTION SET 0 0 1 DL=0 4-bit, N=0/M=0 1-line/24 chars display mode, G=1 Vgen on, 0
wim 29:a3663151aa65 843 //Note: 4 bit mode is ignored for I2C mode
wim 29:a3663151aa65 844 wait_ms(10); // Wait 10ms to ensure powered up
wim 29:a3663151aa65 845 break;
wim 29:a3663151aa65 846
wim 32:59c4b8f648d4 847 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 848 case LCD12x3D1: // Special mode for PCF21XX
wim 32:59c4b8f648d4 849 case LCD12x4D: // Special mode for PCF21XX:
wim 34:e5a0dcb43ecc 850 _writeCommand(0x2E); //FUNCTION SET 0 0 1 DL=0 4-bit, N=1/M=1 4-line/12 chars display mode, G=1 VGen on, 0
wim 29:a3663151aa65 851 //Note: 4 bit mode is ignored for I2C mode
wim 29:a3663151aa65 852 wait_ms(10); // Wait 10ms to ensure powered up
wim 29:a3663151aa65 853 break;
wim 30:033048611c01 854
wim 30:033048611c01 855 case LCD24x2:
wim 34:e5a0dcb43ecc 856 _writeCommand(0x2A); //FUNCTION SET 0 0 1 DL=0 4-bit, N=1/M=0 2-line/24 chars display mode, G=1 VGen on, 0
wim 29:a3663151aa65 857 //Note: 4 bit mode is ignored for I2C mode
wim 30:033048611c01 858 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 859 break;
wim 32:59c4b8f648d4 860
wim 30:033048611c01 861 default:
wim 30:033048611c01 862 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 863 break;
wim 30:033048611c01 864
wim 29:a3663151aa65 865 } // switch type
wim 29:a3663151aa65 866
wim 30:033048611c01 867 break; // case PCF2116_3V3 Controller
wim 29:a3663151aa65 868
wim 32:59c4b8f648d4 869
wim 32:59c4b8f648d4 870 //Experimental for cellphone 3-line display, SA=0x74, No Ack supported, Character set C or K, DL = 8 bit, N=0,M=1 (reserved mode !!), external VLCD -2V5
wim 32:59c4b8f648d4 871 //@TODO
wim 32:59c4b8f648d4 872 case PCF2116_5V:
wim 32:59c4b8f648d4 873 // PCF2116 controller: No Voltage generator for VLCD. VDD=5V. V0 controls contrast voltage.
wim 32:59c4b8f648d4 874 // Initialise Display configuration
wim 32:59c4b8f648d4 875 switch (_type) {
wim 32:59c4b8f648d4 876 // case LCD12x1:
wim 32:59c4b8f648d4 877 // case LCD12x2:
wim 32:59c4b8f648d4 878 // case LCD24x1:
wim 34:e5a0dcb43ecc 879 // _writeCommand(0x20); //FUNCTION SET 0 0 1 DL=0 4-bit, N=0/M=0 1-line/24 chars display mode, G=0 no Vgen, 0
wim 32:59c4b8f648d4 880 //Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 881 // wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 882 // break;
wim 32:59c4b8f648d4 883
wim 32:59c4b8f648d4 884 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 885 case LCD12x3D1: // Special mode for PCF21XX
wim 32:59c4b8f648d4 886 case LCD12x4D: // Special mode for PCF21XX:
wim 32:59c4b8f648d4 887 // _writeCommand(0x34); //FUNCTION SET 8 bit, N=0/M=1 4-line/12 chars display mode OK
wim 32:59c4b8f648d4 888 // _writeCommand(0x24); //FUNCTION SET 4 bit, N=0/M=1 4-line/12 chars display mode OK
wim 34:e5a0dcb43ecc 889 _writeCommand(0x2C); //FUNCTION SET 0 0 1 DL=0 4-bit, N=1/M=1 4-line/12 chars display mode, G=0 no Vgen, 0 OK
wim 32:59c4b8f648d4 890 //Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 891 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 892 break;
wim 32:59c4b8f648d4 893
wim 32:59c4b8f648d4 894 // case LCD24x2:
wim 32:59c4b8f648d4 895 // _writeCommand(0x28); //FUNCTION SET 4 bit, N=1/M=0 2-line/24 chars display mode
wim 32:59c4b8f648d4 896 //Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 897 // wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 898 // break;
wim 32:59c4b8f648d4 899
wim 32:59c4b8f648d4 900 default:
wim 32:59c4b8f648d4 901 error("Error: LCD Controller type does not support this Display type\n\r");
wim 32:59c4b8f648d4 902 break;
wim 32:59c4b8f648d4 903
wim 32:59c4b8f648d4 904 } // switch type
wim 32:59c4b8f648d4 905
wim 32:59c4b8f648d4 906 break; // case PCF2116_5V Controller
wim 32:59c4b8f648d4 907
wim 32:59c4b8f648d4 908 case PCF2119_3V3:
wim 39:e9c2319de9c5 909 case PCF2119R_3V3:
wim 32:59c4b8f648d4 910 // PCF2119 controller: Initialise Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
wim 32:59c4b8f648d4 911 // Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters.
wim 32:59c4b8f648d4 912 // Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00.
wim 32:59c4b8f648d4 913
wim 32:59c4b8f648d4 914 //POR or Hardware Reset should be applied
wim 32:59c4b8f648d4 915 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 916
wim 32:59c4b8f648d4 917 // Initialise Display configuration
wim 32:59c4b8f648d4 918 switch (_type) {
wim 32:59c4b8f648d4 919 case LCD8x1:
wim 32:59c4b8f648d4 920 // case LCD12x1:
wim 32:59c4b8f648d4 921 case LCD16x1:
wim 34:e5a0dcb43ecc 922 _function = 0x02; // FUNCTION SET 0 0 1 DL=0 4-bit, 0 , M=0 1-line/16 chars display mode, SL=1
wim 32:59c4b8f648d4 923 // Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 924 break;
wim 32:59c4b8f648d4 925
wim 32:59c4b8f648d4 926 case LCD24x1:
wim 32:59c4b8f648d4 927 // case LCD32x1:
wim 34:e5a0dcb43ecc 928 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 4-bit, 0 , M=0 1-line/32 chars display mode, SL=0
wim 32:59c4b8f648d4 929 // Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 930 break;
wim 32:59c4b8f648d4 931
wim 32:59c4b8f648d4 932 case LCD8x2:
wim 32:59c4b8f648d4 933 // case LCD12x2:
wim 32:59c4b8f648d4 934 case LCD16x2:
wim 34:e5a0dcb43ecc 935 _function = 0x04; // FUNCTION SET 0 0 1 DL=0 4-bit, 0, M=1 2-line/16 chars display mode, SL=0
wim 32:59c4b8f648d4 936 // Note: 4 bit mode is ignored for I2C mode
wim 32:59c4b8f648d4 937 break;
wim 32:59c4b8f648d4 938
wim 32:59c4b8f648d4 939 default:
wim 32:59c4b8f648d4 940 error("Error: LCD Controller type does not support this Display type\n\r");
wim 32:59c4b8f648d4 941 break;
wim 32:59c4b8f648d4 942
wim 32:59c4b8f648d4 943 } // switch type
wim 32:59c4b8f648d4 944
wim 32:59c4b8f648d4 945 // Init special features
wim 32:59c4b8f648d4 946 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1
wim 32:59c4b8f648d4 947
wim 39:e9c2319de9c5 948 // _writeCommand(0x04); // DISP CONF SET (Instr. Set 1) 0000, 0, 1, P=0, Q=0 (IC at Bottom)
wim 39:e9c2319de9c5 949 // _writeCommand(0x05); // Display Conf Set 0000, 0, 1, P=0, Q=1
wim 39:e9c2319de9c5 950 // _writeCommand(0x06); // Display Conf Set 0000, 0, 1, P=1, Q=0
wim 39:e9c2319de9c5 951 _writeCommand(0x07); // Display Conf Set 0000, 0, 1, P=1, Q=1 (IC at Top)
wim 39:e9c2319de9c5 952
wim 32:59c4b8f648d4 953 _writeCommand(0x10); // TEMP CTRL SET (Instr. Set 1) 0001, 0, 0, TC1=0, TC2=0
wim 32:59c4b8f648d4 954 // _writeCommand(0x42); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier)
wim 32:59c4b8f648d4 955 _writeCommand(0x40 | (LCD_PCF2_S12 & 0x03)); // HV GEN (Instr. Set 1) 0100, 0, 0, S1=1, S2=0 (2x multiplier)
wim 32:59c4b8f648d4 956
wim 32:59c4b8f648d4 957 _contrast = LCD_PCF2_CONTRAST;
wim 32:59c4b8f648d4 958 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast
wim 32:59c4b8f648d4 959 _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast
wim 32:59c4b8f648d4 960 wait_ms(10); // Wait 10ms to ensure powered up
wim 32:59c4b8f648d4 961
wim 32:59c4b8f648d4 962 _writeCommand(0x02); // SCRN CONF (Instr. Set 1) L=0
wim 32:59c4b8f648d4 963 _writeCommand(0x08); // ICON CONF (Instr. Set 1) IM=0 (Char mode) IB=0 (no icon blink) DM=0 (no direct mode)
wim 32:59c4b8f648d4 964
wim 32:59c4b8f648d4 965 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 966
wim 32:59c4b8f648d4 967 break; // case PCF2119_3V3 Controller
wim 32:59c4b8f648d4 968
wim 32:59c4b8f648d4 969 // case PCF2119_5V:
wim 32:59c4b8f648d4 970 // PCF2119 controller: No Voltage booster for VLCD. VDD=3V3. VA and VB control contrast.
wim 32:59c4b8f648d4 971 // Note1: See datasheet, the PCF2119 supports icons and provides separate constrast control for Icons and characters.
wim 32:59c4b8f648d4 972 // Note2: Vgen is switched off when the contrast voltage VA or VB is set to 0x00.
wim 30:033048611c01 973 //@TODO
wim 29:a3663151aa65 974
wim 19:c747b9e2e7b8 975 case WS0010:
wim 19:c747b9e2e7b8 976 // WS0010 OLED controller: Initialise DC/DC Voltage converter for LEDs
wim 30:033048611c01 977 // Note1: Identical to RS0010
wim 30:033048611c01 978 // Note2: supports 1 or 2 lines (and 16x100 graphics)
wim 30:033048611c01 979 // supports 4 fonts (English/Japanese (default), Western European-I, English/Russian, Western European-II)
wim 19:c747b9e2e7b8 980 // Cursor/Disp shift set 0001 SC RL 0 0
wim 19:c747b9e2e7b8 981 //
wim 30:033048611c01 982 // Mode and Power set 0001 GC PWR 1 1
wim 19:c747b9e2e7b8 983 // GC = 0 (Graph Mode=1, Char Mode=0)
wim 30:033048611c01 984 // PWR = 1 (DC/DC On/Off)
wim 30:033048611c01 985
wim 30:033048611c01 986 //@Todo: This may be needed to enable a warm reboot
wim 32:59c4b8f648d4 987 //_writeCommand(0x13); // Char mode, DC/DC off
wim 30:033048611c01 988 //wait_ms(10); // Wait 10ms to ensure powered down
wim 32:59c4b8f648d4 989 _writeCommand(0x17); // Char mode, DC/DC on
wim 30:033048611c01 990 wait_ms(10); // Wait 10ms to ensure powered up
wim 29:a3663151aa65 991
wim 29:a3663151aa65 992 // Initialise Display configuration
wim 29:a3663151aa65 993 switch (_type) {
wim 29:a3663151aa65 994 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 995 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 996 // case LCD12x1:
wim 29:a3663151aa65 997 case LCD16x1:
wim 30:033048611c01 998 case LCD24x1:
wim 30:033048611c01 999 _writeCommand(0x20); // Function set 001 DL N F FT1 FT0
wim 30:033048611c01 1000 // DL=0 (4 bits bus)
wim 30:033048611c01 1001 // N=0 (1 line)
wim 30:033048611c01 1002 // F=0 (5x7 dots font)
wim 30:033048611c01 1003 // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
wim 30:033048611c01 1004 break;
wim 30:033048611c01 1005
wim 32:59c4b8f648d4 1006 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 1007 case LCD12x3D1: // Special mode for PCF21XX
wim 32:59c4b8f648d4 1008 case LCD12x4D: // Special mode for PCF21XX:
wim 33:900a94bc7585 1009 case LCD16x3G: // Special mode for ST7036
wim 30:033048611c01 1010 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 1011 error("Error: LCD Controller type does not support this Display type\n\r");
wim 29:a3663151aa65 1012 break;
wim 29:a3663151aa65 1013
wim 29:a3663151aa65 1014 default:
wim 30:033048611c01 1015 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 30:033048611c01 1016 _writeCommand(0x28); // Function set 001 DL N F FT1 FT0
wim 30:033048611c01 1017 // DL=0 (4 bits bus)
wim 30:033048611c01 1018 // N=1 (2 lines)
wim 30:033048611c01 1019 // F=0 (5x7 dots font)
wim 30:033048611c01 1020 // FT=00 (00 = Engl/Jap, 01 = WestEur1, 10 = Engl/Russian, 11 = WestEur2
wim 30:033048611c01 1021
wim 29:a3663151aa65 1022 break;
wim 29:a3663151aa65 1023 } // switch type
wim 29:a3663151aa65 1024
wim 32:59c4b8f648d4 1025 break; // case WS0010 Controller
wim 33:900a94bc7585 1026
wim 33:900a94bc7585 1027
wim 33:900a94bc7585 1028 case US2066_3V3:
wim 33:900a94bc7585 1029 // US2066/SSD1311 OLED controller, Initialise for VDD=3V3
wim 33:900a94bc7585 1030 // Note: supports 1,2, 3 or 4 lines
wim 33:900a94bc7585 1031 // case USS2066_5V:
wim 33:900a94bc7585 1032 // US2066 controller, VDD=5V
wim 33:900a94bc7585 1033
wim 33:900a94bc7585 1034 // Initialise Display configuration
wim 33:900a94bc7585 1035 switch (_type) {
wim 33:900a94bc7585 1036 case LCD8x1: //8x1 is a regular 1 line display
wim 33:900a94bc7585 1037 case LCD8x2B: //8x2D is a special case of 16x1
wim 33:900a94bc7585 1038 // case LCD12x1:
wim 33:900a94bc7585 1039 case LCD16x1:
wim 33:900a94bc7585 1040 // case LCD20x1:
wim 33:900a94bc7585 1041 _function = 0x00; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1042 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1043 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1044 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1045 // DH=0 Double Height disable
wim 33:900a94bc7585 1046 // IS=0
wim 33:900a94bc7585 1047
wim 33:900a94bc7585 1048 _function_1 = 0x02; // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1049 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1050 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1051 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1052 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1053 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1054
wim 33:900a94bc7585 1055 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1056 // NW=0 1-Line LCD (N=0)
wim 33:900a94bc7585 1057 break;
wim 33:900a94bc7585 1058
wim 33:900a94bc7585 1059 case LCD16x1C:
wim 33:900a94bc7585 1060 case LCD8x2:
wim 33:900a94bc7585 1061 case LCD16x2:
wim 33:900a94bc7585 1062 case LCD20x2:
wim 33:900a94bc7585 1063 _function = 0x08; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1064 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1065 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1066 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1067 // DH=0 Double Height disable
wim 33:900a94bc7585 1068 // IS=0
wim 33:900a94bc7585 1069
wim 33:900a94bc7585 1070 _function_1 = 0x0A; // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1071 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1072 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1073 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1074 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1075 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1076
wim 33:900a94bc7585 1077 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1078 // NW=0 2-Line LCD (N=1)
wim 33:900a94bc7585 1079 break;
wim 33:900a94bc7585 1080
wim 33:900a94bc7585 1081 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 1082 // case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 33:900a94bc7585 1083 case LCD16x3D: // Special mode for KS0078, SSD1803 and US2066
wim 33:900a94bc7585 1084 // case LCD16x3D1: // Special mode for SSD1803, US2066
wim 33:900a94bc7585 1085 // case LCD20x3D: // Special mode for SSD1803, US2066
wim 33:900a94bc7585 1086 _function = 0x00; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1087 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1088 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1089 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1090 // DH=0 Double Height disable
wim 33:900a94bc7585 1091 // IS=0
wim 33:900a94bc7585 1092
wim 33:900a94bc7585 1093 _function_1 = 0x02; // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1094 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1095 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1096 // N=0 1 Line / 3 Line
wim 33:900a94bc7585 1097 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1098 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1099
wim 33:900a94bc7585 1100 _lines = 0x00; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1101 // NW=1 3-Line LCD (N=0)
wim 33:900a94bc7585 1102 break;
wim 33:900a94bc7585 1103
wim 33:900a94bc7585 1104 case LCD20x4D: // Special mode for SSD1803, US2066
wim 33:900a94bc7585 1105 _function = 0x08; // Set function 0 0 1 X N DH RE(0) IS
wim 33:900a94bc7585 1106 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1107 // DL=X bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1108 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1109 // DH=0 Double Height disable
wim 33:900a94bc7585 1110 // IS=0
wim 33:900a94bc7585 1111
wim 33:900a94bc7585 1112 _function_1 = 0x0A; // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 1113 // Saved to allow switch between Instruction sets at later time
wim 33:900a94bc7585 1114 // DL=0 bit is ignored for US2066. Uses hardwired pins instead
wim 33:900a94bc7585 1115 // N=1 2 line / 4 Line
wim 33:900a94bc7585 1116 // BE=0 Blink Enable off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1117 // REV=0 Reverse off, special feature of SSD1803, US2066
wim 33:900a94bc7585 1118
wim 33:900a94bc7585 1119 _lines = 0x01; // Ext function set 0 0 0 0 1 FW BW NW
wim 33:900a94bc7585 1120 // NW=1 4-Line LCD (N=1)
wim 33:900a94bc7585 1121 break;
wim 33:900a94bc7585 1122
wim 33:900a94bc7585 1123 // case LCD24x1:
wim 33:900a94bc7585 1124 // case LCD16x3G: // Special mode for ST7036
wim 33:900a94bc7585 1125 // case LCD24x4D: // Special mode for KS0078
wim 33:900a94bc7585 1126 default:
wim 33:900a94bc7585 1127 error("Error: LCD Controller type does not support this Display type\n\r");
wim 33:900a94bc7585 1128 break;
wim 33:900a94bc7585 1129
wim 33:900a94bc7585 1130 } // switch type
wim 33:900a94bc7585 1131
wim 34:e5a0dcb43ecc 1132 _writeCommand(0x00); // NOP, make sure to sync SPI
wim 33:900a94bc7585 1133
wim 33:900a94bc7585 1134 // init special features
wim 33:900a94bc7585 1135 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1136 // Select Extended Instruction Set
wim 33:900a94bc7585 1137
wim 33:900a94bc7585 1138 _writeCommand(0x71); // Function Select A: 0 1 1 1 0 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1139 _writeData(0x00); // Disable Internal VDD
wim 33:900a94bc7585 1140
wim 33:900a94bc7585 1141 _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1142
wim 33:900a94bc7585 1143 _writeCommand(0xD5); // Display Clock Divide Ratio: 1 1 0 1 0 1 0 1 (Ext Instr Set, OLED Instr Set)
wim 33:900a94bc7585 1144 _writeCommand(0x70); // Display Clock Divide Ratio value: 0 1 1 1 0 0 0 0 (Ext Instr Set, OLED Instr Set)
wim 33:900a94bc7585 1145
wim 33:900a94bc7585 1146 _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set)
wim 33:900a94bc7585 1147
wim 33:900a94bc7585 1148 // _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 1149 _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 1150
wim 33:900a94bc7585 1151 _writeCommand(0x08 | _lines); // Set ext function 0 0 0 0 1 FW BW NW 1,2,3 or 4 lines (Ext Instr Set)
wim 33:900a94bc7585 1152
wim 34:e5a0dcb43ecc 1153 // _writeCommand(0x1C); // Double Height, 0 0 0 1 UD2=1, UD1=1, X, DH'=0 (Ext Instr Set)
wim 33:900a94bc7585 1154 // // Default
wim 33:900a94bc7585 1155
wim 33:900a94bc7585 1156 _writeCommand(0x72); // Function Select B: 0 1 1 1 0 0 1 0 (Ext Instr Set)
wim 33:900a94bc7585 1157 _writeData(0x01); // Select ROM A (CGRAM 8, CGROM 248)
wim 33:900a94bc7585 1158
wim 33:900a94bc7585 1159 _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 1160
wim 33:900a94bc7585 1161 _writeCommand(0xDA); // Set Segm Pins Config: 1 1 0 1 1 0 1 0 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1162 _writeCommand(0x10); // Set Segm Pins Config value: Altern Odd/Even, Disable Remap (Ext Instr Set, OLED)
wim 33:900a94bc7585 1163
wim 33:900a94bc7585 1164 _writeCommand(0xDC); // Function Select C: 1 1 0 1 1 1 0 0 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1165 // _writeCommand(0x00); // Set internal VSL, GPIO pin HiZ (always read low)
wim 33:900a94bc7585 1166 _writeCommand(0x80); // Set external VSL, GPIO pin HiZ (always read low)
wim 33:900a94bc7585 1167
wim 33:900a94bc7585 1168 _contrast = LCD_US20_CONTRAST;
wim 33:900a94bc7585 1169 _writeCommand(0x81); // Set Contrast Control: 1 0 0 0 0 0 0 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1170 _writeCommand((_contrast << 2) | 0x03); // Set Contrast Value: 8 bits, use 6 bits for compatibility
wim 33:900a94bc7585 1171
wim 33:900a94bc7585 1172 _writeCommand(0xD9); // Set Phase Length: 1 1 0 1 1 0 0 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1173 _writeCommand(0xF1); // Set Phase Length Value:
wim 33:900a94bc7585 1174
wim 33:900a94bc7585 1175 _writeCommand(0xDB); // Set VCOMH Deselect Lvl: 1 1 0 1 1 0 1 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 1176 _writeCommand(0x30); // Set VCOMH Deselect Value: 0.83 x VCC
wim 33:900a94bc7585 1177
wim 33:900a94bc7585 1178 wait_ms(10); // Wait 10ms to ensure powered up
wim 33:900a94bc7585 1179
wim 33:900a94bc7585 1180 //Test Fade/Blinking. Hard Blink on/off, No fade in/out ??
wim 33:900a94bc7585 1181 // _writeCommand(0x23); // Set (Ext Instr Set, OLED)
wim 33:900a94bc7585 1182 // _writeCommand(0x3F); // Set interval 128 frames
wim 33:900a94bc7585 1183 //End Test Blinking
wim 33:900a94bc7585 1184
wim 33:900a94bc7585 1185 _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set)
wim 33:900a94bc7585 1186
wim 33:900a94bc7585 1187 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 X N DH RE(0) IS=1 Select Instruction Set 1
wim 33:900a94bc7585 1188 // Select Std Instr set, Select IS=1
wim 33:900a94bc7585 1189
wim 33:900a94bc7585 1190 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 1191 // Select Ext Instr Set, IS=1
wim 33:900a94bc7585 1192 _writeCommand(0x10); // Shift/Scroll enable, 0 0 0 1 DS4/HS4 DS3/HS3 DS2/HS2 DS1/HS1 (Ext Instr Set, IS=1)
wim 33:900a94bc7585 1193
wim 33:900a94bc7585 1194 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 1195 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 1196 break; // case US2066/SSD1311 Controller
wim 33:900a94bc7585 1197
wim 34:e5a0dcb43ecc 1198 //not yet tested on hardware
wim 34:e5a0dcb43ecc 1199 case PT6314 :
wim 34:e5a0dcb43ecc 1200 // Initialise Display configuration
wim 34:e5a0dcb43ecc 1201 switch (_type) {
wim 34:e5a0dcb43ecc 1202 case LCD8x1: //8x1 is a regular 1 line display
wim 34:e5a0dcb43ecc 1203 case LCD8x2B: //8x2B is a special case of 16x1
wim 34:e5a0dcb43ecc 1204 // case LCD12x1:
wim 34:e5a0dcb43ecc 1205 case LCD16x1:
wim 34:e5a0dcb43ecc 1206 case LCD20x1:
wim 34:e5a0dcb43ecc 1207 case LCD24x1:
wim 34:e5a0dcb43ecc 1208 _function = 0x00; // Function set 001 DL N X BR1 BR0
wim 34:e5a0dcb43ecc 1209 // DL=0 (4 bits bus)
wim 34:e5a0dcb43ecc 1210 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 34:e5a0dcb43ecc 1211 // N=0 (1 line)
wim 34:e5a0dcb43ecc 1212 // X
wim 34:e5a0dcb43ecc 1213 // BR1=0 (2 significant bits for brightness
wim 34:e5a0dcb43ecc 1214 // BR0=0
wim 34:e5a0dcb43ecc 1215 // 0x0 = 100%
wim 34:e5a0dcb43ecc 1216 // 0x1 = 75%
wim 34:e5a0dcb43ecc 1217 // 0x2 = 50%
wim 34:e5a0dcb43ecc 1218 // 0x3 = 25%
wim 34:e5a0dcb43ecc 1219
wim 34:e5a0dcb43ecc 1220 break;
wim 34:e5a0dcb43ecc 1221
wim 34:e5a0dcb43ecc 1222 // All other valid LCD types are initialised as 2 Line displays
wim 34:e5a0dcb43ecc 1223 case LCD8x2:
wim 34:e5a0dcb43ecc 1224 case LCD16x2:
wim 34:e5a0dcb43ecc 1225 case LCD20x2:
wim 34:e5a0dcb43ecc 1226 case LCD24x2:
wim 34:e5a0dcb43ecc 1227 _function = 0x08; // Function set 001 DL N X BR1 BR2
wim 34:e5a0dcb43ecc 1228 // DL=0 (4 bits bus)
wim 34:e5a0dcb43ecc 1229 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 34:e5a0dcb43ecc 1230 // N=1 (2 lines)
wim 34:e5a0dcb43ecc 1231 // X
wim 34:e5a0dcb43ecc 1232 // BR1=0 (2 significant bits for brightness
wim 34:e5a0dcb43ecc 1233 // BR0=0
wim 34:e5a0dcb43ecc 1234 break;
wim 34:e5a0dcb43ecc 1235
wim 34:e5a0dcb43ecc 1236 default:
wim 34:e5a0dcb43ecc 1237 error("Error: LCD Controller type does not support this Display type\n\r");
wim 34:e5a0dcb43ecc 1238 break;
wim 34:e5a0dcb43ecc 1239 } // switch type
wim 34:e5a0dcb43ecc 1240
wim 34:e5a0dcb43ecc 1241 _contrast = LCD_PT63_CONTRAST;
wim 34:e5a0dcb43ecc 1242 _writeCommand(0x20 | _function | ((~_contrast) >> 4)); // Invert and shift to use 2 MSBs
wim 34:e5a0dcb43ecc 1243 break; // case PT6314 Controller (VFD)
wim 39:e9c2319de9c5 1244
wim 39:e9c2319de9c5 1245
wim 39:e9c2319de9c5 1246 case HD66712:
wim 39:e9c2319de9c5 1247 // Initialise Display configuration
wim 39:e9c2319de9c5 1248 switch (_type) {
wim 39:e9c2319de9c5 1249 case LCD8x1: //8x1 is a regular 1 line display
wim 39:e9c2319de9c5 1250 case LCD12x1:
wim 39:e9c2319de9c5 1251 case LCD16x1:
wim 39:e9c2319de9c5 1252 case LCD20x1:
wim 39:e9c2319de9c5 1253 case LCD24x1:
wim 39:e9c2319de9c5 1254 // case LCD32x1: // EXT pin is High, extension driver needed
wim 40:d3496c3ea301 1255 _function = 0x02; // Function set 001 DL N RE(0) - - (Std Regs)
wim 39:e9c2319de9c5 1256 // DL=0 (4 bits bus)
wim 39:e9c2319de9c5 1257 // N=0 (1-line mode, N=1 2-line mode)
wim 40:d3496c3ea301 1258 // RE=0 (Dis. Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1259 //
wim 39:e9c2319de9c5 1260
wim 39:e9c2319de9c5 1261 _function_1 = 0x04; // Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 39:e9c2319de9c5 1262 // DL=0 (4 bits bus)
wim 39:e9c2319de9c5 1263 // N=0 (1-line mode, N=1 2-line mode)
wim 40:d3496c3ea301 1264 // RE=1 (Ena Extended Regs; special mode for HD66712)
wim 40:d3496c3ea301 1265 // BE=0 (Blink Enable, CG/SEG RAM; special mode for HD66712)
wim 40:d3496c3ea301 1266 // LP=0 (LP=1 Low power mode, LP=0 Normal; special mode for HD66712)
wim 39:e9c2319de9c5 1267
wim 39:e9c2319de9c5 1268 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 40:d3496c3ea301 1269 // NW=0 (1,2 line), NW=1 (4 Line, special mode for HD66712)
wim 39:e9c2319de9c5 1270 break;
wim 39:e9c2319de9c5 1271
wim 40:d3496c3ea301 1272 // case LCD12x3D: // Special mode for KS0073, KS0078, PCF21XX and HD66712
wim 40:d3496c3ea301 1273 // case LCD12x3D1: // Special mode for KS0073, KS0078, PCF21XX and HD66712
wim 39:e9c2319de9c5 1274 case LCD12x4D: // Special mode for KS0073, KS0078, PCF21XX and HD66712
wim 40:d3496c3ea301 1275 // case LCD16x3D: // Special mode for KS0073, KS0078 and HD66712
wim 40:d3496c3ea301 1276 // case LCD16x4D: // Special mode for KS0073, KS0078 and HD66712
wim 39:e9c2319de9c5 1277 case LCD20x4D: // Special mode for KS0073, KS0078 and HD66712
wim 40:d3496c3ea301 1278 _function = 0x02; // Function set 001 DL N RE(0) - - (Std Regs)
wim 39:e9c2319de9c5 1279 // DL=0 (4 bits bus)
wim 40:d3496c3ea301 1280 // N=0 (1-line mode, N=1 2-line mode)
wim 40:d3496c3ea301 1281 // RE=0 (Dis. Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1282 //
wim 39:e9c2319de9c5 1283
wim 39:e9c2319de9c5 1284 _function_1 = 0x04; // Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 39:e9c2319de9c5 1285 // DL=0 (4 bits bus)
wim 40:d3496c3ea301 1286 // N=0 (1-line mode, N=1 2-line mode)
wim 40:d3496c3ea301 1287 // RE=1 (Ena Extended Regs; special mode for HD66712)
wim 40:d3496c3ea301 1288 // BE=0 (Blink Enable, CG/SEG RAM; special mode for HD66712)
wim 40:d3496c3ea301 1289 // LP=0 (LP=1 Low power mode, LP=0 Normal; special mode for HD66712)
wim 39:e9c2319de9c5 1290
wim 39:e9c2319de9c5 1291 _function_x = 0x01; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 40:d3496c3ea301 1292 // NW=0 (1,2 line), NW=1 (4 Line, special mode for HD66712)
wim 39:e9c2319de9c5 1293 break;
wim 39:e9c2319de9c5 1294
wim 39:e9c2319de9c5 1295 case LCD16x3G: // Special mode for ST7036
wim 39:e9c2319de9c5 1296 // case LCD24x3D: // Special mode for KS0078
wim 39:e9c2319de9c5 1297 // case LCD24x3D1: // Special mode for KS0078
wim 39:e9c2319de9c5 1298 case LCD24x4D: // Special mode for KS0078
wim 39:e9c2319de9c5 1299 error("Error: LCD Controller type does not support this Display type\n\r");
wim 39:e9c2319de9c5 1300 break;
wim 39:e9c2319de9c5 1301
wim 39:e9c2319de9c5 1302 default:
wim 39:e9c2319de9c5 1303 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 40:d3496c3ea301 1304 _function = 0x0A; // Function set 001 DL N RE(0) - - (Std Regs)
wim 39:e9c2319de9c5 1305 // DL=0 (4 bits bus)
wim 39:e9c2319de9c5 1306 // N=1 (2-line mode), N=0 (1-line mode)
wim 40:d3496c3ea301 1307 // RE=0 (Dis. Extended Regs, special mode for HD66712)
wim 39:e9c2319de9c5 1308
wim 39:e9c2319de9c5 1309 _function_1 = 0x0C; // Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 39:e9c2319de9c5 1310 // DL=0 (4 bits bus)
wim 39:e9c2319de9c5 1311 // N=1 (2 line mode), N=0 (1-line mode)
wim 40:d3496c3ea301 1312 // RE=1 (Ena Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1313 // BE=0 (Blink Enable, CG/SEG RAM, special mode for HD66712)
wim 40:d3496c3ea301 1314 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 39:e9c2319de9c5 1315
wim 39:e9c2319de9c5 1316 _function_x = 0x00; // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 40:d3496c3ea301 1317 // NW=0 (1,2 line), NW=1 (4 Line, special mode for HD66712)
wim 39:e9c2319de9c5 1318 break;
wim 39:e9c2319de9c5 1319 } // switch type
wim 39:e9c2319de9c5 1320
wim 39:e9c2319de9c5 1321 // init special features
wim 39:e9c2319de9c5 1322 _writeCommand(0x20 | _function_1);// Function set 001 DL N RE(1) BE LP (Ext Regs)
wim 39:e9c2319de9c5 1323 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 39:e9c2319de9c5 1324 // N=0 (1 line mode), N=1 (2 line mode)
wim 40:d3496c3ea301 1325 // RE=1 (Ena Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1326 // BE=0 (Blink Enable/Disable, CG/SEG RAM, special mode for HD66712)
wim 39:e9c2319de9c5 1327 // LP=0 (LP=1 Low power mode, LP=0 Normal)
wim 39:e9c2319de9c5 1328
wim 39:e9c2319de9c5 1329 _writeCommand(0x08 | _function_x); // Ext Function set 0000 1 FW BW NW (Ext Regs)
wim 40:d3496c3ea301 1330 // FW=0 (5-dot font, special mode for HD66712)
wim 40:d3496c3ea301 1331 // BW=0 (Cur BW invert disable, special mode for HD66712)
wim 40:d3496c3ea301 1332 // NW=0 (1,2 Line), NW=1 (4 line, special mode for HD66712)
wim 40:d3496c3ea301 1333
wim 40:d3496c3ea301 1334 _writeCommand(0x10); // Scroll/Shift set 0001 HS4 HS3 HS2 HS1 (Ext Regs)
wim 40:d3496c3ea301 1335 // Dotscroll/Display shift enable (Special mode for HD66712)
wim 40:d3496c3ea301 1336
wim 40:d3496c3ea301 1337 _writeCommand(0x80); // Scroll Quantity set 1 0 HDS5 HDS4 HDS3 HDS2 HDS1 HDS0 (Ext Regs)
wim 40:d3496c3ea301 1338 // Scroll quantity (Special mode for HD66712)
wim 39:e9c2319de9c5 1339
wim 39:e9c2319de9c5 1340 _writeCommand(0x20 | _function); // Function set 001 DL N RE(0) DH REV (Std Regs)
wim 39:e9c2319de9c5 1341 // DL=0 (4 bits bus), DL=1 (8 bits mode)
wim 39:e9c2319de9c5 1342 // N=0 (1 line mode), N=1 (2 line mode)
wim 40:d3496c3ea301 1343 // RE=0 (Dis. Extended Regs, special mode for HD66712)
wim 40:d3496c3ea301 1344 // DH=1 (Disp shift enable/disable, special mode for HD66712)
wim 40:d3496c3ea301 1345 // REV=0 (Reverse/Normal, special mode for HD66712)
wim 39:e9c2319de9c5 1346 break; // case HD66712 Controller
wim 39:e9c2319de9c5 1347
wim 41:111ca62e8a59 1348 case SPLC792A_3V3:
wim 41:111ca62e8a59 1349 // SPLC792A controller: Initialise Voltage booster for VLCD. VDD=3V3
wim 41:111ca62e8a59 1350 // Note very similar to ST7032
wim 41:111ca62e8a59 1351
wim 41:111ca62e8a59 1352 // Initialise Display configuration
wim 41:111ca62e8a59 1353 switch (_type) {
wim 41:111ca62e8a59 1354 case LCD8x1: //8x1 is a regular 1 line display
wim 41:111ca62e8a59 1355 case LCD8x2B: //8x2B is a special case of 16x1
wim 41:111ca62e8a59 1356 // case LCD12x1:
wim 41:111ca62e8a59 1357 case LCD16x1:
wim 41:111ca62e8a59 1358 // case LCD20x1:
wim 41:111ca62e8a59 1359 case LCD24x1:
wim 41:111ca62e8a59 1360 _function = 0x00; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=0 (1-line display mode), F=0 (5*7dot), 0, IS
wim 41:111ca62e8a59 1361 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 41:111ca62e8a59 1362 // Saved to allow switch between Instruction sets at later time
wim 41:111ca62e8a59 1363 break;
wim 41:111ca62e8a59 1364
wim 41:111ca62e8a59 1365 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 41:111ca62e8a59 1366 case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 41:111ca62e8a59 1367 case LCD12x4D: // Special mode for KS0078 and PCF21XX
wim 41:111ca62e8a59 1368 case LCD16x3G: // Special mode for ST7036
wim 41:111ca62e8a59 1369 case LCD24x4D: // Special mode for KS0078
wim 41:111ca62e8a59 1370 error("Error: LCD Controller type does not support this Display type\n\r");
wim 41:111ca62e8a59 1371 break;
wim 41:111ca62e8a59 1372
wim 41:111ca62e8a59 1373 default:
wim 41:111ca62e8a59 1374 // All other LCD types are initialised as 2 Line displays
wim 41:111ca62e8a59 1375 _function = 0x08; // FUNCTION SET 0 0 1 DL=0 (4 bit), N=1 (2-line display mode), F=0 (5*7dot), 0, IS
wim 41:111ca62e8a59 1376 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 41:111ca62e8a59 1377 // Saved to allow switch between Instruction sets at later time
wim 41:111ca62e8a59 1378 break;
wim 41:111ca62e8a59 1379 } // switch type
wim 41:111ca62e8a59 1380
wim 41:111ca62e8a59 1381 // init special features
wim 41:111ca62e8a59 1382 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 41:111ca62e8a59 1383
wim 41:111ca62e8a59 1384 //SPLC792A Does not support Bias and Internal Osc register
wim 41:111ca62e8a59 1385 // _writeCommand(0x1C); // Internal OSC frequency adjustment Framefreq=183HZ, Bias will be 1/4 (Instr Set=1)
wim 41:111ca62e8a59 1386
wim 41:111ca62e8a59 1387 _contrast = LCD_SPLC792A_CONTRAST;
wim 41:111ca62e8a59 1388 _writeCommand(0x70 | (_contrast & 0x0F)); // Set Contrast Low bits, 0 1 1 1 C3 C2 C1 C0 (IS=1)
wim 41:111ca62e8a59 1389
wim 41:111ca62e8a59 1390
wim 41:111ca62e8a59 1391 // _icon_power = 0x04; // Icon display off (Bit3=0), Booster circuit is turned on (Bit2=1) (IS=1)
wim 41:111ca62e8a59 1392 _icon_power = 0x0C; // Icon display on (Bit3=1), Booster circuit is turned on (Bit2=1) (IS=1)
wim 41:111ca62e8a59 1393 // Note: Booster circuit always on for SPLC792A, Bit2 is dont care
wim 41:111ca62e8a59 1394 // Saved to allow contrast change at later time
wim 41:111ca62e8a59 1395
wim 41:111ca62e8a59 1396 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Set Icon, Booster and Contrast High bits, 0 1 0 1 Ion Bon C5 C4 (IS=1)
wim 41:111ca62e8a59 1397 wait_ms(10); // Wait 10ms to ensure powered up
wim 41:111ca62e8a59 1398
wim 41:111ca62e8a59 1399 _writeCommand(0x68 | (LCD_SPLC792A_RAB & 0x07)); // Voltage follower, 0 1 1 0 FOn=1, Ampl ratio Rab2=1, Rab1=0, Rab0=0 (IS=1)
wim 41:111ca62e8a59 1400 // Note: Follower circuit always on for SPLC792A, Bit3 is dont care
wim 41:111ca62e8a59 1401 wait_ms(10); // Wait 10ms to ensure powered up
wim 41:111ca62e8a59 1402
wim 41:111ca62e8a59 1403 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 41:111ca62e8a59 1404
wim 41:111ca62e8a59 1405 break; // case SPLC792A_3V3 Controller
wim 41:111ca62e8a59 1406
wim 37:ce348c002929 1407 case ST7066_ACM: // ST7066 4/8 bit, I2C on ACM1602 using a PIC
wim 19:c747b9e2e7b8 1408 default:
wim 32:59c4b8f648d4 1409 // Devices fully compatible to HD44780 that do not use any DC/DC Voltage converters but external VLCD, no icons etc
wim 10:dd9b3a696acd 1410
wim 29:a3663151aa65 1411 // Initialise Display configuration
wim 29:a3663151aa65 1412 switch (_type) {
wim 29:a3663151aa65 1413 case LCD8x1: //8x1 is a regular 1 line display
wim 29:a3663151aa65 1414 case LCD8x2B: //8x2B is a special case of 16x1
wim 29:a3663151aa65 1415 // case LCD12x1:
wim 29:a3663151aa65 1416 case LCD16x1:
wim 30:033048611c01 1417 // case LCD20x1:
wim 29:a3663151aa65 1418 case LCD24x1:
wim 30:033048611c01 1419 // case LCD40x1:
wim 32:59c4b8f648d4 1420 _function = 0x00; // Function set 001 DL N F - -
wim 29:a3663151aa65 1421 // DL=0 (4 bits bus)
wim 29:a3663151aa65 1422 // N=0 (1 line)
wim 29:a3663151aa65 1423 // F=0 (5x7 dots font)
wim 29:a3663151aa65 1424 break;
wim 29:a3663151aa65 1425
wim 32:59c4b8f648d4 1426 case LCD12x3D: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 1427 case LCD12x3D1: // Special mode for KS0078 and PCF21XX
wim 32:59c4b8f648d4 1428 case LCD12x4D: // Special mode for KS0078 and PCF21XX:
wim 33:900a94bc7585 1429 case LCD16x3D: // Special mode for KS0078
wim 32:59c4b8f648d4 1430 // case LCD16x3D1: // Special mode for KS0078
wim 30:033048611c01 1431 // case LCD24x3D: // Special mode for KS0078
wim 32:59c4b8f648d4 1432 // case LCD24x3D1: // Special mode for KS0078
wim 30:033048611c01 1433 case LCD24x4D: // Special mode for KS0078
wim 30:033048611c01 1434 error("Error: LCD Controller type does not support this Display type\n\r");
wim 30:033048611c01 1435 break;
wim 30:033048611c01 1436
wim 30:033048611c01 1437 // All other LCD types are initialised as 2 Line displays (including LCD16x1C and LCD40x4)
wim 29:a3663151aa65 1438 default:
wim 32:59c4b8f648d4 1439 _function = 0x08; // Function set 001 DL N F - -
wim 29:a3663151aa65 1440 // DL=0 (4 bits bus)
wim 29:a3663151aa65 1441 // Note: 4 bit mode is ignored for native SPI and I2C devices
wim 29:a3663151aa65 1442 // N=1 (2 lines)
wim 29:a3663151aa65 1443 // F=0 (5x7 dots font, only option for 2 line display)
wim 32:59c4b8f648d4 1444 // - (Don't care)
wim 29:a3663151aa65 1445 break;
wim 29:a3663151aa65 1446 } // switch type
wim 10:dd9b3a696acd 1447
wim 34:e5a0dcb43ecc 1448 _writeCommand(0x20 | _function);
wim 29:a3663151aa65 1449 break; // case default Controller
wim 29:a3663151aa65 1450
wim 34:e5a0dcb43ecc 1451 } // switch Controller specific initialisations
wim 10:dd9b3a696acd 1452
wim 30:033048611c01 1453 // Controller general initialisations
wim 39:e9c2319de9c5 1454 // _writeCommand(0x01); // Clear Display and set cursor to 0
wim 32:59c4b8f648d4 1455 // wait_ms(10); // The CLS command takes 1.64 ms.
wim 32:59c4b8f648d4 1456 // // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 28:30fa94f7341c 1457
wim 39:e9c2319de9c5 1458 _writeCommand(0x02); // Cursor Home, DDRAM Address to Origin
wim 39:e9c2319de9c5 1459 wait_ms(10); // The Return Home command takes 1.64 ms.
wim 39:e9c2319de9c5 1460 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 28:30fa94f7341c 1461
wim 28:30fa94f7341c 1462 _writeCommand(0x06); // Entry Mode 0000 0 1 I/D S
wim 13:24506ba22480 1463 // Cursor Direction and Display Shift
wim 28:30fa94f7341c 1464 // I/D=1 (Cur incr)
wim 28:30fa94f7341c 1465 // S=0 (No display shift)
wim 10:dd9b3a696acd 1466
wim 29:a3663151aa65 1467 _writeCommand(0x14); // Cursor or Display shift 0001 S/C R/L x x
wim 29:a3663151aa65 1468 // S/C=0 Cursor moves
wim 29:a3663151aa65 1469 // R/L=1 Right
wim 29:a3663151aa65 1470 //
wim 29:a3663151aa65 1471
wim 13:24506ba22480 1472 // _writeCommand(0x0C); // Display Ctrl 0000 1 D C B
wim 17:652ab113bc2e 1473 // // Display On, Cursor Off, Blink Off
wim 36:9f5f86dfd44a 1474
wim 39:e9c2319de9c5 1475 // setCursor(CurOff_BlkOff);
wim 39:e9c2319de9c5 1476 setCursor(CurOn_BlkOff);
wim 21:9eb628d9e164 1477 setMode(DispOn);
simon 1:ac48b187213c 1478 }
simon 1:ac48b187213c 1479
wim 8:03116f75b66e 1480
wim 21:9eb628d9e164 1481 /** Clear the screen, Cursor home.
wim 39:e9c2319de9c5 1482 * Note: The whole display is initialised to charcode 0x20, which may not be a 'space' on some controllers with a
wim 39:e9c2319de9c5 1483 * different fontset such as the PCF2116C or PCF2119R. In this case you should fill the display with 'spaces'.
wim 21:9eb628d9e164 1484 */
wim 21:9eb628d9e164 1485 void TextLCD_Base::cls() {
wim 15:b70ebfffb258 1486
wim 41:111ca62e8a59 1487 #if (LCD_TWO_CTRL == 1)
wim 15:b70ebfffb258 1488 // Select and configure second LCD controller when needed
wim 15:b70ebfffb258 1489 if(_type==LCD40x4) {
wim 21:9eb628d9e164 1490 _ctrl_idx=_LCDCtrl_1; // Select 2nd controller
wim 15:b70ebfffb258 1491
wim 15:b70ebfffb258 1492 // Second LCD controller Cursor always Off
wim 21:9eb628d9e164 1493 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 15:b70ebfffb258 1494
wim 15:b70ebfffb258 1495 // Second LCD controller Clearscreen
wim 27:22d5086f6ba6 1496 _writeCommand(0x01); // cls, and set cursor to 0
wim 39:e9c2319de9c5 1497 wait_ms(20); // The CLS command takes 1.64 ms.
wim 29:a3663151aa65 1498 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 15:b70ebfffb258 1499
wim 21:9eb628d9e164 1500 _ctrl_idx=_LCDCtrl_0; // Select primary controller
wim 15:b70ebfffb258 1501 }
wim 41:111ca62e8a59 1502
wim 15:b70ebfffb258 1503
wim 15:b70ebfffb258 1504 // Primary LCD controller Clearscreen
wim 27:22d5086f6ba6 1505 _writeCommand(0x01); // cls, and set cursor to 0
wim 39:e9c2319de9c5 1506 wait_ms(20); // The CLS command takes 1.64 ms.
wim 29:a3663151aa65 1507 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 15:b70ebfffb258 1508
wim 15:b70ebfffb258 1509 // Restore cursormode on primary LCD controller when needed
wim 15:b70ebfffb258 1510 if(_type==LCD40x4) {
wim 17:652ab113bc2e 1511 _setCursorAndDisplayMode(_currentMode,_currentCursor);
wim 15:b70ebfffb258 1512 }
wim 41:111ca62e8a59 1513
wim 41:111ca62e8a59 1514 #else
wim 41:111ca62e8a59 1515 // Support only one LCD controller
wim 41:111ca62e8a59 1516 _writeCommand(0x01); // cls, and set cursor to 0
wim 41:111ca62e8a59 1517 wait_ms(20); // The CLS command takes 1.64 ms.
wim 41:111ca62e8a59 1518 // Since we are not using the Busy flag, Lets be safe and take 10 ms
wim 41:111ca62e8a59 1519 #endif
wim 15:b70ebfffb258 1520
wim 29:a3663151aa65 1521 setAddress(0, 0); // Reset Cursor location
wim 32:59c4b8f648d4 1522 // Note: This is needed because some displays (eg PCF21XX) don't use line 0 in the '3 Line' mode.
simon 1:ac48b187213c 1523 }
simon 1:ac48b187213c 1524
wim 29:a3663151aa65 1525 /** Locate cursor to a screen column and row
wim 29:a3663151aa65 1526 *
wim 29:a3663151aa65 1527 * @param column The horizontal position from the left, indexed from 0
wim 29:a3663151aa65 1528 * @param row The vertical position from the top, indexed from 0
wim 29:a3663151aa65 1529 */
wim 21:9eb628d9e164 1530 void TextLCD_Base::locate(int column, int row) {
wim 15:b70ebfffb258 1531
wim 15:b70ebfffb258 1532 // setAddress() does all the heavy lifting:
wim 15:b70ebfffb258 1533 // check column and row sanity,
wim 15:b70ebfffb258 1534 // switch controllers for LCD40x4 if needed
wim 15:b70ebfffb258 1535 // switch cursor for LCD40x4 if needed
wim 15:b70ebfffb258 1536 // set the new memory address to show cursor at correct location
wim 32:59c4b8f648d4 1537 setAddress(column, row);
wim 15:b70ebfffb258 1538 }
wim 30:033048611c01 1539
wim 15:b70ebfffb258 1540
wim 21:9eb628d9e164 1541 /** Write a single character (Stream implementation)
wim 21:9eb628d9e164 1542 */
wim 21:9eb628d9e164 1543 int TextLCD_Base::_putc(int value) {
wim 15:b70ebfffb258 1544 int addr;
wim 15:b70ebfffb258 1545
wim 15:b70ebfffb258 1546 if (value == '\n') {
wim 15:b70ebfffb258 1547 //No character to write
wim 15:b70ebfffb258 1548
wim 15:b70ebfffb258 1549 //Update Cursor
wim 15:b70ebfffb258 1550 _column = 0;
wim 15:b70ebfffb258 1551 _row++;
wim 15:b70ebfffb258 1552 if (_row >= rows()) {
wim 15:b70ebfffb258 1553 _row = 0;
wim 15:b70ebfffb258 1554 }
wim 15:b70ebfffb258 1555 }
wim 15:b70ebfffb258 1556 else {
wim 37:ce348c002929 1557 //Character to write
wim 41:111ca62e8a59 1558
wim 41:111ca62e8a59 1559 #if (LCD_DEF_FONT == 1) //Default HD44780 font
wim 37:ce348c002929 1560 _writeData(value);
wim 41:111ca62e8a59 1561 #elif (LCD_C_FONT == 1) || (LCD_R_FONT == 1) //PCF21xxC or PCF21xxR font
wim 41:111ca62e8a59 1562 _writeData(ASCII_2_LCD(value));
wim 41:111ca62e8a59 1563 #elif (LCD_UTF8_FONT == 1) // UTF8 2 byte font (eg Cyrillic)
wim 41:111ca62e8a59 1564 // value = UTF_2_LCD(value, utf_seq_rec_first_cyr, utf_seq_recode_cyr, &utf_rnd_recode_cyr[0][0]);
wim 41:111ca62e8a59 1565 value = UTF_2_LCD(value);
wim 41:111ca62e8a59 1566 if (value >= 0) {
wim 41:111ca62e8a59 1567 _writeData(value);
wim 41:111ca62e8a59 1568
wim 41:111ca62e8a59 1569 // Only increment cursor when there is something to write
wim 41:111ca62e8a59 1570 // Continue below to closing bracket...
wim 37:ce348c002929 1571 #else
wim 41:111ca62e8a59 1572 _writeData('?'); //Oops, no font defined
wim 41:111ca62e8a59 1573 #endif
wim 41:111ca62e8a59 1574
wim 15:b70ebfffb258 1575 //Update Cursor
wim 15:b70ebfffb258 1576 _column++;
wim 15:b70ebfffb258 1577 if (_column >= columns()) {
wim 15:b70ebfffb258 1578 _column = 0;
wim 15:b70ebfffb258 1579 _row++;
wim 15:b70ebfffb258 1580 if (_row >= rows()) {
wim 15:b70ebfffb258 1581 _row = 0;
wim 15:b70ebfffb258 1582 }
wim 41:111ca62e8a59 1583 }
wim 41:111ca62e8a59 1584
wim 41:111ca62e8a59 1585 #if (LCD_DEF_FONT == 1) //Default HD44780 font
wim 41:111ca62e8a59 1586
wim 41:111ca62e8a59 1587 #elif (LCD_C_FONT == 1) || (LCD_R_FONT == 1) //PCF21xxC or PCF21xxR font
wim 41:111ca62e8a59 1588
wim 41:111ca62e8a59 1589 #elif (LCD_UTF8_FONT == 1) //UTF8 2 byte font (eg Cyrillic)
wim 41:111ca62e8a59 1590 // Continue code above to close bracket...
wim 41:111ca62e8a59 1591 } // if (value >= 0) {..
wim 41:111ca62e8a59 1592 #else
wim 41:111ca62e8a59 1593
wim 41:111ca62e8a59 1594 #endif
wim 41:111ca62e8a59 1595
wim 15:b70ebfffb258 1596 } //else
wim 15:b70ebfffb258 1597
wim 15:b70ebfffb258 1598 //Set next memoryaddress, make sure cursor blinks at next location
wim 15:b70ebfffb258 1599 addr = getAddress(_column, _row);
wim 15:b70ebfffb258 1600 _writeCommand(0x80 | addr);
wim 15:b70ebfffb258 1601
wim 15:b70ebfffb258 1602 return value;
wim 15:b70ebfffb258 1603 }
wim 15:b70ebfffb258 1604
wim 15:b70ebfffb258 1605
wim 16:c276b75e6585 1606 // get a single character (Stream implementation)
wim 21:9eb628d9e164 1607 int TextLCD_Base::_getc() {
simon 1:ac48b187213c 1608 return -1;
simon 1:ac48b187213c 1609 }
simon 1:ac48b187213c 1610
wim 41:111ca62e8a59 1611
wim 41:111ca62e8a59 1612 #if ((LCD_C_FONT == 1) || (LCD_R_FONT == 1)) //PCF21xxC or PCF21xxR font
wim 37:ce348c002929 1613 /** Convert ASCII character code to the LCD fonttable code
wim 37:ce348c002929 1614 *
wim 37:ce348c002929 1615 * @param c The character to write to the display
wim 37:ce348c002929 1616 * @return The character code for the specific fonttable of the controller
wim 37:ce348c002929 1617 */
wim 37:ce348c002929 1618 int TextLCD_Base::ASCII_2_LCD (int c) {
wim 37:ce348c002929 1619
wim 41:111ca62e8a59 1620 //LCD_C_F0 is default for HD44780 and compatible series
wim 41:111ca62e8a59 1621 // if (_font == LCD_C_F0) return c;
wim 41:111ca62e8a59 1622
wim 41:111ca62e8a59 1623 //LCD_C_FC for PCF21XXC series
wim 41:111ca62e8a59 1624 //LCD_C_FR for PCF21XXR series
wim 39:e9c2319de9c5 1625 //Used code from Suga koubou library for PCF2119K and PCF2119R
wim 37:ce348c002929 1626 if (((c >= ' ') && (c <= '?')) || ((c >= 'A') && (c <= 'Z')) || ((c >= 'a') && (c <= 'z'))) {
wim 37:ce348c002929 1627 c |= 0x80;
wim 39:e9c2319de9c5 1628 } else if (c >= 0xF0 && c <= 0xFF) {
wim 41:111ca62e8a59 1629 c &= 0x0F;
wim 37:ce348c002929 1630 }
wim 37:ce348c002929 1631 return c;
wim 37:ce348c002929 1632 }
wim 41:111ca62e8a59 1633 #endif
wim 41:111ca62e8a59 1634
wim 41:111ca62e8a59 1635 #if(LCD_UTF8_FONT == 1)
wim 41:111ca62e8a59 1636
wim 41:111ca62e8a59 1637 /** Convert UTF8 2-byte character code to the LCD fonttable code
wim 41:111ca62e8a59 1638 * @param c The character to write to the display
wim 41:111ca62e8a59 1639 * @return character code for the specific fonttable of the controller or -1 if UTF8 code is not yet complete or incorrect
wim 41:111ca62e8a59 1640 *
wim 41:111ca62e8a59 1641 * Orig by Andriy, Modified by WH
wim 41:111ca62e8a59 1642 *
wim 41:111ca62e8a59 1643 * Note: The UTF8 decoding table for a specific controller is defined and selected in file TextLCD_UTF8.inc
wim 41:111ca62e8a59 1644 * The table is accessed in this UTF_2_LCD() method through
wim 41:111ca62e8a59 1645 * #define UTF_FIRST, UTF_LAST, UTF_SEQ_REC_FIRST, UTF_SEQ_REC_LAST and
wim 41:111ca62e8a59 1646 * #define UTF_SEQ_RECODE and UTF_RND_RECODE
wim 41:111ca62e8a59 1647 */
wim 41:111ca62e8a59 1648 int TextLCD_Base::UTF_2_LCD (int c) {
wim 41:111ca62e8a59 1649 int utf_code;
wim 41:111ca62e8a59 1650 int utf_low_byte; // Low byte UTF8
wim 41:111ca62e8a59 1651 static int utf_hi_byte = 0; // High byte UTF8
wim 41:111ca62e8a59 1652
wim 41:111ca62e8a59 1653 if (c < 0x80) { // Regular ASCII code, no need to convert
wim 41:111ca62e8a59 1654 return c;
wim 41:111ca62e8a59 1655 }
wim 41:111ca62e8a59 1656 else { // UTF8 handling, See wikipedia.org/wiki/UTF-8 and www.utf8-chartable.de
wim 41:111ca62e8a59 1657 // printf("0x%X ", c);
wim 41:111ca62e8a59 1658
wim 41:111ca62e8a59 1659 if (c >= 0xC0) { // First UTF8 byte should be formatted as 110b bbaa, Do sanity check
wim 41:111ca62e8a59 1660 utf_hi_byte = c & 0x1F; // Mask out significant bits (0x1F) and save high byte
wim 41:111ca62e8a59 1661 return -1; // Nothing to display as yet, wait for second UTF8 byte
wim 41:111ca62e8a59 1662 }
wim 41:111ca62e8a59 1663
wim 41:111ca62e8a59 1664 if (c <= 0xBF) { // Second UTF8 byte should be formatted as 10aa aaaa, Do sanity check
wim 41:111ca62e8a59 1665 utf_low_byte = c & 0x3F; // Mask out significant bits (0x3F)
wim 41:111ca62e8a59 1666
wim 41:111ca62e8a59 1667 // Compose UTF character code from UTF8 bytes. The UTF codes will be between U+0080 and U+07FF
wim 41:111ca62e8a59 1668 utf_code = (utf_hi_byte << 6) | utf_low_byte; // 00000bbb aaaaaaaa
wim 41:111ca62e8a59 1669 // printf("0x%4X ", utf_code);
wim 41:111ca62e8a59 1670
wim 41:111ca62e8a59 1671 // Sanity check on UTF codes
wim 41:111ca62e8a59 1672 // For example Cyrillic characters are UTF encoded between 0x0400 and 0x04FF
wim 41:111ca62e8a59 1673 if ((utf_code < UTF_FIRST) || (utf_code > UTF_LAST)) {
wim 41:111ca62e8a59 1674 return -1; // Invalid UTF8 code
wim 41:111ca62e8a59 1675 };
wim 41:111ca62e8a59 1676
wim 41:111ca62e8a59 1677 //Map some specific UTF codes on a character in LCD fonttable using a special correcting lookup table
wim 41:111ca62e8a59 1678 for (char i=0; UTF_RND_RECODE[i][0]; i++) { // Step through table until endvalue 0 is found or until a match is found
wim 41:111ca62e8a59 1679 if (utf_code == UTF_RND_RECODE[i][0]) { // UTF8 code match is found
wim 41:111ca62e8a59 1680 c = UTF_RND_RECODE[1][1];
wim 41:111ca62e8a59 1681 return c; // found match in correcting random table
wim 41:111ca62e8a59 1682 }
wim 41:111ca62e8a59 1683 }
wim 41:111ca62e8a59 1684
wim 41:111ca62e8a59 1685 //Sanity check on table idx range
wim 41:111ca62e8a59 1686 if ((utf_code < UTF_SEQ_REC_FIRST) || (utf_code > UTF_SEQ_REC_LAST)) {
wim 41:111ca62e8a59 1687 return -1; // Invalid UTF8 code
wim 41:111ca62e8a59 1688 };
wim 41:111ca62e8a59 1689
wim 41:111ca62e8a59 1690 //Map all other UTF codes on a character in LCD fonttable using a sequential lookup table
wim 41:111ca62e8a59 1691 c = UTF_SEQ_RECODE[utf_code - UTF_SEQ_REC_FIRST];
wim 41:111ca62e8a59 1692 return c; // entry in sequential table
wim 41:111ca62e8a59 1693 }
wim 41:111ca62e8a59 1694 else {
wim 41:111ca62e8a59 1695 return -1; // Invalid UTF8 code for second byte
wim 41:111ca62e8a59 1696 }
wim 41:111ca62e8a59 1697 } // End UTF8 handling
wim 41:111ca62e8a59 1698 }
wim 41:111ca62e8a59 1699
wim 41:111ca62e8a59 1700 #endif
wim 41:111ca62e8a59 1701
wim 14:0c32b66b14b8 1702
wim 34:e5a0dcb43ecc 1703 #if(LCD_PRINTF != 1)
wim 34:e5a0dcb43ecc 1704 /** Write a character to the LCD
wim 34:e5a0dcb43ecc 1705 *
wim 34:e5a0dcb43ecc 1706 * @param c The character to write to the display
wim 34:e5a0dcb43ecc 1707 */
wim 34:e5a0dcb43ecc 1708 int TextLCD_Base::putc(int c){
wim 34:e5a0dcb43ecc 1709 return _putc(c);
wim 34:e5a0dcb43ecc 1710 }
wim 34:e5a0dcb43ecc 1711
wim 34:e5a0dcb43ecc 1712
wim 34:e5a0dcb43ecc 1713 /** Write a raw string to the LCD
wim 34:e5a0dcb43ecc 1714 *
wim 34:e5a0dcb43ecc 1715 * @param string text, may be followed by variables to emulate formatting the string.
wim 34:e5a0dcb43ecc 1716 * However, printf formatting is NOT supported and variables will be ignored!
wim 34:e5a0dcb43ecc 1717 */
wim 34:e5a0dcb43ecc 1718 int TextLCD_Base::printf(const char* text, ...) {
wim 34:e5a0dcb43ecc 1719
wim 34:e5a0dcb43ecc 1720 while (*text !=0) {
wim 34:e5a0dcb43ecc 1721 _putc(*text);
wim 34:e5a0dcb43ecc 1722 text++;
wim 34:e5a0dcb43ecc 1723 }
wim 34:e5a0dcb43ecc 1724 return 0;
wim 34:e5a0dcb43ecc 1725 }
wim 34:e5a0dcb43ecc 1726 #endif
wim 34:e5a0dcb43ecc 1727
wim 34:e5a0dcb43ecc 1728
wim 17:652ab113bc2e 1729 // Write a nibble using the 4-bit interface
wim 21:9eb628d9e164 1730 void TextLCD_Base::_writeNibble(int value) {
wim 17:652ab113bc2e 1731
wim 17:652ab113bc2e 1732 // Enable is Low
wim 21:9eb628d9e164 1733 this->_setEnable(true);
wim 38:cbe275b0b647 1734 this->_setData(value); // Low nibble of value on D4..D7
wim 17:652ab113bc2e 1735 wait_us(1); // Data setup time
wim 21:9eb628d9e164 1736 this->_setEnable(false);
wim 17:652ab113bc2e 1737 wait_us(1); // Datahold time
wim 17:652ab113bc2e 1738 // Enable is Low
wim 17:652ab113bc2e 1739 }
wim 17:652ab113bc2e 1740
wim 16:c276b75e6585 1741 // Write a byte using the 4-bit interface
wim 21:9eb628d9e164 1742 void TextLCD_Base::_writeByte(int value) {
wim 15:b70ebfffb258 1743
wim 15:b70ebfffb258 1744 // Enable is Low
wim 21:9eb628d9e164 1745 this->_setEnable(true);
wim 21:9eb628d9e164 1746 this->_setData(value >> 4); // High nibble
wim 15:b70ebfffb258 1747 wait_us(1); // Data setup time
wim 21:9eb628d9e164 1748 this->_setEnable(false);
wim 15:b70ebfffb258 1749 wait_us(1); // Data hold time
wim 15:b70ebfffb258 1750
wim 21:9eb628d9e164 1751 this->_setEnable(true);
wim 37:ce348c002929 1752 this->_setData(value); // Low nibble
wim 15:b70ebfffb258 1753 wait_us(1); // Data setup time
wim 21:9eb628d9e164 1754 this->_setEnable(false);
wim 15:b70ebfffb258 1755 wait_us(1); // Datahold time
wim 15:b70ebfffb258 1756
wim 15:b70ebfffb258 1757 // Enable is Low
simon 1:ac48b187213c 1758 }
simon 1:ac48b187213c 1759
wim 21:9eb628d9e164 1760 // Write a command byte to the LCD controller
wim 21:9eb628d9e164 1761 void TextLCD_Base::_writeCommand(int command) {
wim 15:b70ebfffb258 1762
wim 21:9eb628d9e164 1763 this->_setRS(false);
wim 16:c276b75e6585 1764 wait_us(1); // Data setup time for RS
wim 15:b70ebfffb258 1765
wim 21:9eb628d9e164 1766 this->_writeByte(command);
wim 15:b70ebfffb258 1767 wait_us(40); // most instructions take 40us
simon 1:ac48b187213c 1768 }
simon 1:ac48b187213c 1769
wim 21:9eb628d9e164 1770 // Write a data byte to the LCD controller
wim 21:9eb628d9e164 1771 void TextLCD_Base::_writeData(int data) {
wim 15:b70ebfffb258 1772
wim 21:9eb628d9e164 1773 this->_setRS(true);
wim 16:c276b75e6585 1774 wait_us(1); // Data setup time for RS
wim 15:b70ebfffb258 1775
wim 21:9eb628d9e164 1776 this->_writeByte(data);
wim 15:b70ebfffb258 1777 wait_us(40); // data writes take 40us
simon 1:ac48b187213c 1778 }
simon 1:ac48b187213c 1779
wim 8:03116f75b66e 1780
wim 32:59c4b8f648d4 1781 // This replaces the original _address() method.
wim 8:03116f75b66e 1782 // It is confusing since it returns the memoryaddress or-ed with the set memorycommand 0x80.
wim 8:03116f75b66e 1783 // Left it in here for compatibility with older code. New applications should use getAddress() instead.
wim 21:9eb628d9e164 1784 int TextLCD_Base::_address(int column, int row) {
wim 8:03116f75b66e 1785 return 0x80 | getAddress(column, row);
wim 8:03116f75b66e 1786 }
wim 8:03116f75b66e 1787
wim 30:033048611c01 1788
wim 30:033048611c01 1789 // This is new method to return the memory address based on row, column and displaytype.
wim 30:033048611c01 1790 //
wim 30:033048611c01 1791 /** Return the memoryaddress of screen column and row location
wim 30:033048611c01 1792 *
wim 30:033048611c01 1793 * @param column The horizontal position from the left, indexed from 0
wim 30:033048611c01 1794 * @param row The vertical position from the top, indexed from 0
wim 36:9f5f86dfd44a 1795 * @return The memoryaddress of screen column and row location
wim 30:033048611c01 1796 *
wim 30:033048611c01 1797 */
wim 30:033048611c01 1798 int TextLCD_Base::getAddress(int column, int row) {
wim 30:033048611c01 1799
wim 30:033048611c01 1800 switch (_addr_mode) {
wim 30:033048611c01 1801
wim 30:033048611c01 1802 case LCD_T_A:
wim 30:033048611c01 1803 //Default addressing mode for 1, 2 and 4 rows (except 40x4)
wim 30:033048611c01 1804 //The two available rows are split and stacked on top of eachother. Addressing for 3rd and 4th line continues where lines 1 and 2 were split.
wim 30:033048611c01 1805 //Displays top rows when less than four are used.
wim 30:033048611c01 1806 switch (row) {
wim 30:033048611c01 1807 case 0:
wim 30:033048611c01 1808 return 0x00 + column;
wim 30:033048611c01 1809 case 1:
wim 30:033048611c01 1810 return 0x40 + column;
wim 30:033048611c01 1811 case 2:
wim 30:033048611c01 1812 return 0x00 + _nr_cols + column;
wim 30:033048611c01 1813 case 3:
wim 30:033048611c01 1814 return 0x40 + _nr_cols + column;
wim 30:033048611c01 1815 // Should never get here.
wim 39:e9c2319de9c5 1816 // default:
wim 39:e9c2319de9c5 1817 // return 0x00;
wim 30:033048611c01 1818 }
wim 30:033048611c01 1819
wim 30:033048611c01 1820 case LCD_T_B:
wim 30:033048611c01 1821 // LCD8x2B is a special layout of LCD16x1
wim 30:033048611c01 1822 if (row==0)
wim 30:033048611c01 1823 return 0x00 + column;
wim 30:033048611c01 1824 else
wim 30:033048611c01 1825 // return _nr_cols + column;
wim 30:033048611c01 1826 return 0x08 + column;
wim 30:033048611c01 1827
wim 30:033048611c01 1828 case LCD_T_C:
wim 30:033048611c01 1829 // LCD16x1C is a special layout of LCD8x2
wim 33:900a94bc7585 1830 // LCD32x1C is a special layout of LCD16x2
wim 33:900a94bc7585 1831 // LCD40x1C is a special layout of LCD20x2
wim 33:900a94bc7585 1832 #if(0)
wim 32:59c4b8f648d4 1833 if (column < 8)
wim 30:033048611c01 1834 return 0x00 + column;
wim 30:033048611c01 1835 else
wim 30:033048611c01 1836 return 0x40 + (column - 8);
wim 32:59c4b8f648d4 1837 #else
wim 32:59c4b8f648d4 1838 if (column < (_nr_cols >> 1))
wim 32:59c4b8f648d4 1839 return 0x00 + column;
wim 32:59c4b8f648d4 1840 else
wim 32:59c4b8f648d4 1841 return 0x40 + (column - (_nr_cols >> 1));
wim 32:59c4b8f648d4 1842 #endif
wim 30:033048611c01 1843
wim 30:033048611c01 1844 case LCD_T_D:
wim 36:9f5f86dfd44a 1845 //Alternate addressing mode for 3 and 4 row displays (except 40x4). Used by PCF21XX, KS0073, KS0078, SSD1803
wim 30:033048611c01 1846 //The 4 available rows start at a hardcoded address.
wim 30:033048611c01 1847 //Displays top rows when less than four are used.
wim 30:033048611c01 1848 switch (row) {
wim 30:033048611c01 1849 case 0:
wim 30:033048611c01 1850 return 0x00 + column;
wim 30:033048611c01 1851 case 1:
wim 30:033048611c01 1852 return 0x20 + column;
wim 30:033048611c01 1853 case 2:
wim 30:033048611c01 1854 return 0x40 + column;
wim 30:033048611c01 1855 case 3:
wim 30:033048611c01 1856 return 0x60 + column;
wim 30:033048611c01 1857 // Should never get here.
wim 39:e9c2319de9c5 1858 // default:
wim 39:e9c2319de9c5 1859 // return 0x00;
wim 30:033048611c01 1860 }
wim 30:033048611c01 1861
wim 30:033048611c01 1862 case LCD_T_D1:
wim 36:9f5f86dfd44a 1863 //Alternate addressing mode for 3 row displays. Used by PCF21XX, KS0073, KS0078, SSD1803
wim 30:033048611c01 1864 //The 4 available rows start at a hardcoded address.
wim 30:033048611c01 1865 //Skips top row of 4 row display and starts display at row 1
wim 30:033048611c01 1866 switch (row) {
wim 30:033048611c01 1867 case 0:
wim 30:033048611c01 1868 return 0x20 + column;
wim 30:033048611c01 1869 case 1:
wim 30:033048611c01 1870 return 0x40 + column;
wim 30:033048611c01 1871 case 2:
wim 30:033048611c01 1872 return 0x60 + column;
wim 30:033048611c01 1873 // Should never get here.
wim 39:e9c2319de9c5 1874 // default:
wim 39:e9c2319de9c5 1875 // return 0x00;
wim 30:033048611c01 1876 }
wim 30:033048611c01 1877
wim 30:033048611c01 1878 case LCD_T_E:
wim 30:033048611c01 1879 // LCD40x4 is a special case since it has 2 controllers.
wim 30:033048611c01 1880 // Each controller is configured as 40x2 (Type A)
wim 30:033048611c01 1881 if (row<2) {
wim 30:033048611c01 1882 // Test to see if we need to switch between controllers
wim 30:033048611c01 1883 if (_ctrl_idx != _LCDCtrl_0) {
wim 30:033048611c01 1884
wim 30:033048611c01 1885 // Second LCD controller Cursor Off
wim 30:033048611c01 1886 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 30:033048611c01 1887
wim 30:033048611c01 1888 // Select primary controller
wim 30:033048611c01 1889 _ctrl_idx = _LCDCtrl_0;
wim 30:033048611c01 1890
wim 30:033048611c01 1891 // Restore cursormode on primary LCD controller
wim 30:033048611c01 1892 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 30:033048611c01 1893 }
wim 30:033048611c01 1894
wim 30:033048611c01 1895 return 0x00 + (row * 0x40) + column;
wim 30:033048611c01 1896 }
wim 30:033048611c01 1897 else {
wim 30:033048611c01 1898
wim 30:033048611c01 1899 // Test to see if we need to switch between controllers
wim 30:033048611c01 1900 if (_ctrl_idx != _LCDCtrl_1) {
wim 30:033048611c01 1901 // Primary LCD controller Cursor Off
wim 30:033048611c01 1902 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 30:033048611c01 1903
wim 30:033048611c01 1904 // Select secondary controller
wim 30:033048611c01 1905 _ctrl_idx = _LCDCtrl_1;
wim 30:033048611c01 1906
wim 30:033048611c01 1907 // Restore cursormode on secondary LCD controller
wim 30:033048611c01 1908 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 30:033048611c01 1909 }
wim 30:033048611c01 1910
wim 30:033048611c01 1911 return 0x00 + ((row-2) * 0x40) + column;
wim 30:033048611c01 1912 }
wim 30:033048611c01 1913
wim 32:59c4b8f648d4 1914 case LCD_T_F:
wim 32:59c4b8f648d4 1915 //Alternate addressing mode for 3 row displays.
wim 32:59c4b8f648d4 1916 //The first half of 3rd row continues from 1st row, the second half continues from 2nd row.
wim 32:59c4b8f648d4 1917 switch (row) {
wim 32:59c4b8f648d4 1918 case 0:
wim 32:59c4b8f648d4 1919 return 0x00 + column;
wim 32:59c4b8f648d4 1920 case 1:
wim 32:59c4b8f648d4 1921 return 0x40 + column;
wim 32:59c4b8f648d4 1922 case 2:
wim 32:59c4b8f648d4 1923 if (column < (_nr_cols >> 1)) // check first or second half of line
wim 32:59c4b8f648d4 1924 return (0x00 + _nr_cols + column);
wim 32:59c4b8f648d4 1925 else
wim 32:59c4b8f648d4 1926 return (0x40 + _nr_cols + (column - (_nr_cols >> 1)));
wim 32:59c4b8f648d4 1927 // Should never get here.
wim 39:e9c2319de9c5 1928 // default:
wim 39:e9c2319de9c5 1929 // return 0x00;
wim 32:59c4b8f648d4 1930 }
wim 32:59c4b8f648d4 1931
wim 32:59c4b8f648d4 1932 case LCD_T_G:
wim 32:59c4b8f648d4 1933 //Alternate addressing mode for 3 row displays. Used by ST7036
wim 32:59c4b8f648d4 1934 switch (row) {
wim 32:59c4b8f648d4 1935 case 0:
wim 32:59c4b8f648d4 1936 return 0x00 + column;
wim 32:59c4b8f648d4 1937 case 1:
wim 32:59c4b8f648d4 1938 return 0x10 + column;
wim 32:59c4b8f648d4 1939 case 2:
wim 32:59c4b8f648d4 1940 return 0x20 + column;
wim 32:59c4b8f648d4 1941 // Should never get here.
wim 39:e9c2319de9c5 1942 // default:
wim 39:e9c2319de9c5 1943 // return 0x00;
wim 32:59c4b8f648d4 1944 }
wim 32:59c4b8f648d4 1945
wim 30:033048611c01 1946 // Should never get here.
wim 30:033048611c01 1947 default:
wim 30:033048611c01 1948 return 0x00;
wim 32:59c4b8f648d4 1949
wim 32:59c4b8f648d4 1950 } // switch _addr_mode
wim 30:033048611c01 1951 }
wim 30:033048611c01 1952
wim 30:033048611c01 1953
wim 29:a3663151aa65 1954 /** Set the memoryaddress of screen column and row location
wim 29:a3663151aa65 1955 *
wim 29:a3663151aa65 1956 * @param column The horizontal position from the left, indexed from 0
wim 29:a3663151aa65 1957 * @param row The vertical position from the top, indexed from 0
wim 29:a3663151aa65 1958 */
wim 21:9eb628d9e164 1959 void TextLCD_Base::setAddress(int column, int row) {
wim 15:b70ebfffb258 1960
wim 15:b70ebfffb258 1961 // Sanity Check column
wim 15:b70ebfffb258 1962 if (column < 0) {
wim 15:b70ebfffb258 1963 _column = 0;
wim 15:b70ebfffb258 1964 }
wim 36:9f5f86dfd44a 1965 else if (column >= _nr_cols) {
wim 36:9f5f86dfd44a 1966 _column = _nr_cols - 1;
wim 15:b70ebfffb258 1967 } else _column = column;
wim 8:03116f75b66e 1968
wim 15:b70ebfffb258 1969 // Sanity Check row
wim 15:b70ebfffb258 1970 if (row < 0) {
wim 15:b70ebfffb258 1971 _row = 0;
wim 15:b70ebfffb258 1972 }
wim 36:9f5f86dfd44a 1973 else if (row >= _nr_rows) {
wim 36:9f5f86dfd44a 1974 _row = _nr_rows - 1;
wim 15:b70ebfffb258 1975 } else _row = row;
wim 15:b70ebfffb258 1976
wim 15:b70ebfffb258 1977
wim 15:b70ebfffb258 1978 // Compute the memory address
wim 15:b70ebfffb258 1979 // For LCD40x4: switch controllers if needed
wim 15:b70ebfffb258 1980 // switch cursor if needed
wim 15:b70ebfffb258 1981 int addr = getAddress(_column, _row);
wim 8:03116f75b66e 1982
wim 13:24506ba22480 1983 _writeCommand(0x80 | addr);
wim 8:03116f75b66e 1984 }
simon 1:ac48b187213c 1985
wim 29:a3663151aa65 1986
wim 29:a3663151aa65 1987 /** Return the number of columns
wim 29:a3663151aa65 1988 *
wim 36:9f5f86dfd44a 1989 * @return The number of columns
wim 30:033048611c01 1990 *
wim 30:033048611c01 1991 * Note: some configurations are commented out because they have not yet been tested due to lack of hardware
wim 29:a3663151aa65 1992 */
wim 21:9eb628d9e164 1993 int TextLCD_Base::columns() {
wim 30:033048611c01 1994
wim 30:033048611c01 1995 // Columns encoded in b7..b0
wim 30:033048611c01 1996 //return (_type & 0xFF);
wim 31:ef31cd8a00d1 1997 return _nr_cols;
simon 1:ac48b187213c 1998 }
simon 1:ac48b187213c 1999
wim 29:a3663151aa65 2000 /** Return the number of rows
wim 29:a3663151aa65 2001 *
wim 36:9f5f86dfd44a 2002 * @return The number of rows
wim 30:033048611c01 2003 *
wim 30:033048611c01 2004 * Note: some configurations are commented out because they have not yet been tested due to lack of hardware
wim 29:a3663151aa65 2005 */
wim 21:9eb628d9e164 2006 int TextLCD_Base::rows() {
wim 30:033048611c01 2007
wim 30:033048611c01 2008 // Rows encoded in b15..b8
wim 30:033048611c01 2009 //return ((_type >> 8) & 0xFF);
wim 30:033048611c01 2010 return _nr_rows;
simon 1:ac48b187213c 2011 }
wim 10:dd9b3a696acd 2012
wim 29:a3663151aa65 2013 /** Set the Cursormode
wim 29:a3663151aa65 2014 *
wim 29:a3663151aa65 2015 * @param cursorMode The Cursor mode (CurOff_BlkOff, CurOn_BlkOff, CurOff_BlkOn, CurOn_BlkOn)
wim 29:a3663151aa65 2016 */
wim 21:9eb628d9e164 2017 void TextLCD_Base::setCursor(LCDCursor cursorMode) {
wim 15:b70ebfffb258 2018
wim 17:652ab113bc2e 2019 // Save new cursor mode, needed when 2 controllers are in use or when display is switched off/on
wim 17:652ab113bc2e 2020 _currentCursor = cursorMode;
wim 10:dd9b3a696acd 2021
wim 17:652ab113bc2e 2022 // Configure only current LCD controller
wim 31:ef31cd8a00d1 2023 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 15:b70ebfffb258 2024 }
wim 15:b70ebfffb258 2025
wim 29:a3663151aa65 2026 /** Set the Displaymode
wim 29:a3663151aa65 2027 *
wim 29:a3663151aa65 2028 * @param displayMode The Display mode (DispOff, DispOn)
wim 29:a3663151aa65 2029 */
wim 21:9eb628d9e164 2030 void TextLCD_Base::setMode(LCDMode displayMode) {
wim 17:652ab113bc2e 2031
wim 17:652ab113bc2e 2032 // Save new displayMode, needed when 2 controllers are in use or when cursor is changed
wim 17:652ab113bc2e 2033 _currentMode = displayMode;
wim 41:111ca62e8a59 2034
wim 41:111ca62e8a59 2035 #if (LCD_TWO_CTRL == 1)
wim 17:652ab113bc2e 2036 // Select and configure second LCD controller when needed
wim 17:652ab113bc2e 2037 if(_type==LCD40x4) {
wim 21:9eb628d9e164 2038 if (_ctrl_idx==_LCDCtrl_0) {
wim 17:652ab113bc2e 2039 // Configure primary LCD controller
wim 17:652ab113bc2e 2040 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 11:9ec02df863a1 2041
wim 17:652ab113bc2e 2042 // Select 2nd controller
wim 21:9eb628d9e164 2043 _ctrl_idx=_LCDCtrl_1;
wim 17:652ab113bc2e 2044
wim 17:652ab113bc2e 2045 // Configure secondary LCD controller
wim 21:9eb628d9e164 2046 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 11:9ec02df863a1 2047
wim 17:652ab113bc2e 2048 // Restore current controller
wim 21:9eb628d9e164 2049 _ctrl_idx=_LCDCtrl_0;
wim 17:652ab113bc2e 2050 }
wim 17:652ab113bc2e 2051 else {
wim 17:652ab113bc2e 2052 // Select primary controller
wim 21:9eb628d9e164 2053 _ctrl_idx=_LCDCtrl_0;
wim 17:652ab113bc2e 2054
wim 17:652ab113bc2e 2055 // Configure primary LCD controller
wim 21:9eb628d9e164 2056 _setCursorAndDisplayMode(_currentMode, CurOff_BlkOff);
wim 17:652ab113bc2e 2057
wim 17:652ab113bc2e 2058 // Restore current controller
wim 21:9eb628d9e164 2059 _ctrl_idx=_LCDCtrl_1;
wim 11:9ec02df863a1 2060
wim 17:652ab113bc2e 2061 // Configure secondary LCD controller
wim 17:652ab113bc2e 2062 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 10:dd9b3a696acd 2063 }
wim 17:652ab113bc2e 2064 }
wim 17:652ab113bc2e 2065 else {
wim 17:652ab113bc2e 2066 // Configure primary LCD controller
wim 17:652ab113bc2e 2067 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 30:033048611c01 2068 }
wim 41:111ca62e8a59 2069 #else
wim 41:111ca62e8a59 2070 // Support only one LCD controller
wim 41:111ca62e8a59 2071 _setCursorAndDisplayMode(_currentMode, _currentCursor);
wim 41:111ca62e8a59 2072
wim 41:111ca62e8a59 2073 #endif
wim 17:652ab113bc2e 2074 }
wim 17:652ab113bc2e 2075
wim 29:a3663151aa65 2076 /** Low level method to restore the cursortype and display mode for current controller
wim 29:a3663151aa65 2077 */
wim 36:9f5f86dfd44a 2078 void TextLCD_Base::_setCursorAndDisplayMode(LCDMode displayMode, LCDCursor cursorType) {
wim 36:9f5f86dfd44a 2079
wim 36:9f5f86dfd44a 2080 // Configure current LCD controller
wim 36:9f5f86dfd44a 2081 switch (_ctrl) {
wim 36:9f5f86dfd44a 2082 case ST7070:
wim 36:9f5f86dfd44a 2083 //ST7070 does not support Cursorblink. The P bit selects the font instead !
wim 36:9f5f86dfd44a 2084 _writeCommand(0x08 | displayMode | (cursorType & 0x02));
wim 36:9f5f86dfd44a 2085 break;
wim 36:9f5f86dfd44a 2086 default:
wim 36:9f5f86dfd44a 2087 _writeCommand(0x08 | displayMode | cursorType);
wim 36:9f5f86dfd44a 2088 break;
wim 36:9f5f86dfd44a 2089 } //switch
wim 10:dd9b3a696acd 2090 }
wim 10:dd9b3a696acd 2091
wim 29:a3663151aa65 2092 /** Set the Backlight mode
wim 29:a3663151aa65 2093 *
wim 29:a3663151aa65 2094 * @param backlightMode The Backlight mode (LightOff, LightOn)
wim 29:a3663151aa65 2095 */
wim 21:9eb628d9e164 2096 void TextLCD_Base::setBacklight(LCDBacklight backlightMode) {
wim 20:e0da005a777f 2097
wim 35:311be6444a39 2098 #if (BACKLIGHT_INV==0)
wim 35:311be6444a39 2099 // Positive Backlight control pin logic
wim 20:e0da005a777f 2100 if (backlightMode == LightOn) {
wim 35:311be6444a39 2101 this->_setBL(true);
wim 20:e0da005a777f 2102 }
wim 20:e0da005a777f 2103 else {
wim 21:9eb628d9e164 2104 this->_setBL(false);
wim 20:e0da005a777f 2105 }
wim 35:311be6444a39 2106 #else
wim 35:311be6444a39 2107 // Inverted Backlight control pin logic
wim 35:311be6444a39 2108 if (backlightMode == LightOn) {
wim 35:311be6444a39 2109 this->_setBL(false);
wim 35:311be6444a39 2110 }
wim 35:311be6444a39 2111 else {
wim 35:311be6444a39 2112 this->_setBL(true);
wim 35:311be6444a39 2113 }
wim 35:311be6444a39 2114 #endif
wim 20:e0da005a777f 2115 }
wim 20:e0da005a777f 2116
wim 29:a3663151aa65 2117 /** Set User Defined Characters
wim 29:a3663151aa65 2118 *
wim 34:e5a0dcb43ecc 2119 * @param unsigned char c The Index of the UDC (0..7) for HD44780 or clones and (0..15) for some more advanced controllers
wim 34:e5a0dcb43ecc 2120 * @param char *udc_data The bitpatterns for the UDC (8 bytes of 5 significant bits for bitpattern and 3 bits for blinkmode (advanced types))
wim 29:a3663151aa65 2121 */
wim 21:9eb628d9e164 2122 void TextLCD_Base::setUDC(unsigned char c, char *udc_data) {
wim 41:111ca62e8a59 2123
wim 41:111ca62e8a59 2124 #if (LCD_TWO_CTRL == 1)
wim 15:b70ebfffb258 2125 // Select and configure second LCD controller when needed
wim 15:b70ebfffb258 2126 if(_type==LCD40x4) {
wim 19:c747b9e2e7b8 2127 _LCDCtrl_Idx current_ctrl_idx = _ctrl_idx; // Temp save current controller
wim 15:b70ebfffb258 2128
wim 15:b70ebfffb258 2129 // Select primary controller
wim 21:9eb628d9e164 2130 _ctrl_idx=_LCDCtrl_0;
wim 15:b70ebfffb258 2131
wim 15:b70ebfffb258 2132 // Configure primary LCD controller
wim 15:b70ebfffb258 2133 _setUDC(c, udc_data);
wim 15:b70ebfffb258 2134
wim 15:b70ebfffb258 2135 // Select 2nd controller
wim 21:9eb628d9e164 2136 _ctrl_idx=_LCDCtrl_1;
wim 15:b70ebfffb258 2137
wim 15:b70ebfffb258 2138 // Configure secondary LCD controller
wim 15:b70ebfffb258 2139 _setUDC(c, udc_data);
wim 11:9ec02df863a1 2140
wim 15:b70ebfffb258 2141 // Restore current controller
wim 19:c747b9e2e7b8 2142 _ctrl_idx=current_ctrl_idx;
wim 15:b70ebfffb258 2143 }
wim 15:b70ebfffb258 2144 else {
wim 15:b70ebfffb258 2145 // Configure primary LCD controller
wim 15:b70ebfffb258 2146 _setUDC(c, udc_data);
wim 34:e5a0dcb43ecc 2147 }
wim 41:111ca62e8a59 2148 #else
wim 41:111ca62e8a59 2149 // Support only one LCD controller
wim 41:111ca62e8a59 2150 _setUDC(c, udc_data);
wim 41:111ca62e8a59 2151 #endif
wim 15:b70ebfffb258 2152 }
wim 15:b70ebfffb258 2153
wim 34:e5a0dcb43ecc 2154 /** Low level method to store user defined characters for current controller
wim 34:e5a0dcb43ecc 2155 *
wim 34:e5a0dcb43ecc 2156 * @param unsigned char c The Index of the UDC (0..7) for HD44780 clones and (0..15) for some more advanced controllers
wim 34:e5a0dcb43ecc 2157 * @param char *udc_data The bitpatterns for the UDC (8 bytes of 5 significant bits for bitpattern and 3 bits for blinkmode (advanced types))
wim 34:e5a0dcb43ecc 2158 */
wim 34:e5a0dcb43ecc 2159 void TextLCD_Base::_setUDC(unsigned char c, char *udc_data) {
wim 34:e5a0dcb43ecc 2160
wim 34:e5a0dcb43ecc 2161 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2162 case PCF2103_3V3 : // Some UDCs may be used for Icons
wim 34:e5a0dcb43ecc 2163 case PCF2113_3V3 : // Some UDCs may be used for Icons
wim 34:e5a0dcb43ecc 2164 case PCF2116_3V3 :
wim 34:e5a0dcb43ecc 2165 case PCF2116_5V :
wim 40:d3496c3ea301 2166 case PCF2119_3V3 : // Some UDCs may be used for Icons
wim 40:d3496c3ea301 2167 case PCF2119R_3V3: // Some UDCs may be used for Icons
wim 34:e5a0dcb43ecc 2168 c = c & 0x0F; // mask down to valid range
wim 34:e5a0dcb43ecc 2169 break;
wim 34:e5a0dcb43ecc 2170
wim 34:e5a0dcb43ecc 2171 default:
wim 34:e5a0dcb43ecc 2172 c = c & 0x07; // mask down to valid range
wim 34:e5a0dcb43ecc 2173 break;
wim 34:e5a0dcb43ecc 2174 } //switch _ctrl
wim 34:e5a0dcb43ecc 2175
wim 34:e5a0dcb43ecc 2176 // Select DD RAM for current LCD controller
wim 34:e5a0dcb43ecc 2177 // This is needed to correctly set Bit 6 of the addresspointer for controllers that support 16 UDCs
wim 34:e5a0dcb43ecc 2178 _writeCommand(0x80 | ((c << 3) & 0x40)) ;
wim 34:e5a0dcb43ecc 2179
wim 34:e5a0dcb43ecc 2180 // Select CG RAM for current LCD controller
wim 34:e5a0dcb43ecc 2181 _writeCommand(0x40 | ((c << 3) & 0x3F)); //Set CG-RAM address, (note that Bit 6 is retained and can not be set by this command !)
wim 34:e5a0dcb43ecc 2182 //8 sequential locations needed per UDC
wim 34:e5a0dcb43ecc 2183 // Store UDC pattern
wim 34:e5a0dcb43ecc 2184 for (int i=0; i<8; i++) {
wim 34:e5a0dcb43ecc 2185 _writeData(*udc_data++);
wim 34:e5a0dcb43ecc 2186 }
wim 34:e5a0dcb43ecc 2187
wim 34:e5a0dcb43ecc 2188 //Select DD RAM again for current LCD controller and restore the addresspointer
wim 34:e5a0dcb43ecc 2189 int addr = getAddress(_column, _row);
wim 34:e5a0dcb43ecc 2190 _writeCommand(0x80 | addr);
wim 34:e5a0dcb43ecc 2191 }
wim 32:59c4b8f648d4 2192
wim 39:e9c2319de9c5 2193 #if(LCD_BLINK == 1)
wim 36:9f5f86dfd44a 2194 /** Set UDC Blink and Icon blink
wim 33:900a94bc7585 2195 * setUDCBlink method is supported by some compatible devices (eg SSD1803)
wim 33:900a94bc7585 2196 *
wim 33:900a94bc7585 2197 * @param blinkMode The Blink mode (BlinkOff, BlinkOn)
wim 33:900a94bc7585 2198 */
wim 33:900a94bc7585 2199 void TextLCD_Base::setUDCBlink(LCDBlink blinkMode){
wim 36:9f5f86dfd44a 2200 // Blinking UDCs (and icons) are enabled when a specific controlbit (BE) is set.
wim 36:9f5f86dfd44a 2201 // The blinking pixels in the UDC and icons can be controlled by setting additional bits in the UDC or icon bitpattern.
wim 36:9f5f86dfd44a 2202 // UDCs are defined by an 8 byte bitpattern. The P0..P4 form the character pattern.
wim 33:900a94bc7585 2203 // P7 P6 P5 P4 P3 P2 P1 P0
wim 33:900a94bc7585 2204 // 0 B1 B0 x 0 1 1 1 0
wim 33:900a94bc7585 2205 // 1 B1 B0 x 1 0 0 0 1
wim 33:900a94bc7585 2206 // .............
wim 33:900a94bc7585 2207 // 7 B1 B0 x 1 0 0 0 1
wim 33:900a94bc7585 2208 //
wim 33:900a94bc7585 2209 // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE.
wim 33:900a94bc7585 2210 // B1 B0 Mode
wim 33:900a94bc7585 2211 // 0 0 No Blinking in this row of the UDC
wim 33:900a94bc7585 2212 // 0 1 Enabled pixels in P4 will blink
wim 33:900a94bc7585 2213 // 1 x Enabled pixels in P0..P4 will blink
wim 36:9f5f86dfd44a 2214 //
wim 36:9f5f86dfd44a 2215 // Note: the PCF2103 and PCF2113 use UDCs to set Icons
wim 36:9f5f86dfd44a 2216 // 3 x 8 rows x 5 bits = 120 bits Icons for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2217 // 3 x 8 rows x 5 bits = 120 bits Icons for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2218 // Note: the PCF2119 uses UDCs to set Icons
wim 36:9f5f86dfd44a 2219 // 4 x 8 rows x 5 bits = 160 bits Icons for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2220 // 4 x 8 rows x 5 bits = 160 bits Icons for Blink pattern (UDC 4..7)
wim 33:900a94bc7585 2221 switch (blinkMode) {
wim 33:900a94bc7585 2222 case BlinkOn:
wim 36:9f5f86dfd44a 2223 // Controllers that support UDC/Icon Blink
wim 33:900a94bc7585 2224 switch (_ctrl) {
wim 40:d3496c3ea301 2225 case KS0073 :
wim 40:d3496c3ea301 2226 case KS0078 :
wim 40:d3496c3ea301 2227 case HD66712 :
wim 36:9f5f86dfd44a 2228 _function_1 |= 0x02; // Enable UDC/Icon Blink
wim 36:9f5f86dfd44a 2229 _writeCommand(0x20 | _function_1); // Function set 0 0 1 DL N RE(1) BE 0/LP (Ext Regs)
wim 33:900a94bc7585 2230
wim 33:900a94bc7585 2231 _writeCommand(0x20 | _function); // Function set 0 0 1 DL N RE(0) DH REV (Std Regs)
wim 40:d3496c3ea301 2232 break; // case KS0073, KS0078, HD66712 Controller
wim 33:900a94bc7585 2233
wim 33:900a94bc7585 2234 case US2066_3V3 :
wim 33:900a94bc7585 2235 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 2236 _function_1 |= 0x04; // Enable UDC/Icon Blink
wim 33:900a94bc7585 2237 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 2238 // Select Ext Instr Set
wim 33:900a94bc7585 2239
wim 33:900a94bc7585 2240 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2241 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2242 break; // case SSD1803, US2066
wim 36:9f5f86dfd44a 2243
wim 36:9f5f86dfd44a 2244 case PCF2103_3V3 :
wim 36:9f5f86dfd44a 2245 case PCF2113_3V3 :
wim 36:9f5f86dfd44a 2246 case PCF2119_3V3 :
wim 39:e9c2319de9c5 2247 case PCF2119R_3V3 :
wim 36:9f5f86dfd44a 2248 // Enable Icon Blink
wim 36:9f5f86dfd44a 2249 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 36:9f5f86dfd44a 2250 _writeCommand(0x08 | 0x02); // ICON Conf 0000 1, IM=0 (Char mode), IB=1 (Icon blink), 0 (Instr. Set 1)
wim 36:9f5f86dfd44a 2251 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 36:9f5f86dfd44a 2252
wim 36:9f5f86dfd44a 2253 break;
wim 33:900a94bc7585 2254
wim 33:900a94bc7585 2255 default:
wim 33:900a94bc7585 2256 //Unsupported feature for other controllers
wim 33:900a94bc7585 2257 break;
wim 33:900a94bc7585 2258 } //switch _ctrl
wim 33:900a94bc7585 2259
wim 36:9f5f86dfd44a 2260 break; // BlinkOn
wim 33:900a94bc7585 2261
wim 33:900a94bc7585 2262 case BlinkOff:
wim 33:900a94bc7585 2263 // Controllers that support UDC Blink
wim 33:900a94bc7585 2264 switch (_ctrl) {
wim 40:d3496c3ea301 2265 case KS0073 :
wim 40:d3496c3ea301 2266 case KS0078 :
wim 40:d3496c3ea301 2267 case HD66712:
wim 36:9f5f86dfd44a 2268 _function_1 &= ~0x02; // Disable UDC/Icon Blink
wim 36:9f5f86dfd44a 2269 _writeCommand(0x20 | _function_1); // Function set 0 0 1 DL N RE(1) BE 0/LP (Ext Regs)
wim 33:900a94bc7585 2270
wim 33:900a94bc7585 2271 _writeCommand(0x20 | _function); // Function set 0 0 1 DL N RE(0) DH REV (Std Regs)
wim 40:d3496c3ea301 2272 break; // case KS0073, KS0078, HD66712 Controller
wim 33:900a94bc7585 2273
wim 33:900a94bc7585 2274 case US2066_3V3 :
wim 33:900a94bc7585 2275 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 2276 _function_1 &= ~0x04; // Disable UDC/Icon Blink
wim 33:900a94bc7585 2277 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 2278 // Select Ext Instr Set
wim 33:900a94bc7585 2279
wim 33:900a94bc7585 2280 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2281 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2282 break; // case SSD1803, US2066
wim 36:9f5f86dfd44a 2283
wim 36:9f5f86dfd44a 2284 case PCF2103_3V3 :
wim 39:e9c2319de9c5 2285 case PCF2113_3V3 :
wim 39:e9c2319de9c5 2286 case PCF2119_3V3 :
wim 39:e9c2319de9c5 2287 case PCF2119R_3V3 :
wim 36:9f5f86dfd44a 2288 // Disable Icon Blink
wim 36:9f5f86dfd44a 2289 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 36:9f5f86dfd44a 2290 _writeCommand(0x08); // ICON Conf 0000 1, IM=0 (Char mode), IB=1 (Icon blink), 0 (Instr. Set 1)
wim 36:9f5f86dfd44a 2291 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 36:9f5f86dfd44a 2292
wim 36:9f5f86dfd44a 2293 break;
wim 33:900a94bc7585 2294
wim 33:900a94bc7585 2295 default:
wim 33:900a94bc7585 2296 //Unsupported feature for other controllers
wim 33:900a94bc7585 2297 break;
wim 33:900a94bc7585 2298 } //switch _ctrl
wim 33:900a94bc7585 2299
wim 36:9f5f86dfd44a 2300 break; //BlinkOff
wim 33:900a94bc7585 2301
wim 33:900a94bc7585 2302 default:
wim 33:900a94bc7585 2303 break;
wim 33:900a94bc7585 2304 } // blinkMode
wim 33:900a94bc7585 2305
wim 33:900a94bc7585 2306 } // setUDCBlink()
wim 39:e9c2319de9c5 2307 #endif
wim 33:900a94bc7585 2308
wim 41:111ca62e8a59 2309 #if(LCD_CONTRAST == 1)
wim 32:59c4b8f648d4 2310 /** Set Contrast
wim 32:59c4b8f648d4 2311 * setContrast method is supported by some compatible devices (eg ST7032i) that have onboard LCD voltage generation
wim 32:59c4b8f648d4 2312 * Initial code for ST70XX imported from fork by JH1PJL
wim 32:59c4b8f648d4 2313 *
wim 32:59c4b8f648d4 2314 * @param unsigned char c contrast data (6 significant bits, valid range 0..63, Value 0 will disable the Vgen)
wim 32:59c4b8f648d4 2315 * @return none
wim 32:59c4b8f648d4 2316 */
wim 32:59c4b8f648d4 2317 //@TODO Add support for 40x4 dual controller
wim 32:59c4b8f648d4 2318 void TextLCD_Base::setContrast(unsigned char c) {
wim 32:59c4b8f648d4 2319
wim 32:59c4b8f648d4 2320 // Function set mode stored during Init. Make sure we dont accidentally switch between 1-line and 2-line mode!
wim 32:59c4b8f648d4 2321 // Icon/Booster mode stored during Init. Make sure we dont accidentally change this!
wim 32:59c4b8f648d4 2322
wim 32:59c4b8f648d4 2323 _contrast = c & 0x3F; // Sanity check
wim 32:59c4b8f648d4 2324
wim 33:900a94bc7585 2325 switch (_ctrl) {
wim 32:59c4b8f648d4 2326 case PCF2113_3V3 :
wim 39:e9c2319de9c5 2327 case PCF2119_3V3 :
wim 39:e9c2319de9c5 2328 case PCF2119R_3V3 :
wim 32:59c4b8f648d4 2329 if (_contrast < 5) _contrast = 0; // See datasheet. Sanity check for PCF2113/PCF2119
wim 32:59c4b8f648d4 2330 if (_contrast > 55) _contrast = 55;
wim 32:59c4b8f648d4 2331
wim 32:59c4b8f648d4 2332 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instruction Set = 1
wim 32:59c4b8f648d4 2333 _writeCommand(0x80 | 0x00 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=0, VA=contrast
wim 32:59c4b8f648d4 2334 _writeCommand(0x80 | 0x40 | (_contrast & 0x3F)); // VLCD_set (Instr. Set 1) V=1, VB=contrast
wim 32:59c4b8f648d4 2335 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 2336 break;
wim 32:59c4b8f648d4 2337
wim 32:59c4b8f648d4 2338 case ST7032_3V3 :
wim 32:59c4b8f648d4 2339 case ST7032_5V :
wim 32:59c4b8f648d4 2340 case ST7036_3V3 :
wim 32:59c4b8f648d4 2341 // case ST7036_5V :
wim 41:111ca62e8a59 2342 case SSD1803_3V3 :
wim 41:111ca62e8a59 2343 case SPLC792A_3V3 :
wim 32:59c4b8f648d4 2344 _writeCommand(0x20 | _function | 0x01); // Select Instruction Set = 1
wim 32:59c4b8f648d4 2345 _writeCommand(0x70 | (_contrast & 0x0F)); // Contrast Low bits
wim 32:59c4b8f648d4 2346 _writeCommand(0x50 | _icon_power | ((_contrast >> 4) & 0x03)); // Contrast High bits
wim 32:59c4b8f648d4 2347 _writeCommand(0x20 | _function); // Select Instruction Set = 0
wim 32:59c4b8f648d4 2348 break;
wim 32:59c4b8f648d4 2349
wim 33:900a94bc7585 2350 case US2066_3V3 :
wim 33:900a94bc7585 2351 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N BE RE(1) REV
wim 33:900a94bc7585 2352 // Select Extended Instruction Set
wim 33:900a94bc7585 2353
wim 33:900a94bc7585 2354 _writeCommand(0x79); // Function Select OLED: 0 1 1 1 1 0 0 1 (Ext Instr Set)
wim 33:900a94bc7585 2355
wim 33:900a94bc7585 2356 _writeCommand(0x81); // Set Contrast Control: 1 0 0 0 0 0 0 1 (Ext Instr Set, OLED)
wim 33:900a94bc7585 2357 _writeCommand((_contrast << 2) | 0x03); // Set Contrast Value: 8 bits. Use 6 bits for compatibility
wim 33:900a94bc7585 2358
wim 33:900a94bc7585 2359 _writeCommand(0x78); // Function Disable OLED: 0 1 1 1 1 0 0 0 (Ext Instr Set)
wim 33:900a94bc7585 2360
wim 33:900a94bc7585 2361 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2362 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2363 break;
wim 33:900a94bc7585 2364
wim 34:e5a0dcb43ecc 2365 //not yet tested on hardware
wim 32:59c4b8f648d4 2366 case PT6314 :
wim 32:59c4b8f648d4 2367 // Only 2 significant bits
wim 32:59c4b8f648d4 2368 // 0x00 = 100%
wim 32:59c4b8f648d4 2369 // 0x01 = 75%
wim 32:59c4b8f648d4 2370 // 0x02 = 50%
wim 32:59c4b8f648d4 2371 // 0x03 = 25%
wim 32:59c4b8f648d4 2372 _writeCommand(0x20 | _function | ((~_contrast) >> 4)); // Invert and shift to use 2 MSBs
wim 32:59c4b8f648d4 2373 break;
wim 32:59c4b8f648d4 2374
wim 32:59c4b8f648d4 2375 default:
wim 32:59c4b8f648d4 2376 //Unsupported feature for other controllers
wim 33:900a94bc7585 2377 break;
wim 33:900a94bc7585 2378 } // end switch
wim 33:900a94bc7585 2379 } // end setContrast()
wim 41:111ca62e8a59 2380 #endif
wim 32:59c4b8f648d4 2381
wim 39:e9c2319de9c5 2382 #if(LCD_POWER == 1)
wim 32:59c4b8f648d4 2383 /** Set Power
wim 32:59c4b8f648d4 2384 * setPower method is supported by some compatible devices (eg SSD1803) that have power down modes
wim 32:59c4b8f648d4 2385 *
wim 32:59c4b8f648d4 2386 * @param bool powerOn Power on/off
wim 32:59c4b8f648d4 2387 * @return none
wim 32:59c4b8f648d4 2388 */
wim 32:59c4b8f648d4 2389 //@TODO Add support for 40x4 dual controller
wim 32:59c4b8f648d4 2390 void TextLCD_Base::setPower(bool powerOn) {
wim 32:59c4b8f648d4 2391
wim 32:59c4b8f648d4 2392 if (powerOn) {
wim 32:59c4b8f648d4 2393 // Switch on
wim 32:59c4b8f648d4 2394 setMode(DispOn);
wim 32:59c4b8f648d4 2395
wim 32:59c4b8f648d4 2396 // Controllers that supports specific Power Down mode
wim 32:59c4b8f648d4 2397 switch (_ctrl) {
wim 32:59c4b8f648d4 2398
wim 32:59c4b8f648d4 2399 // case PCF2113_3V3 :
wim 39:e9c2319de9c5 2400 // case PCF2119_3V3 :
wim 39:e9c2319de9c5 2401 // case PCF2119R_3V3 :
wim 32:59c4b8f648d4 2402 // case ST7032_3V3 :
wim 32:59c4b8f648d4 2403 //@todo
wim 33:900a94bc7585 2404 // enable Booster Bon
wim 33:900a94bc7585 2405
wim 33:900a94bc7585 2406 case WS0010:
wim 33:900a94bc7585 2407 _writeCommand(0x17); // Char mode, DC/DC on
wim 33:900a94bc7585 2408 wait_ms(10); // Wait 10ms to ensure powered up
wim 33:900a94bc7585 2409 break;
wim 33:900a94bc7585 2410
wim 36:9f5f86dfd44a 2411 case KS0073:
wim 33:900a94bc7585 2412 case KS0078:
wim 32:59c4b8f648d4 2413 case SSD1803_3V3 :
wim 32:59c4b8f648d4 2414 // case SSD1803_5V :
wim 33:900a94bc7585 2415 _writeCommand(0x20 | _function_1); // Select Ext Instr Set
wim 33:900a94bc7585 2416 _writeCommand(0x02); // Power On
wim 32:59c4b8f648d4 2417 _writeCommand(0x20 | _function); // Select Std Instr Set
wim 32:59c4b8f648d4 2418 break;
wim 32:59c4b8f648d4 2419
wim 32:59c4b8f648d4 2420 default:
wim 32:59c4b8f648d4 2421 //Unsupported feature for other controllers
wim 32:59c4b8f648d4 2422 break;
wim 32:59c4b8f648d4 2423 } // end switch
wim 32:59c4b8f648d4 2424 }
wim 32:59c4b8f648d4 2425 else {
wim 32:59c4b8f648d4 2426 // Switch off
wim 32:59c4b8f648d4 2427 setMode(DispOff);
wim 32:59c4b8f648d4 2428
wim 32:59c4b8f648d4 2429 // Controllers that support specific Power Down mode
wim 32:59c4b8f648d4 2430 switch (_ctrl) {
wim 32:59c4b8f648d4 2431
wim 32:59c4b8f648d4 2432 // case PCF2113_3V3 :
wim 39:e9c2319de9c5 2433 // case PCF2119_3V3 :
wim 39:e9c2319de9c5 2434 // case PCF2119R_3V3 :
wim 32:59c4b8f648d4 2435 // case ST7032_3V3 :
wim 32:59c4b8f648d4 2436 //@todo
wim 33:900a94bc7585 2437 // disable Booster Bon
wim 33:900a94bc7585 2438
wim 33:900a94bc7585 2439 case WS0010:
wim 33:900a94bc7585 2440 _writeCommand(0x13); // Char mode, DC/DC off
wim 33:900a94bc7585 2441 break;
wim 33:900a94bc7585 2442
wim 36:9f5f86dfd44a 2443 case KS0073:
wim 33:900a94bc7585 2444 case KS0078:
wim 32:59c4b8f648d4 2445 case SSD1803_3V3 :
wim 32:59c4b8f648d4 2446 // case SSD1803_5V :
wim 33:900a94bc7585 2447 _writeCommand(0x20 | _function_1); // Select Ext Instr Set
wim 33:900a94bc7585 2448 _writeCommand(0x03); // Power Down
wim 32:59c4b8f648d4 2449 _writeCommand(0x20 | _function); // Select Std Instr Set
wim 32:59c4b8f648d4 2450 break;
wim 32:59c4b8f648d4 2451
wim 32:59c4b8f648d4 2452 default:
wim 32:59c4b8f648d4 2453 //Unsupported feature for other controllers
wim 32:59c4b8f648d4 2454 break;
wim 32:59c4b8f648d4 2455 } // end switch
wim 32:59c4b8f648d4 2456 }
wim 33:900a94bc7585 2457 } // end setPower()
wim 39:e9c2319de9c5 2458 #endif
wim 39:e9c2319de9c5 2459
wim 39:e9c2319de9c5 2460 #if(LCD_ORIENT == 1)
wim 33:900a94bc7585 2461 /** Set Orient
wim 33:900a94bc7585 2462 * setOrient method is supported by some compatible devices (eg SSD1803, US2066) that have top/bottom view modes
wim 33:900a94bc7585 2463 *
wim 33:900a94bc7585 2464 * @param LCDOrient orient Orientation
wim 33:900a94bc7585 2465 * @return none
wim 33:900a94bc7585 2466 */
wim 33:900a94bc7585 2467 void TextLCD_Base::setOrient(LCDOrient orient){
wim 33:900a94bc7585 2468
wim 33:900a94bc7585 2469 switch (orient) {
wim 33:900a94bc7585 2470
wim 33:900a94bc7585 2471 case Top:
wim 33:900a94bc7585 2472 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2473 case PCF2103_3V3:
wim 34:e5a0dcb43ecc 2474 case PCF2116_3V3:
wim 34:e5a0dcb43ecc 2475 case PCF2116_5V:
wim 34:e5a0dcb43ecc 2476 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 34:e5a0dcb43ecc 2477 _writeCommand(0x05); // Display Conf Set 0000 0, 1, P=0, Q=1 (Instr. Set 1)
wim 34:e5a0dcb43ecc 2478 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 34:e5a0dcb43ecc 2479 break;
wim 39:e9c2319de9c5 2480
wim 39:e9c2319de9c5 2481 case PCF2119_3V3:
wim 39:e9c2319de9c5 2482 case PCF2119R_3V3:
wim 39:e9c2319de9c5 2483 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 39:e9c2319de9c5 2484 _writeCommand(0x07); // Display Conf Set 0000 0, 1, P=1, Q=1 (Instr. Set 1)
wim 39:e9c2319de9c5 2485 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 39:e9c2319de9c5 2486 break;
wim 34:e5a0dcb43ecc 2487
wim 33:900a94bc7585 2488 case SSD1803_3V3 :
wim 33:900a94bc7585 2489 // case SSD1803_5V :
wim 33:900a94bc7585 2490 case US2066_3V3 :
wim 33:900a94bc7585 2491 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 2492 // Select Extended Instruction Set
wim 33:900a94bc7585 2493 // _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 2494 _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 2495
wim 33:900a94bc7585 2496 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2497 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2498 break;
wim 36:9f5f86dfd44a 2499
wim 36:9f5f86dfd44a 2500 case ST7070:
wim 36:9f5f86dfd44a 2501 _writeCommand(0x20 | _function | 0x04); // Set function, 0 0 1 DL, N, EXT=1, x, x (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2502
wim 36:9f5f86dfd44a 2503 _writeCommand(0x40 | 0x00); // COM/SEG directions 0 1 0 0 C1, C2, S1, S2 (Instr Set 1)
wim 36:9f5f86dfd44a 2504 // C1=1: Com1-8 -> Com8-1; C2=1: Com9-16 -> Com16-9
wim 36:9f5f86dfd44a 2505 // S1=1: Seg1-40 -> Seg40-1; S2=1: Seg41-80 -> Seg80-41
wim 36:9f5f86dfd44a 2506 wait_ms(5); // Wait to ensure completion or ST7070 fails to set Top/Bottom after reset..
wim 36:9f5f86dfd44a 2507
wim 36:9f5f86dfd44a 2508 _writeCommand(0x20 | _function); // Set function, EXT=0 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2509
wim 36:9f5f86dfd44a 2510 break; // case ST7070 Controller
wim 33:900a94bc7585 2511
wim 33:900a94bc7585 2512 default:
wim 33:900a94bc7585 2513 //Unsupported feature for other controllers
wim 33:900a94bc7585 2514 break;
wim 33:900a94bc7585 2515
wim 33:900a94bc7585 2516 } // end switch _ctrl
wim 33:900a94bc7585 2517 break; // end Top
wim 33:900a94bc7585 2518
wim 33:900a94bc7585 2519 case Bottom:
wim 33:900a94bc7585 2520 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2521 case PCF2103_3V3:
wim 34:e5a0dcb43ecc 2522 case PCF2116_3V3:
wim 34:e5a0dcb43ecc 2523 case PCF2116_5V:
wim 34:e5a0dcb43ecc 2524 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 34:e5a0dcb43ecc 2525 _writeCommand(0x06); // Display Conf Set 0000 0, 1, P=1, Q=0 (Instr. Set 1)
wim 34:e5a0dcb43ecc 2526 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 34:e5a0dcb43ecc 2527 break;
wim 39:e9c2319de9c5 2528
wim 39:e9c2319de9c5 2529 case PCF2119_3V3:
wim 39:e9c2319de9c5 2530 case PCF2119R_3V3 :
wim 39:e9c2319de9c5 2531 _writeCommand(0x20 | _function | 0x01); // Set function, Select Instr Set = 1
wim 39:e9c2319de9c5 2532 _writeCommand(0x04); // Display Conf Set 0000 0, 1, P=0, Q=0 (Instr. Set 1)
wim 39:e9c2319de9c5 2533 _writeCommand(0x20 | _function); // Set function, Select Instr Set = 0
wim 39:e9c2319de9c5 2534 break;
wim 34:e5a0dcb43ecc 2535
wim 33:900a94bc7585 2536 case SSD1803_3V3 :
wim 33:900a94bc7585 2537 // case SSD1803_5V :
wim 33:900a94bc7585 2538 case US2066_3V3 :
wim 33:900a94bc7585 2539 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 33:900a94bc7585 2540 // Select Extended Instruction Set
wim 33:900a94bc7585 2541 _writeCommand(0x06); // Set ext entry mode, 0 0 0 0 0 1 BDC=1 COM1-32, BDS=0 SEG100-1 "Bottom View" (Ext Instr Set)
wim 33:900a94bc7585 2542 // _writeCommand(0x05); // Set ext entry mode, 0 0 0 0 0 1 BDC=0 COM32-1, BDS=1 SEG1-100 "Top View" (Ext Instr Set)
wim 33:900a94bc7585 2543
wim 33:900a94bc7585 2544 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 33:900a94bc7585 2545 // Select Std Instr set, Select IS=0
wim 33:900a94bc7585 2546 break;
wim 36:9f5f86dfd44a 2547
wim 36:9f5f86dfd44a 2548 case ST7070:
wim 36:9f5f86dfd44a 2549 //Note: this does not result in correct top/bottom view.
wim 36:9f5f86dfd44a 2550 //The left and right half of each row are reversed and the addressing of both rows is also incorrect:
wim 36:9f5f86dfd44a 2551 //Top/bottomline when orientation is flipped:
wim 36:9f5f86dfd44a 2552 // 0x48...0x4F 0x40...0x47
wim 36:9f5f86dfd44a 2553 // 0x08...0x0F 0x00...0x07
wim 36:9f5f86dfd44a 2554 _writeCommand(0x20 | _function | 0x04); // Set function, 0 0 1 DL N EXT=1 x x (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2555
wim 36:9f5f86dfd44a 2556 _writeCommand(0x40 | 0x0F); // COM/SEG directions 0 1 0 0 C1, C2, S1, S2 (Instr Set 1)
wim 36:9f5f86dfd44a 2557 // C1=1: Com1-8 -> Com8-1; C2=1: Com9-16 -> Com16-9
wim 36:9f5f86dfd44a 2558 // S1=1: Seg1-40 -> Seg40-1; S2=1: Seg41-80 -> Seg80-41
wim 36:9f5f86dfd44a 2559 wait_ms(5); // Wait to ensure completion or ST7070 fails to set Top/Bottom after reset..
wim 36:9f5f86dfd44a 2560
wim 36:9f5f86dfd44a 2561 _writeCommand(0x20 | _function); // Set function, EXT=0 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2562
wim 36:9f5f86dfd44a 2563 break; // case ST7070 Controller
wim 33:900a94bc7585 2564
wim 33:900a94bc7585 2565 default:
wim 33:900a94bc7585 2566 //Unsupported feature for other controllers
wim 33:900a94bc7585 2567 break;
wim 33:900a94bc7585 2568
wim 33:900a94bc7585 2569 } // end switch _ctrl
wim 33:900a94bc7585 2570
wim 33:900a94bc7585 2571 break; // end Bottom
wim 33:900a94bc7585 2572 } // end switch orient
wim 33:900a94bc7585 2573 } // end setOrient()
wim 39:e9c2319de9c5 2574 #endif
wim 39:e9c2319de9c5 2575
wim 39:e9c2319de9c5 2576 #if(LCD_BIGFONT == 1)
wim 34:e5a0dcb43ecc 2577 /** Set Big Font
wim 34:e5a0dcb43ecc 2578 * setBigFont method is supported by some compatible devices (eg SSD1803, US2066)
wim 34:e5a0dcb43ecc 2579 *
wim 34:e5a0dcb43ecc 2580 * @param lines The selected Big Font lines (None, TopLine, CenterLine, BottomLine, TopBottomLine)
wim 34:e5a0dcb43ecc 2581 * Double height characters can be shown on lines 1+2, 2+3, 3+4 or 1+2 and 3+4
wim 34:e5a0dcb43ecc 2582 * Valid double height lines depend on the LCDs number of rows.
wim 34:e5a0dcb43ecc 2583 */
wim 34:e5a0dcb43ecc 2584 void TextLCD_Base::setBigFont(LCDBigFont lines) {
wim 34:e5a0dcb43ecc 2585
wim 34:e5a0dcb43ecc 2586 switch (lines) {
wim 34:e5a0dcb43ecc 2587 case None:
wim 34:e5a0dcb43ecc 2588 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2589 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2590 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2591 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2592 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2593 _writeCommand(0x1C); // Double Height, 0 0 0 1 UD2=1, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2594 // Default
wim 34:e5a0dcb43ecc 2595 _function = _function & ~0x04; // Set function, 0 0 1 DL N DH=0 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2596 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2597 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2598 break; // end US2066
wim 34:e5a0dcb43ecc 2599
wim 34:e5a0dcb43ecc 2600 default:
wim 34:e5a0dcb43ecc 2601 break; // end default
wim 34:e5a0dcb43ecc 2602 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2603 break; // end None
wim 34:e5a0dcb43ecc 2604
wim 34:e5a0dcb43ecc 2605 case TopLine:
wim 34:e5a0dcb43ecc 2606 if (_nr_rows < 2) return; //Sanity check
wim 34:e5a0dcb43ecc 2607
wim 34:e5a0dcb43ecc 2608 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2609 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2610 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2611 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2612 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2613 _writeCommand(0x1C); // Double Height, 0 0 0 1 UD2=1, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2614 // Default
wim 34:e5a0dcb43ecc 2615 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2616 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2617 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2618 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2619
wim 34:e5a0dcb43ecc 2620 default:
wim 34:e5a0dcb43ecc 2621 break; // end default
wim 34:e5a0dcb43ecc 2622 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2623 break; // end TopLine
wim 34:e5a0dcb43ecc 2624
wim 34:e5a0dcb43ecc 2625 case CenterLine:
wim 34:e5a0dcb43ecc 2626 if (_nr_rows != 4) return; //Sanity check
wim 34:e5a0dcb43ecc 2627
wim 34:e5a0dcb43ecc 2628 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2629 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2630 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2631 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2632 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2633 _writeCommand(0x14); // Double Height, 0 0 0 1 UD2=0, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2634 // Default
wim 34:e5a0dcb43ecc 2635 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2636 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2637 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2638 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2639
wim 34:e5a0dcb43ecc 2640 default:
wim 34:e5a0dcb43ecc 2641 break; // end default
wim 34:e5a0dcb43ecc 2642 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2643 break; // end CenterLine
wim 34:e5a0dcb43ecc 2644
wim 34:e5a0dcb43ecc 2645 case BottomLine:
wim 34:e5a0dcb43ecc 2646 if (_nr_rows < 3) return; //Sanity check
wim 34:e5a0dcb43ecc 2647
wim 34:e5a0dcb43ecc 2648 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2649 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2650 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2651 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2652 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2653 if (_nr_rows == 3) {
wim 34:e5a0dcb43ecc 2654 _writeCommand(0x14); // Double Height, 0 0 0 1 UD2=0, UD1=1, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2655 }
wim 34:e5a0dcb43ecc 2656 else {
wim 34:e5a0dcb43ecc 2657 _writeCommand(0x10); // Double Height, 0 0 0 1 UD2=0, UD1=0, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2658 }
wim 34:e5a0dcb43ecc 2659 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2660 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2661 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2662 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2663
wim 34:e5a0dcb43ecc 2664 default:
wim 34:e5a0dcb43ecc 2665 break; // end default
wim 34:e5a0dcb43ecc 2666 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2667 break; // end BottomLine
wim 34:e5a0dcb43ecc 2668
wim 34:e5a0dcb43ecc 2669 case TopBottomLine:
wim 34:e5a0dcb43ecc 2670 if (_nr_rows != 4) return; //Sanity check
wim 34:e5a0dcb43ecc 2671
wim 34:e5a0dcb43ecc 2672 switch (_ctrl) {
wim 34:e5a0dcb43ecc 2673 case SSD1803_3V3 :
wim 34:e5a0dcb43ecc 2674 case US2066_3V3 :
wim 34:e5a0dcb43ecc 2675 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 34:e5a0dcb43ecc 2676 // Select Extended Instruction Set
wim 34:e5a0dcb43ecc 2677 _writeCommand(0x18); // Double Height, 0 0 0 1 UD2=1, UD1=0, X, DH'=0 (Ext Instr Set)
wim 34:e5a0dcb43ecc 2678 // Default
wim 34:e5a0dcb43ecc 2679 _function = _function | 0x04; // Set function, 0 0 1 DL N DH=1 RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2680 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS=0 Select Instruction Set 0
wim 34:e5a0dcb43ecc 2681 // Select Std Instr set, Select IS=0
wim 34:e5a0dcb43ecc 2682 break; // end US2066, SSD1803
wim 34:e5a0dcb43ecc 2683
wim 34:e5a0dcb43ecc 2684 default:
wim 34:e5a0dcb43ecc 2685 break; // end default
wim 34:e5a0dcb43ecc 2686 } // end switch _ctrl
wim 34:e5a0dcb43ecc 2687 break; // end TopBottomLine
wim 34:e5a0dcb43ecc 2688
wim 34:e5a0dcb43ecc 2689 } // end switch lines
wim 34:e5a0dcb43ecc 2690
wim 34:e5a0dcb43ecc 2691 } // end setBigFont()
wim 39:e9c2319de9c5 2692 #endif
wim 39:e9c2319de9c5 2693
wim 41:111ca62e8a59 2694
wim 41:111ca62e8a59 2695 #if (LCD_FONTSEL == 1)
wim 41:111ca62e8a59 2696 /** Set Font
wim 41:111ca62e8a59 2697 * setFont method is supported by some compatible devices (eg SSD1803, US2066, ST7070)
wim 41:111ca62e8a59 2698 *
wim 41:111ca62e8a59 2699 * @param LCDFont font The selected Font
wim 41:111ca62e8a59 2700 * @return none
wim 41:111ca62e8a59 2701 *
wim 41:111ca62e8a59 2702 * Note: most controllers support only one font and the hardware specific
wim 41:111ca62e8a59 2703 * fonttable is encoded as part of the controller type number (eg PCF21XXC or PCF21XXR).
wim 41:111ca62e8a59 2704 * Some controllers support multiple tables that can only be selected by logic levels on a few pins.
wim 41:111ca62e8a59 2705 * Some controllers also support runtime fontable switching through a specific instruction
wim 41:111ca62e8a59 2706 */
wim 41:111ca62e8a59 2707 void TextLCD_Base::setFont(LCDFont font) {
wim 41:111ca62e8a59 2708
wim 41:111ca62e8a59 2709 switch (font) {
wim 41:111ca62e8a59 2710 case Font_RA: // UK/EU
wim 41:111ca62e8a59 2711 switch (_ctrl) {
wim 41:111ca62e8a59 2712 case SSD1803_3V3 :
wim 41:111ca62e8a59 2713 case US2066_3V3 :
wim 41:111ca62e8a59 2714 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 41:111ca62e8a59 2715 // Select Extended Instruction Set
wim 41:111ca62e8a59 2716 _writeCommand(0x72); // ROM Select command, 0 1 1 1 0 0 1 0 (Ext Instr Set)
wim 41:111ca62e8a59 2717 _writeData(0x00); // ROM_0 Select data, 0 0 0 0 ROM2 ROM1 0 0 (Ext Instr Set)
wim 41:111ca62e8a59 2718
wim 41:111ca62e8a59 2719 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS (Std Instr Set)
wim 41:111ca62e8a59 2720
wim 41:111ca62e8a59 2721 _font = font; // Save active font
wim 41:111ca62e8a59 2722 break; // end SSD1803, US2066
wim 41:111ca62e8a59 2723
wim 41:111ca62e8a59 2724 case ST7070:
wim 41:111ca62e8a59 2725 //ST7070 does not support Cursorblink. The P bit selects the font instead !
wim 41:111ca62e8a59 2726 _writeCommand(0x08 | _currentMode | (_currentCursor & 0x02));
wim 41:111ca62e8a59 2727
wim 41:111ca62e8a59 2728 _font = font; // Save active font
wim 41:111ca62e8a59 2729 break; // end ST7070
wim 41:111ca62e8a59 2730
wim 41:111ca62e8a59 2731 default:
wim 41:111ca62e8a59 2732 break; // end default
wim 41:111ca62e8a59 2733 } // end switch _ctrl
wim 41:111ca62e8a59 2734 break; // end Font_RA
wim 41:111ca62e8a59 2735
wim 41:111ca62e8a59 2736 case Font_RB: // UK/CYR
wim 41:111ca62e8a59 2737 switch (_ctrl) {
wim 41:111ca62e8a59 2738 case SSD1803_3V3 :
wim 41:111ca62e8a59 2739 case US2066_3V3 :
wim 41:111ca62e8a59 2740 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 41:111ca62e8a59 2741 // Select Extended Instruction Set
wim 41:111ca62e8a59 2742 _writeCommand(0x72); // ROM Select command, 0 1 1 1 0 0 1 0 (Ext Instr Set)
wim 41:111ca62e8a59 2743 _writeData(0x04); // ROM_0 Select data, 0 0 0 0 ROM2 ROM1 0 0 (Ext Instr Set)
wim 41:111ca62e8a59 2744
wim 41:111ca62e8a59 2745 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS (Std Instr Set)
wim 41:111ca62e8a59 2746
wim 41:111ca62e8a59 2747 _font = font; // Save active font
wim 41:111ca62e8a59 2748 break; // end SSD1803, US2066
wim 41:111ca62e8a59 2749
wim 41:111ca62e8a59 2750 case ST7070:
wim 41:111ca62e8a59 2751 //ST7070 does not support Cursorblink. The P bit selects the font instead !
wim 41:111ca62e8a59 2752 _writeCommand(0x08 | _currentMode | (_currentCursor & 0x02) | 0x01);
wim 41:111ca62e8a59 2753
wim 41:111ca62e8a59 2754 _font = font; // Save active font
wim 41:111ca62e8a59 2755 break; // end ST7070
wim 41:111ca62e8a59 2756
wim 41:111ca62e8a59 2757 default:
wim 41:111ca62e8a59 2758 break; // end default
wim 41:111ca62e8a59 2759 } // end switch _ctrl
wim 41:111ca62e8a59 2760 break; // end Font_RB
wim 41:111ca62e8a59 2761
wim 41:111ca62e8a59 2762 case Font_0: //Font_O is pretty similar to ROM_C
wim 41:111ca62e8a59 2763 case Font_RC: // UK/JAP
wim 41:111ca62e8a59 2764 switch (_ctrl) {
wim 41:111ca62e8a59 2765 case SSD1803_3V3 :
wim 41:111ca62e8a59 2766 case US2066_3V3 :
wim 41:111ca62e8a59 2767 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 X N BE RE(1) REV
wim 41:111ca62e8a59 2768 // Select Extended Instruction Set
wim 41:111ca62e8a59 2769 _writeCommand(0x72); // ROM Select command, 0 1 1 1 0 0 1 0 (Ext Instr Set)
wim 41:111ca62e8a59 2770 _writeData(0x08); // ROM_0 Select data, 0 0 0 0 ROM2 ROM1 0 0 (Ext Instr Set)
wim 41:111ca62e8a59 2771
wim 41:111ca62e8a59 2772 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS (Std Instr Set)
wim 41:111ca62e8a59 2773
wim 41:111ca62e8a59 2774 _font = font; // Save active font
wim 41:111ca62e8a59 2775 break; // end SSD1803, US2066
wim 41:111ca62e8a59 2776
wim 41:111ca62e8a59 2777 default:
wim 41:111ca62e8a59 2778 break; // end default
wim 41:111ca62e8a59 2779 } // end switch _ctrl
wim 41:111ca62e8a59 2780 break; // end Font_RC
wim 41:111ca62e8a59 2781 } // end switch font
wim 41:111ca62e8a59 2782
wim 41:111ca62e8a59 2783 //SSD1803 seems to screw up cursor position after selecting new font. Restore to make sure...
wim 41:111ca62e8a59 2784 //Set next memoryaddress, make sure cursor blinks at next location
wim 41:111ca62e8a59 2785 int addr = getAddress(_column, _row);
wim 41:111ca62e8a59 2786 _writeCommand(0x80 | addr);
wim 41:111ca62e8a59 2787
wim 41:111ca62e8a59 2788 }
wim 41:111ca62e8a59 2789 #endif
wim 41:111ca62e8a59 2790
wim 41:111ca62e8a59 2791
wim 39:e9c2319de9c5 2792 #if(LCD_ICON==1)
wim 36:9f5f86dfd44a 2793 /** Set Icons
wim 36:9f5f86dfd44a 2794 *
wim 36:9f5f86dfd44a 2795 * @param unsigned char idx The Index of the icon pattern (0..15) for KS0073 and similar controllers
wim 36:9f5f86dfd44a 2796 * and Index (0..31) for PCF2103 and similar controllers
wim 36:9f5f86dfd44a 2797 * @param unsigned char data The bitpattern for the icons (6 lsb for KS0073 bitpattern (5 lsb for KS0078) and 2 msb for blinkmode)
wim 36:9f5f86dfd44a 2798 * The bitpattern for the PCF2103 icons is 5 lsb (UDC 0..2) and 5 lsb for blinkmode (UDC 4..6)
wim 36:9f5f86dfd44a 2799 */
wim 36:9f5f86dfd44a 2800 void TextLCD_Base::setIcon(unsigned char idx, unsigned char data) {
wim 36:9f5f86dfd44a 2801 // Blinking icons are enabled when a specific controlbit (BE) is set.
wim 36:9f5f86dfd44a 2802 // The blinking pixels in the icons can be controlled by setting additional bits in the icon bitpattern.
wim 36:9f5f86dfd44a 2803 // Icons are defined by a byte bitpattern. The P0..P5 form the Icon pattern for KS0073, and P0..P4 for KS0078
wim 36:9f5f86dfd44a 2804 // P7 P6 P5 P4 P3 P2 P1 P0
wim 36:9f5f86dfd44a 2805 // 0 B1 B0 0 0 1 1 1 0
wim 36:9f5f86dfd44a 2806 // 1 B1 B0 1 1 0 0 0 1
wim 36:9f5f86dfd44a 2807 // .............
wim 36:9f5f86dfd44a 2808 // 15 B1 B0 1 1 0 0 0 1
wim 36:9f5f86dfd44a 2809 //
wim 36:9f5f86dfd44a 2810 // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE.
wim 36:9f5f86dfd44a 2811 // B1 B0 Mode
wim 36:9f5f86dfd44a 2812 // 0 0 No Blinking for this icon row
wim 36:9f5f86dfd44a 2813 // 0 1 Enabled pixels in P5 will blink
wim 36:9f5f86dfd44a 2814 // 1 x Enabled pixels in P0..P5 will blink
wim 36:9f5f86dfd44a 2815 //
wim 36:9f5f86dfd44a 2816 // Note: the PCF2103 and PCF2113 use UDCs to set Icons
wim 36:9f5f86dfd44a 2817 // 3 x 8 rows x 5 bits = 120 bits Icons for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2818 // 3 x 8 rows x 5 bits = 120 bits Icons for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2819 // Note: the PCF2119 uses UDCs to set Icons
wim 36:9f5f86dfd44a 2820 // 4 x 8 rows x 5 bits = 160 bits Icons for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2821 // 4 x 8 rows x 5 bits = 160 bits Icons for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2822
wim 36:9f5f86dfd44a 2823 switch (_ctrl) {
wim 36:9f5f86dfd44a 2824 case KS0073:
wim 36:9f5f86dfd44a 2825 case KS0078:
wim 36:9f5f86dfd44a 2826 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N RE(1) BE LP
wim 36:9f5f86dfd44a 2827 // Select Extended Instruction Set
wim 36:9f5f86dfd44a 2828 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Ext Instr Set)
wim 36:9f5f86dfd44a 2829
wim 36:9f5f86dfd44a 2830 _writeData(data); // Set Icon pattern (Ext Instr Set)
wim 36:9f5f86dfd44a 2831
wim 36:9f5f86dfd44a 2832 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Instruction Set 0
wim 36:9f5f86dfd44a 2833 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2834 break; // end KS0073, KS0078
wim 36:9f5f86dfd44a 2835
wim 36:9f5f86dfd44a 2836 case ST7032_3V3:
wim 36:9f5f86dfd44a 2837 case ST7032_5V:
wim 41:111ca62e8a59 2838 case SPLC792A_3V3:
wim 36:9f5f86dfd44a 2839 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 36:9f5f86dfd44a 2840 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2841
wim 36:9f5f86dfd44a 2842 _writeData(data & 0x1F); // Set Icon pattern, no blink support (Instr Set 1)
wim 36:9f5f86dfd44a 2843
wim 36:9f5f86dfd44a 2844 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Instruction Set 0
wim 36:9f5f86dfd44a 2845 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2846 break; // end ST7032
wim 36:9f5f86dfd44a 2847
wim 36:9f5f86dfd44a 2848 case ST7036_3V3:
wim 36:9f5f86dfd44a 2849 case ST7036_5V:
wim 36:9f5f86dfd44a 2850 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH IS2,IS1 = 01 (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2851 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2852
wim 36:9f5f86dfd44a 2853 _writeData(data & 0x1F); // Set Icon pattern, no blink support (Instr Set 1)
wim 36:9f5f86dfd44a 2854
wim 36:9f5f86dfd44a 2855 _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2856 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2857 break; // end ST7036
wim 36:9f5f86dfd44a 2858
wim 36:9f5f86dfd44a 2859 case SSD1803_3V3:
wim 36:9f5f86dfd44a 2860 // case SSD1803_5V:
wim 36:9f5f86dfd44a 2861 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2862 // Select Instruction Set 1
wim 36:9f5f86dfd44a 2863 _writeCommand(0x40 | (idx & 0x0F)); // Set Icon Address, mask Address to valid range (Instr Set = 1)
wim 36:9f5f86dfd44a 2864 _writeData(data); // Set Icon pattern (Instr Set = 1)
wim 36:9f5f86dfd44a 2865
wim 36:9f5f86dfd44a 2866 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2867 // Select IS=0
wim 36:9f5f86dfd44a 2868 break; // end SSD1803
wim 36:9f5f86dfd44a 2869
wim 36:9f5f86dfd44a 2870 case PCF2103_3V3:
wim 36:9f5f86dfd44a 2871 case PCF2113_3V3:
wim 39:e9c2319de9c5 2872 case PCF2119_3V3:
wim 39:e9c2319de9c5 2873 case PCF2119R_3V3:
wim 36:9f5f86dfd44a 2874 // Store UDC/Icon pattern for PCF2103 and PCF2113:
wim 36:9f5f86dfd44a 2875 // 3 x 8 rows x 5 bits = 120 bits for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2876 // 3 x 8 rows x 5 bits = 120 bits for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2877 // Store UDC/Icon pattern for PCF2119:
wim 36:9f5f86dfd44a 2878 // 4 x 8 rows x 5 bits = 160 bits for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2879 // 4 x 8 rows x 5 bits = 160 bits for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2880 _writeCommand(0x40 | (idx & 0x3F)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2881 _writeData(data); // Set Icon pattern (Instr Set = 1)
wim 36:9f5f86dfd44a 2882 break; // case PCF2103_3V3 Controller
wim 36:9f5f86dfd44a 2883
wim 36:9f5f86dfd44a 2884 default:
wim 36:9f5f86dfd44a 2885 break; // end default
wim 36:9f5f86dfd44a 2886 } // end switch _ctrl
wim 36:9f5f86dfd44a 2887
wim 36:9f5f86dfd44a 2888 //Select DD RAM again for current LCD controller and restore the addresspointer
wim 36:9f5f86dfd44a 2889 int addr = getAddress(_column, _row);
wim 36:9f5f86dfd44a 2890 _writeCommand(0x80 | addr);
wim 36:9f5f86dfd44a 2891
wim 36:9f5f86dfd44a 2892 } // end setIcon()
wim 36:9f5f86dfd44a 2893
wim 36:9f5f86dfd44a 2894 /** Clear Icons
wim 36:9f5f86dfd44a 2895 *
wim 36:9f5f86dfd44a 2896 * @param none
wim 36:9f5f86dfd44a 2897 * @return none
wim 36:9f5f86dfd44a 2898 */
wim 36:9f5f86dfd44a 2899 //@TODO Add support for 40x4 dual controller
wim 36:9f5f86dfd44a 2900 void TextLCD_Base::clrIcon() {
wim 36:9f5f86dfd44a 2901 // Icons are defined by a byte bitpattern. The P0..P5 form the Icon pattern for KS0073, and P0..P4 for KS0078
wim 36:9f5f86dfd44a 2902 // P7 P6 P5 P4 P3 P2 P1 P0
wim 36:9f5f86dfd44a 2903 // 0 B1 B0 0 0 0 0 0 0
wim 36:9f5f86dfd44a 2904 // 1 B1 B0 0 0 0 0 0 0
wim 36:9f5f86dfd44a 2905 // .............
wim 36:9f5f86dfd44a 2906 // 15 B1 B0 0 0 0 0 0 0
wim 36:9f5f86dfd44a 2907 //
wim 36:9f5f86dfd44a 2908 // Bit 6 and Bit 7 in the pattern will control the blinking mode when Blink is enabled through BE.
wim 36:9f5f86dfd44a 2909 // B1 B0 Mode
wim 36:9f5f86dfd44a 2910 // 0 0 No Blinking for this icon row
wim 36:9f5f86dfd44a 2911 // 0 1 Enabled pixels in P5 will blink
wim 36:9f5f86dfd44a 2912 // 1 x Enabled pixels in P0..P5 will blink
wim 36:9f5f86dfd44a 2913 //
wim 36:9f5f86dfd44a 2914 // Note: the PCF2103 and PCF2113 use UDCs to set Icons
wim 36:9f5f86dfd44a 2915 // 3 x 8 rows x 5 bits = 120 bits Icons for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2916 // 3 x 8 rows x 5 bits = 120 bits Icons for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2917 // Note: the PCF2119 uses UDCs to set Icons
wim 36:9f5f86dfd44a 2918 // 4 x 8 rows x 5 bits = 160 bits Icons for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 2919 // 4 x 8 rows x 5 bits = 160 bits Icons for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 2920 int idx;
wim 36:9f5f86dfd44a 2921
wim 36:9f5f86dfd44a 2922 switch (_ctrl) {
wim 36:9f5f86dfd44a 2923 case KS0073:
wim 36:9f5f86dfd44a 2924 case KS0078:
wim 36:9f5f86dfd44a 2925 _writeCommand(0x20 | _function_1); // Set function, 0 0 1 DL N RE(1) BE LP
wim 36:9f5f86dfd44a 2926 // Select Extended Instruction Set
wim 36:9f5f86dfd44a 2927 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2928 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Ext Instr Set)
wim 36:9f5f86dfd44a 2929 _writeData(0x00); // Clear Icon pattern (Ext Instr Set)
wim 36:9f5f86dfd44a 2930 }
wim 36:9f5f86dfd44a 2931 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Std Instruction Set
wim 36:9f5f86dfd44a 2932 // Select Std Instr set
wim 36:9f5f86dfd44a 2933 break; // end KS0073, KS0078
wim 36:9f5f86dfd44a 2934
wim 36:9f5f86dfd44a 2935 case ST7032_3V3:
wim 36:9f5f86dfd44a 2936 case ST7032_5V:
wim 41:111ca62e8a59 2937 case SPLC792A_3V3:
wim 36:9f5f86dfd44a 2938 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N F 0 IS=1 Select Instr Set = 1
wim 36:9f5f86dfd44a 2939
wim 36:9f5f86dfd44a 2940 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2941 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2942 _writeData(0x00); // Clear Icon pattern (Instr Set 1)
wim 36:9f5f86dfd44a 2943 }
wim 36:9f5f86dfd44a 2944
wim 36:9f5f86dfd44a 2945 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N RE(0) DH REV Select Instruction Set 0
wim 36:9f5f86dfd44a 2946 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2947 break; // end ST7032
wim 36:9f5f86dfd44a 2948
wim 36:9f5f86dfd44a 2949 case ST7036_3V3:
wim 36:9f5f86dfd44a 2950 case ST7036_5V:
wim 36:9f5f86dfd44a 2951 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH IS2,IS1 = 01 (Select Instr Set = 1)
wim 36:9f5f86dfd44a 2952
wim 36:9f5f86dfd44a 2953 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2954 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Instr Set 1)
wim 36:9f5f86dfd44a 2955 _writeData(0x00); // Clear Icon pattern (Instr Set 1)
wim 36:9f5f86dfd44a 2956 }
wim 36:9f5f86dfd44a 2957
wim 36:9f5f86dfd44a 2958 _writeCommand(0x20 | _function); // Set function, IS2,IS1 = 00 (Select Instr Set = 0)
wim 36:9f5f86dfd44a 2959 // Select Std Instr set, Select IS=0
wim 36:9f5f86dfd44a 2960 break; // end ST7036
wim 36:9f5f86dfd44a 2961
wim 36:9f5f86dfd44a 2962 case SSD1803_3V3:
wim 36:9f5f86dfd44a 2963 // case SSD1803_5V:
wim 36:9f5f86dfd44a 2964 _writeCommand(0x20 | _function | 0x01); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2965 // Select Instruction Set 1
wim 36:9f5f86dfd44a 2966 for (idx=0; idx<16; idx++) {
wim 36:9f5f86dfd44a 2967 _writeCommand(0x40 | idx); // Set Icon Address, mask Address to valid range (Ext Instr Set)
wim 36:9f5f86dfd44a 2968 _writeData(0x00); // Clear Icon pattern (Ext Instr Set)
wim 36:9f5f86dfd44a 2969 }
wim 36:9f5f86dfd44a 2970 _writeCommand(0x20 | _function); // Set function, 0 0 1 DL N DH RE(0) IS
wim 36:9f5f86dfd44a 2971 // Select IS=0
wim 36:9f5f86dfd44a 2972 break; // end SSD1803
wim 36:9f5f86dfd44a 2973
wim 36:9f5f86dfd44a 2974 case PCF2103_3V3:
wim 36:9f5f86dfd44a 2975 case PCF2113_3V3:
wim 36:9f5f86dfd44a 2976 // PCF2103 and PCF2113 use part of the UDC RAM to control Icons
wim 36:9f5f86dfd44a 2977 // Select CG RAM
wim 36:9f5f86dfd44a 2978
wim 36:9f5f86dfd44a 2979 _writeCommand(0x40 | (0 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2980 // Store UDC/Icon pattern:
wim 36:9f5f86dfd44a 2981 // 3 x 8 rows x 5 bits = 120 bits for Normal pattern (UDC 0..2) and
wim 36:9f5f86dfd44a 2982 for (int i=0; i<(3 * 8); i++) {
wim 36:9f5f86dfd44a 2983 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 2984 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 2985 }
wim 36:9f5f86dfd44a 2986
wim 36:9f5f86dfd44a 2987 _writeCommand(0x40 | (4 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 2988 // 3 x 8 rows x 5 bits = 120 bits for Blink pattern (UDC 4..6)
wim 36:9f5f86dfd44a 2989 for (int i=0; i<(3 * 8); i++) {
wim 36:9f5f86dfd44a 2990 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 2991 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 2992 }
wim 36:9f5f86dfd44a 2993 break; // case PCF2103_3V3 Controller
wim 36:9f5f86dfd44a 2994
wim 39:e9c2319de9c5 2995 case PCF2119_3V3:
wim 39:e9c2319de9c5 2996 case PCF2119R_3V3:
wim 36:9f5f86dfd44a 2997 // PCF2119 uses part of the UDC RAM to control Icons
wim 36:9f5f86dfd44a 2998 // Select CG RAM
wim 36:9f5f86dfd44a 2999
wim 36:9f5f86dfd44a 3000 _writeCommand(0x40 | (0 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 3001 // Store UDC/Icon pattern:
wim 36:9f5f86dfd44a 3002 // 4 x 8 rows x 5 bits = 160 bits for Normal pattern (UDC 0..3) and
wim 36:9f5f86dfd44a 3003 for (int i=0; i<(4 * 8); i++) {
wim 36:9f5f86dfd44a 3004 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 3005 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 3006 }
wim 36:9f5f86dfd44a 3007
wim 36:9f5f86dfd44a 3008 _writeCommand(0x40 | (4 * 8)); //Set CG-RAM address, 8 sequential locations needed per UDC
wim 36:9f5f86dfd44a 3009 // 4 x 8 rows x 5 bits = 160 bits for Blink pattern (UDC 4..7)
wim 36:9f5f86dfd44a 3010 for (int i=0; i<(4 * 8); i++) {
wim 36:9f5f86dfd44a 3011 // _writeData(0x1F); // All On
wim 36:9f5f86dfd44a 3012 _writeData(0x00); // All Off
wim 36:9f5f86dfd44a 3013 }
wim 36:9f5f86dfd44a 3014 break; // case PCF2119_3V3 Controller
wim 36:9f5f86dfd44a 3015
wim 36:9f5f86dfd44a 3016 default:
wim 36:9f5f86dfd44a 3017 break; // end default
wim 36:9f5f86dfd44a 3018 } // end switch _ctrl
wim 36:9f5f86dfd44a 3019
wim 36:9f5f86dfd44a 3020 //Select DD RAM again for current LCD controller and restore the addresspointer
wim 36:9f5f86dfd44a 3021 int addr = getAddress(_column, _row);
wim 36:9f5f86dfd44a 3022 _writeCommand(0x80 | addr);
wim 36:9f5f86dfd44a 3023 } //end clrIcon()
wim 39:e9c2319de9c5 3024 #endif
wim 39:e9c2319de9c5 3025
wim 39:e9c2319de9c5 3026 #if(LCD_INVERT == 1)
wim 36:9f5f86dfd44a 3027 /** Set Invert
wim 36:9f5f86dfd44a 3028 * setInvert method is supported by some compatible devices (eg KS0073) to swap between black and white
wim 36:9f5f86dfd44a 3029 *
wim 36:9f5f86dfd44a 3030 * @param bool invertOn Invert on/off
wim 36:9f5f86dfd44a 3031 * @return none
wim 36:9f5f86dfd44a 3032 */
wim 36:9f5f86dfd44a 3033 //@TODO Add support for 40x4 dual controller
wim 36:9f5f86dfd44a 3034 void TextLCD_Base::setInvert(bool invertOn) {
wim 36:9f5f86dfd44a 3035
wim 36:9f5f86dfd44a 3036 if (invertOn) {
wim 36:9f5f86dfd44a 3037 // Controllers that support Invert
wim 36:9f5f86dfd44a 3038 switch (_ctrl) {
wim 36:9f5f86dfd44a 3039 case KS0073:
wim 36:9f5f86dfd44a 3040 case KS0078:
wim 36:9f5f86dfd44a 3041 _function = _function | 0x01; // Enable Invert
wim 36:9f5f86dfd44a 3042 _writeCommand(0x20 | _function); // Activate Invert (Std Instr Set)
wim 36:9f5f86dfd44a 3043 break;
wim 36:9f5f86dfd44a 3044 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 3045 // case SSD1803_5V :
wim 36:9f5f86dfd44a 3046 case US2066_3V3:
wim 36:9f5f86dfd44a 3047 // case USS2066_5V:
wim 36:9f5f86dfd44a 3048 _function_1 = _function_1 | 0x01; // Enable Invert
wim 36:9f5f86dfd44a 3049 // Set function, 0 0 1 DL N BE RE(1) REV (SSD1803)
wim 36:9f5f86dfd44a 3050 // Set function, 0 0 1 X N BE RE(1) REV (US2066)
wim 36:9f5f86dfd44a 3051 _writeCommand(0x20 | _function_1); // Activate Invert (Ext Instr Set)
wim 36:9f5f86dfd44a 3052 _writeCommand(0x20 | _function); // Return to Std Instr Set
wim 36:9f5f86dfd44a 3053 break;
wim 36:9f5f86dfd44a 3054 default:
wim 36:9f5f86dfd44a 3055 //Unsupported feature for other controllers
wim 36:9f5f86dfd44a 3056 break;
wim 36:9f5f86dfd44a 3057 } // end switch
wim 36:9f5f86dfd44a 3058 }
wim 36:9f5f86dfd44a 3059 else {
wim 36:9f5f86dfd44a 3060 // Controllers that support Invert
wim 36:9f5f86dfd44a 3061 switch (_ctrl) {
wim 36:9f5f86dfd44a 3062 case KS0073:
wim 36:9f5f86dfd44a 3063 case KS0078:
wim 36:9f5f86dfd44a 3064 _function = _function & ~0x01; // Disable Invert
wim 36:9f5f86dfd44a 3065 _writeCommand(0x20 | _function); // Disable Invert (Std Instr Set)
wim 36:9f5f86dfd44a 3066 break;
wim 36:9f5f86dfd44a 3067 case SSD1803_3V3 :
wim 36:9f5f86dfd44a 3068 // case SSD1803_5V :
wim 36:9f5f86dfd44a 3069 case US2066_3V3:
wim 36:9f5f86dfd44a 3070 // case USS2066_5V:
wim 36:9f5f86dfd44a 3071 _function_1 = _function_1 & ~0x01; // Disable Invert
wim 36:9f5f86dfd44a 3072 // Set function, 0 0 1 DL N BE RE(1) REV (SSD1803)
wim 36:9f5f86dfd44a 3073 // Set function, 0 0 1 X N BE RE(1) REV (US2066)
wim 36:9f5f86dfd44a 3074 _writeCommand(0x20 | _function_1); // Activate Invert (Ext Instr Set)
wim 36:9f5f86dfd44a 3075 _writeCommand(0x20 | _function); // Return to Std Instr Set
wim 36:9f5f86dfd44a 3076 break;
wim 36:9f5f86dfd44a 3077
wim 36:9f5f86dfd44a 3078 default:
wim 36:9f5f86dfd44a 3079 //Unsupported feature for other controllers
wim 36:9f5f86dfd44a 3080 break;
wim 36:9f5f86dfd44a 3081 } // end switch
wim 36:9f5f86dfd44a 3082 }
wim 36:9f5f86dfd44a 3083 } // end setInvert()
wim 39:e9c2319de9c5 3084 #endif
wim 36:9f5f86dfd44a 3085
wim 23:d47f226efb24 3086 //--------- End TextLCD_Base -----------
wim 21:9eb628d9e164 3087
wim 22:35742ec80c24 3088
wim 23:d47f226efb24 3089 //--------- Start TextLCD Bus -----------
wim 21:9eb628d9e164 3090
wim 21:9eb628d9e164 3091 /* Create a TextLCD interface for using regular mbed pins
wim 21:9eb628d9e164 3092 *
wim 21:9eb628d9e164 3093 * @param rs Instruction/data control line
wim 21:9eb628d9e164 3094 * @param e Enable line (clock)
wim 21:9eb628d9e164 3095 * @param d4-d7 Data lines for using as a 4-bit interface
wim 21:9eb628d9e164 3096 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 21:9eb628d9e164 3097 * @param bl Backlight control line (optional, default = NC)
wim 21:9eb628d9e164 3098 * @param e2 Enable2 line (clock for second controller, LCD40x4 only)
wim 21:9eb628d9e164 3099 * @param ctrl LCD controller (default = HD44780)
wim 21:9eb628d9e164 3100 */
wim 21:9eb628d9e164 3101 TextLCD::TextLCD(PinName rs, PinName e,
wim 21:9eb628d9e164 3102 PinName d4, PinName d5, PinName d6, PinName d7,
wim 21:9eb628d9e164 3103 LCDType type, PinName bl, PinName e2, LCDCtrl ctrl) :
wim 21:9eb628d9e164 3104 TextLCD_Base(type, ctrl),
wim 22:35742ec80c24 3105 _rs(rs), _e(e), _d(d4, d5, d6, d7) {
wim 22:35742ec80c24 3106
wim 22:35742ec80c24 3107 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 22:35742ec80c24 3108 if (bl != NC) {
wim 22:35742ec80c24 3109 _bl = new DigitalOut(bl); //Construct new pin
wim 22:35742ec80c24 3110 _bl->write(0); //Deactivate
wim 22:35742ec80c24 3111 }
wim 22:35742ec80c24 3112 else {
wim 22:35742ec80c24 3113 // No Hardware Backlight pin
wim 22:35742ec80c24 3114 _bl = NULL; //Construct dummy pin
wim 22:35742ec80c24 3115 }
wim 22:35742ec80c24 3116
wim 22:35742ec80c24 3117 // The hardware Enable2 pin is only needed for LCD40x4. Test and make sure whether it exists or not to prevent illegal access.
wim 22:35742ec80c24 3118 if (e2 != NC) {
wim 22:35742ec80c24 3119 _e2 = new DigitalOut(e2); //Construct new pin
wim 22:35742ec80c24 3120 _e2->write(0); //Deactivate
wim 22:35742ec80c24 3121 }
wim 22:35742ec80c24 3122 else {
wim 22:35742ec80c24 3123 // No Hardware Enable pin
wim 22:35742ec80c24 3124 _e2 = NULL; //Construct dummy pin
wim 22:35742ec80c24 3125 }
wim 38:cbe275b0b647 3126
wim 38:cbe275b0b647 3127 _init(_LCD_DL_4); // Set Datalength to 4 bit for mbed bus interfaces
wim 21:9eb628d9e164 3128 }
wim 21:9eb628d9e164 3129
wim 29:a3663151aa65 3130 /** Destruct a TextLCD interface for using regular mbed pins
wim 29:a3663151aa65 3131 *
wim 29:a3663151aa65 3132 * @param none
wim 29:a3663151aa65 3133 * @return none
wim 29:a3663151aa65 3134 */
wim 29:a3663151aa65 3135 TextLCD::~TextLCD() {
wim 29:a3663151aa65 3136 if (_bl != NULL) {delete _bl;} // BL pin
wim 29:a3663151aa65 3137 if (_e2 != NULL) {delete _e2;} // E2 pin
wim 29:a3663151aa65 3138 }
wim 29:a3663151aa65 3139
wim 22:35742ec80c24 3140 /** Set E pin (or E2 pin)
wim 22:35742ec80c24 3141 * Used for mbed pins, I2C bus expander or SPI shiftregister
wim 22:35742ec80c24 3142 * Default PinName value for E2 is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
wim 22:35742ec80c24 3143 * @param value true or false
wim 22:35742ec80c24 3144 * @return none
wim 22:35742ec80c24 3145 */
wim 21:9eb628d9e164 3146 void TextLCD::_setEnable(bool value) {
wim 21:9eb628d9e164 3147
wim 22:35742ec80c24 3148 if(_ctrl_idx==_LCDCtrl_0) {
wim 22:35742ec80c24 3149 if (value) {
wim 22:35742ec80c24 3150 _e = 1; // Set E bit
wim 22:35742ec80c24 3151 }
wim 22:35742ec80c24 3152 else {
wim 22:35742ec80c24 3153 _e = 0; // Reset E bit
wim 22:35742ec80c24 3154 }
wim 22:35742ec80c24 3155 }
wim 22:35742ec80c24 3156 else {
wim 22:35742ec80c24 3157 if (value) {
wim 22:35742ec80c24 3158 if (_e2 != NULL) {_e2->write(1);} //Set E2 bit
wim 22:35742ec80c24 3159 }
wim 22:35742ec80c24 3160 else {
wim 22:35742ec80c24 3161 if (_e2 != NULL) {_e2->write(0);} //Reset E2 bit
wim 22:35742ec80c24 3162 }
wim 22:35742ec80c24 3163 }
wim 21:9eb628d9e164 3164 }
wim 21:9eb628d9e164 3165
wim 21:9eb628d9e164 3166 // Set RS pin
wim 21:9eb628d9e164 3167 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 3168 void TextLCD::_setRS(bool value) {
wim 21:9eb628d9e164 3169
wim 22:35742ec80c24 3170 if (value) {
wim 21:9eb628d9e164 3171 _rs = 1; // Set RS bit
wim 22:35742ec80c24 3172 }
wim 22:35742ec80c24 3173 else {
wim 21:9eb628d9e164 3174 _rs = 0; // Reset RS bit
wim 22:35742ec80c24 3175 }
wim 21:9eb628d9e164 3176 }
wim 21:9eb628d9e164 3177
wim 22:35742ec80c24 3178 /** Set BL pin
wim 22:35742ec80c24 3179 * Used for mbed pins, I2C bus expander or SPI shiftregister
wim 22:35742ec80c24 3180 * Default PinName value is NC, must be used as pointer to avoid issues with mbed lib and DigitalOut pins
wim 22:35742ec80c24 3181 * @param value true or false
wim 22:35742ec80c24 3182 * @return none
wim 22:35742ec80c24 3183 */
wim 21:9eb628d9e164 3184 void TextLCD::_setBL(bool value) {
wim 21:9eb628d9e164 3185
wim 22:35742ec80c24 3186 if (value) {
wim 22:35742ec80c24 3187 if (_bl != NULL) {_bl->write(1);} //Set BL bit
wim 22:35742ec80c24 3188 }
wim 22:35742ec80c24 3189 else {
wim 22:35742ec80c24 3190 if (_bl != NULL) {_bl->write(0);} //Reset BL bit
wim 22:35742ec80c24 3191 }
wim 21:9eb628d9e164 3192 }
wim 21:9eb628d9e164 3193
wim 21:9eb628d9e164 3194 // Place the 4bit data on the databus
wim 21:9eb628d9e164 3195 // Used for mbed pins, I2C bus expander or SPI shifregister
wim 21:9eb628d9e164 3196 void TextLCD::_setData(int value) {
wim 21:9eb628d9e164 3197 _d = value & 0x0F; // Write Databits
wim 21:9eb628d9e164 3198 }
wim 34:e5a0dcb43ecc 3199
wim 23:d47f226efb24 3200 //----------- End TextLCD ---------------
wim 21:9eb628d9e164 3201
wim 21:9eb628d9e164 3202
wim 23:d47f226efb24 3203 //--------- Start TextLCD_I2C -----------
vm2m 42:14e1718fba52 3204 #if(LCD_I2C == 1) /* I2C Expander PCF8574/MCP23008/PCA9538 */
vm2m 42:14e1718fba52 3205 /** Create a TextLCD interface using an I2C PC8574 (or PCF8574A) or MCP23008 or PCA9538 portexpander
wim 22:35742ec80c24 3206 *
wim 22:35742ec80c24 3207 * @param i2c I2C Bus
vm2m 42:14e1718fba52 3208 * @param deviceAddress I2C slave address (PCF8574, PCF8574A or MCP23008 or PCA9538, default = 0x40)
wim 22:35742ec80c24 3209 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 22:35742ec80c24 3210 * @param ctrl LCD controller (default = HD44780)
wim 22:35742ec80c24 3211 */
wim 21:9eb628d9e164 3212 TextLCD_I2C::TextLCD_I2C(I2C *i2c, char deviceAddress, LCDType type, LCDCtrl ctrl) :
wim 21:9eb628d9e164 3213 TextLCD_Base(type, ctrl),
wim 21:9eb628d9e164 3214 _i2c(i2c){
vm2m 42:14e1718fba52 3215
vm2m 42:14e1718fba52 3216 #if (PCA9538==1)
vm2m 42:14e1718fba52 3217 _slaveAddress = deviceAddress & 0xFE;
vm2m 42:14e1718fba52 3218 #else
wim 22:35742ec80c24 3219 _slaveAddress = deviceAddress & 0xFE;
wim 28:30fa94f7341c 3220
wim 28:30fa94f7341c 3221 // Setup the I2C bus
wim 28:30fa94f7341c 3222 // The max bitrate for PCF8574 is 100kbit, the max bitrate for MCP23008 is 400kbit,
wim 32:59c4b8f648d4 3223 _i2c->frequency(100000);
vm2m 42:14e1718fba52 3224 #endif
wim 21:9eb628d9e164 3225
wim 26:bd897a001012 3226 #if (MCP23008==1)
wim 26:bd897a001012 3227 // MCP23008 portexpander Init
wim 37:ce348c002929 3228 _writeRegister(IODIR, 0x00); // All pins are outputs
wim 37:ce348c002929 3229 _writeRegister(IPOL, 0x00); // No reverse polarity on inputs
wim 37:ce348c002929 3230 _writeRegister(GPINTEN, 0x00); // No interrupt on change of input pins
wim 37:ce348c002929 3231 _writeRegister(DEFVAL, 0x00); // Default value to compare against for interrupts
wim 37:ce348c002929 3232 _writeRegister(INTCON, 0x00); // No interrupt on changes, compare against previous pin value
wim 37:ce348c002929 3233 _writeRegister(IOCON, 0x20); // b1=0 - Interrupt polarity active low
wim 37:ce348c002929 3234 // b2=0 - Interrupt pin active driver output
wim 37:ce348c002929 3235 // b4=0 - Slew rate enable on SDA
wim 37:ce348c002929 3236 // b5=0 - Auto-increment on registeraddress
wim 37:ce348c002929 3237 // b5=1 - No auto-increment on registeraddress => needed for performance improved I2C expander mode
wim 37:ce348c002929 3238 _writeRegister(GPPU, 0x00); // No Pullup
wim 37:ce348c002929 3239 // INTF // Interrupt flags read (Read-Only)
wim 37:ce348c002929 3240 // INTCAP // Captured inputpins at time of interrupt (Read-Only)
wim 37:ce348c002929 3241 // _writeRegister(GPIO, 0x00); // Output/Input pins
wim 37:ce348c002929 3242 // _writeRegister(OLAT, 0x00); // Output Latch
wim 26:bd897a001012 3243
wim 21:9eb628d9e164 3244 // Init the portexpander bus
wim 38:cbe275b0b647 3245 _lcd_bus = LCD_BUS_I2C_DEF;
wim 21:9eb628d9e164 3246
wim 21:9eb628d9e164 3247 // write the new data to the portexpander
wim 37:ce348c002929 3248 _writeRegister(GPIO, _lcd_bus);
vm2m 42:14e1718fba52 3249 #elif (PCA9538==1)
vm2m 42:14e1718fba52 3250 // PCA9538 portexpander Init
vm2m 42:14e1718fba52 3251 _writeRegister(PCA_CONFIG, 0x00); // Set all pin as output
vm2m 42:14e1718fba52 3252
vm2m 42:14e1718fba52 3253 // Init the portexpander bus
vm2m 42:14e1718fba52 3254 _lcd_bus = LCD_BUS_I2C_DEF;
vm2m 42:14e1718fba52 3255
vm2m 42:14e1718fba52 3256 // write the new data to the portexpander
vm2m 42:14e1718fba52 3257 _writeRegister(PCA_OUTPUT, _lcd_bus);
wim 26:bd897a001012 3258 #else
wim 26:bd897a001012 3259 // PCF8574 of PCF8574A portexpander
wim 26:bd897a001012 3260
wim 26:bd897a001012 3261 // Init the portexpander bus
wim 38:cbe275b0b647 3262 _lcd_bus = LCD_BUS_I2C_DEF;
wim 26:bd897a001012 3263
wim 26:bd897a001012 3264 // write the new data to the portexpander
wim 21:9eb628d9e164 3265 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 26:bd897a001012 3266 #endif
wim 21:9eb628d9e164 3267
wim 37:ce348c002929 3268 _init(_LCD_DL_4); // Set Datalength to 4 bit for all serial expander interfaces
wim 21:9eb628d9e164 3269 }
wim 21:9eb628d9e164 3270
wim 37:ce348c002929 3271 // Set E bit (or E2 bit) in the databus shadowvalue
wim 37:ce348c002929 3272 // Used for mbed I2C bus expander
wim 37:ce348c002929 3273 void TextLCD_I2C::_setEnableBit(bool value) {
wim 21:9eb628d9e164 3274
wim 41:111ca62e8a59 3275 #if (LCD_TWO_CTRL == 1)
wim 22:35742ec80c24 3276 if(_ctrl_idx==_LCDCtrl_0) {
wim 26:bd897a001012 3277 if (value) {
wim 38:cbe275b0b647 3278 _lcd_bus |= LCD_BUS_I2C_E; // Set E bit
wim 26:bd897a001012 3279 }
wim 26:bd897a001012 3280 else {
wim 38:cbe275b0b647 3281 _lcd_bus &= ~LCD_BUS_I2C_E; // Reset E bit
wim 26:bd897a001012 3282 }
wim 22:35742ec80c24 3283 }
wim 22:35742ec80c24 3284 else {
wim 26:bd897a001012 3285 if (value) {
wim 38:cbe275b0b647 3286 _lcd_bus |= LCD_BUS_I2C_E2; // Set E2 bit
wim 26:bd897a001012 3287 }
wim 26:bd897a001012 3288 else {
wim 38:cbe275b0b647 3289 _lcd_bus &= ~LCD_BUS_I2C_E2; // Reset E2bit
wim 26:bd897a001012 3290 }
wim 26:bd897a001012 3291 }
wim 41:111ca62e8a59 3292 #else
wim 41:111ca62e8a59 3293 // Support only one controller
wim 41:111ca62e8a59 3294 if (value) {
wim 41:111ca62e8a59 3295 _lcd_bus |= LCD_BUS_I2C_E; // Set E bit
wim 41:111ca62e8a59 3296 }
wim 41:111ca62e8a59 3297 else {
wim 41:111ca62e8a59 3298 _lcd_bus &= ~LCD_BUS_I2C_E; // Reset E bit
wim 41:111ca62e8a59 3299 }
wim 41:111ca62e8a59 3300
wim 41:111ca62e8a59 3301 #endif
wim 37:ce348c002929 3302 }
wim 37:ce348c002929 3303
wim 37:ce348c002929 3304 // Set E pin (or E2 pin)
wim 37:ce348c002929 3305 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 37:ce348c002929 3306 void TextLCD_I2C::_setEnable(bool value) {
wim 37:ce348c002929 3307
wim 37:ce348c002929 3308 // Place the E or E2 bit data on the databus shadowvalue
wim 37:ce348c002929 3309 _setEnableBit(value);
wim 26:bd897a001012 3310
wim 26:bd897a001012 3311 #if (MCP23008==1)
wim 26:bd897a001012 3312 // MCP23008 portexpander
wim 26:bd897a001012 3313
wim 26:bd897a001012 3314 // write the new data to the portexpander
vm2m 42:14e1718fba52 3315 _writeRegister(GPIO, _lcd_bus);
vm2m 42:14e1718fba52 3316 #elif (PCA9538==1)
vm2m 42:14e1718fba52 3317 // PCA9538 portexpander
vm2m 42:14e1718fba52 3318
vm2m 42:14e1718fba52 3319 // write the new data to the I2C portexpander
vm2m 42:14e1718fba52 3320 _writeRegister(PCA_OUTPUT, _lcd_bus);
wim 26:bd897a001012 3321 #else
wim 26:bd897a001012 3322 // PCF8574 of PCF8574A portexpander
wim 21:9eb628d9e164 3323
wim 22:35742ec80c24 3324 // write the new data to the I2C portexpander
wim 22:35742ec80c24 3325 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 26:bd897a001012 3326 #endif
wim 21:9eb628d9e164 3327 }
wim 21:9eb628d9e164 3328
wim 37:ce348c002929 3329
wim 21:9eb628d9e164 3330 // Set RS pin
wim 21:9eb628d9e164 3331 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 3332 void TextLCD_I2C::_setRS(bool value) {
wim 21:9eb628d9e164 3333
wim 26:bd897a001012 3334 if (value) {
wim 38:cbe275b0b647 3335 _lcd_bus |= LCD_BUS_I2C_RS; // Set RS bit
wim 26:bd897a001012 3336 }
wim 26:bd897a001012 3337 else {
wim 38:cbe275b0b647 3338 _lcd_bus &= ~LCD_BUS_I2C_RS; // Reset RS bit
wim 26:bd897a001012 3339 }
wim 26:bd897a001012 3340
wim 26:bd897a001012 3341 #if (MCP23008==1)
wim 26:bd897a001012 3342 // MCP23008 portexpander
wim 26:bd897a001012 3343
wim 26:bd897a001012 3344 // write the new data to the portexpander
vm2m 42:14e1718fba52 3345 _writeRegister(GPIO, _lcd_bus);
vm2m 42:14e1718fba52 3346 #elif (PCA9538==1)
vm2m 42:14e1718fba52 3347 // PCA9538 portexpander
vm2m 42:14e1718fba52 3348
vm2m 42:14e1718fba52 3349 // write the new data to the I2C portexpander
vm2m 42:14e1718fba52 3350 _writeRegister(PCA_OUTPUT, _lcd_bus);
wim 26:bd897a001012 3351 #else
wim 26:bd897a001012 3352 // PCF8574 of PCF8574A portexpander
wim 21:9eb628d9e164 3353
wim 22:35742ec80c24 3354 // write the new data to the I2C portexpander
wim 22:35742ec80c24 3355 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 30:033048611c01 3356 #endif
wim 21:9eb628d9e164 3357 }
wim 21:9eb628d9e164 3358
wim 21:9eb628d9e164 3359 // Set BL pin
wim 21:9eb628d9e164 3360 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 21:9eb628d9e164 3361 void TextLCD_I2C::_setBL(bool value) {
wim 21:9eb628d9e164 3362
wim 26:bd897a001012 3363 if (value) {
wim 38:cbe275b0b647 3364 _lcd_bus |= LCD_BUS_I2C_BL; // Set BL bit
wim 26:bd897a001012 3365 }
wim 26:bd897a001012 3366 else {
wim 38:cbe275b0b647 3367 _lcd_bus &= ~LCD_BUS_I2C_BL; // Reset BL bit
wim 26:bd897a001012 3368 }
wim 26:bd897a001012 3369
wim 26:bd897a001012 3370 #if (MCP23008==1)
wim 26:bd897a001012 3371 // MCP23008 portexpander
wim 26:bd897a001012 3372
wim 26:bd897a001012 3373 // write the new data to the portexpander
vm2m 42:14e1718fba52 3374 _writeRegister(GPIO, _lcd_bus);
vm2m 42:14e1718fba52 3375 #elif (PCA9538==1)
vm2m 42:14e1718fba52 3376 // PCA9538 portexpander
vm2m 42:14e1718fba52 3377
vm2m 42:14e1718fba52 3378 // write the new data to the I2C portexpander
vm2m 42:14e1718fba52 3379 _writeRegister(PCA_OUTPUT, _lcd_bus);
wim 37:ce348c002929 3380 #else
wim 37:ce348c002929 3381 // PCF8574 of PCF8574A portexpander
wim 37:ce348c002929 3382
wim 37:ce348c002929 3383 // write the new data to the I2C portexpander
wim 37:ce348c002929 3384 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 37:ce348c002929 3385 #endif
wim 37:ce348c002929 3386 }
wim 37:ce348c002929 3387
wim 38:cbe275b0b647 3388 #if(0)
wim 38:cbe275b0b647 3389 // New optimized v018
wim 38:cbe275b0b647 3390 // Test faster _writeByte 0.11s vs 0.27s for a 20x4 fillscreen (PCF8574), same as v018
wim 38:cbe275b0b647 3391 // Place the 4bit data in the databus shadowvalue
wim 38:cbe275b0b647 3392 // Used for mbed I2C bus expander
wim 38:cbe275b0b647 3393 const char _LCD_DATA_BITS[16] = {
wim 38:cbe275b0b647 3394 0x00,
wim 38:cbe275b0b647 3395 ( LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3396 ( LCD_BUS_I2C_D5 ),
wim 38:cbe275b0b647 3397 ( LCD_BUS_I2C_D5 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3398 ( LCD_BUS_I2C_D6 ),
wim 38:cbe275b0b647 3399 ( LCD_BUS_I2C_D6 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3400 ( LCD_BUS_I2C_D6 | LCD_BUS_I2C_D5 ),
wim 38:cbe275b0b647 3401 ( LCD_BUS_I2C_D6 | LCD_BUS_I2C_D5 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3402 (LCD_BUS_I2C_D7 ),
wim 38:cbe275b0b647 3403 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3404 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D5 ),
wim 38:cbe275b0b647 3405 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D5 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3406 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D6 ),
wim 38:cbe275b0b647 3407 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D6 | LCD_BUS_I2C_D4),
wim 38:cbe275b0b647 3408 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D6 | LCD_BUS_I2C_D5 ),
wim 38:cbe275b0b647 3409 (LCD_BUS_I2C_D7 | LCD_BUS_I2C_D6 | LCD_BUS_I2C_D5 | LCD_BUS_I2C_D4)
wim 38:cbe275b0b647 3410 };
wim 38:cbe275b0b647 3411 void TextLCD_I2C::_setDataBits(int value) {
wim 38:cbe275b0b647 3412
wim 38:cbe275b0b647 3413 //Clear all databits
wim 38:cbe275b0b647 3414 _lcd_bus &= ~LCD_BUS_I2C_MSK;
wim 38:cbe275b0b647 3415
wim 38:cbe275b0b647 3416 // Set bit by bit to support any mapping of expander portpins to LCD pins
wim 38:cbe275b0b647 3417 _lcd_bus |= _LCD_DATA_BITS[value & 0x0F];
wim 38:cbe275b0b647 3418 }
wim 39:e9c2319de9c5 3419 #endif
wim 39:e9c2319de9c5 3420
wim 39:e9c2319de9c5 3421 // Test faster _writeByte 0.11s vs 0.27s for a 20x4 fillscreen (PCF8574)
wim 39:e9c2319de9c5 3422 // Place the 4bit data in the databus shadowvalue
wim 39:e9c2319de9c5 3423 // Used for mbed I2C bus expander
wim 39:e9c2319de9c5 3424 void TextLCD_I2C::_setDataBits(int value) {
wim 39:e9c2319de9c5 3425
wim 39:e9c2319de9c5 3426 //Clear all databits
wim 39:e9c2319de9c5 3427 _lcd_bus &= ~LCD_BUS_I2C_MSK;
wim 39:e9c2319de9c5 3428
wim 39:e9c2319de9c5 3429 // Set bit by bit to support any mapping of expander portpins to LCD pins
wim 39:e9c2319de9c5 3430 if (value & 0x01){
wim 39:e9c2319de9c5 3431 _lcd_bus |= LCD_BUS_I2C_D4; // Set Databit
wim 39:e9c2319de9c5 3432 }
wim 39:e9c2319de9c5 3433
wim 39:e9c2319de9c5 3434 if (value & 0x02){
wim 39:e9c2319de9c5 3435 _lcd_bus |= LCD_BUS_I2C_D5; // Set Databit
wim 39:e9c2319de9c5 3436 }
wim 39:e9c2319de9c5 3437
wim 39:e9c2319de9c5 3438 if (value & 0x04) {
wim 39:e9c2319de9c5 3439 _lcd_bus |= LCD_BUS_I2C_D6; // Set Databit
wim 39:e9c2319de9c5 3440 }
wim 39:e9c2319de9c5 3441
wim 39:e9c2319de9c5 3442 if (value & 0x08) {
wim 39:e9c2319de9c5 3443 _lcd_bus |= LCD_BUS_I2C_D7; // Set Databit
wim 39:e9c2319de9c5 3444 }
wim 39:e9c2319de9c5 3445 }
wim 41:111ca62e8a59 3446
wim 37:ce348c002929 3447
wim 37:ce348c002929 3448 // Place the 4bit data on the databus
wim 37:ce348c002929 3449 // Used for mbed pins, I2C bus expander or SPI shifregister
wim 37:ce348c002929 3450 void TextLCD_I2C::_setData(int value) {
wim 37:ce348c002929 3451
wim 37:ce348c002929 3452 // Place the 4bit data on the databus shadowvalue
wim 37:ce348c002929 3453 _setDataBits(value);
wim 37:ce348c002929 3454
wim 37:ce348c002929 3455 // Place the 4bit data on the databus
wim 37:ce348c002929 3456 #if (MCP23008==1)
wim 37:ce348c002929 3457 // MCP23008 portexpander
wim 37:ce348c002929 3458
wim 37:ce348c002929 3459 // write the new data to the portexpander
vm2m 42:14e1718fba52 3460 _writeRegister(GPIO, _lcd_bus);
vm2m 42:14e1718fba52 3461 #elif (PCA9538==1)
vm2m 42:14e1718fba52 3462 // PCA9538 portexpander
vm2m 42:14e1718fba52 3463
vm2m 42:14e1718fba52 3464 // write the new data to the I2C portexpander
vm2m 42:14e1718fba52 3465 _writeRegister(PCA_OUTPUT, _lcd_bus);
wim 26:bd897a001012 3466 #else
wim 26:bd897a001012 3467 // PCF8574 of PCF8574A portexpander
wim 21:9eb628d9e164 3468
wim 21:9eb628d9e164 3469 // write the new data to the I2C portexpander
wim 21:9eb628d9e164 3470 _i2c->write(_slaveAddress, &_lcd_bus, 1);
wim 30:033048611c01 3471 #endif
wim 21:9eb628d9e164 3472 }
wim 21:9eb628d9e164 3473
vm2m 42:14e1718fba52 3474 // Write data to MCP23008/PCA9538 I2C portexpander
wim 37:ce348c002929 3475 // Used for mbed I2C bus expander
wim 37:ce348c002929 3476 void TextLCD_I2C::_writeRegister (int reg, int value) {
wim 37:ce348c002929 3477 char data[] = {reg, value};
wim 37:ce348c002929 3478
wim 37:ce348c002929 3479 _i2c->write(_slaveAddress, data, 2);
wim 37:ce348c002929 3480 }
wim 37:ce348c002929 3481
wim 37:ce348c002929 3482 //New optimized
wim 37:ce348c002929 3483 //Test faster _writeByte 0.11s vs 0.27s for a 20x4 fillscreen (PCF8574)
wim 37:ce348c002929 3484 //Test faster _writeByte 0.14s vs 0.34s for a 20x4 fillscreen (MCP23008)
wim 37:ce348c002929 3485
wim 37:ce348c002929 3486 // Write a byte using I2C
wim 37:ce348c002929 3487 void TextLCD_I2C::_writeByte(int value) {
wim 37:ce348c002929 3488 char data[6];
wim 37:ce348c002929 3489
wim 37:ce348c002929 3490 #if (MCP23008==1)
wim 37:ce348c002929 3491 // MCP23008 portexpander
wim 37:ce348c002929 3492
wim 37:ce348c002929 3493 data[0] = GPIO; // set registeraddres
wim 37:ce348c002929 3494 // Note: auto-increment is disabled so all data will go to GPIO register
wim 37:ce348c002929 3495
wim 37:ce348c002929 3496 _setEnableBit(true); // set E
wim 37:ce348c002929 3497 _setDataBits(value >> 4); // set data high
wim 37:ce348c002929 3498 data[1] = _lcd_bus;
wim 37:ce348c002929 3499
wim 37:ce348c002929 3500 _setEnableBit(false); // clear E
wim 37:ce348c002929 3501 data[2] = _lcd_bus;
wim 37:ce348c002929 3502
wim 37:ce348c002929 3503 _setEnableBit(true); // set E
wim 37:ce348c002929 3504 _setDataBits(value); // set data low
wim 37:ce348c002929 3505 data[3] = _lcd_bus;
wim 37:ce348c002929 3506
wim 37:ce348c002929 3507 _setEnableBit(false); // clear E
wim 37:ce348c002929 3508 data[4] = _lcd_bus;
wim 37:ce348c002929 3509
wim 37:ce348c002929 3510 // write the packed data to the I2C portexpander
vm2m 42:14e1718fba52 3511 _i2c->write(_slaveAddress, data, 5);
vm2m 42:14e1718fba52 3512 #elif (PCA9538==1)
vm2m 42:14e1718fba52 3513 // PCA9538 portexpander
vm2m 42:14e1718fba52 3514
vm2m 42:14e1718fba52 3515 data[0] = PCA_OUTPUT; // set registeraddres
vm2m 42:14e1718fba52 3516 // Note: no increment so all data will go to GPIO register
vm2m 42:14e1718fba52 3517
vm2m 42:14e1718fba52 3518 _setEnableBit(true); // set E
vm2m 42:14e1718fba52 3519 _setDataBits(value >> 4); // set data high
vm2m 42:14e1718fba52 3520 data[1] = _lcd_bus;
vm2m 42:14e1718fba52 3521
vm2m 42:14e1718fba52 3522 _setEnableBit(false); // clear E
vm2m 42:14e1718fba52 3523 data[2] = _lcd_bus;
vm2m 42:14e1718fba52 3524
vm2m 42:14e1718fba52 3525 _setEnableBit(true); // set E
vm2m 42:14e1718fba52 3526 _setDataBits(value); // set data low
vm2m 42:14e1718fba52 3527 data[3] = _lcd_bus;
vm2m 42:14e1718fba52 3528
vm2m 42:14e1718fba52 3529 _setEnableBit(false); // clear E
vm2m 42:14e1718fba52 3530 data[4] = _lcd_bus;
vm2m 42:14e1718fba52 3531
vm2m 42:14e1718fba52 3532 // write the packed data to the I2C portexpander
vm2m 42:14e1718fba52 3533 _i2c->write(_slaveAddress, data, 5);
wim 37:ce348c002929 3534 #else
wim 37:ce348c002929 3535 // PCF8574 of PCF8574A portexpander
wim 37:ce348c002929 3536
wim 37:ce348c002929 3537 _setEnableBit(true); // set E
wim 37:ce348c002929 3538 _setDataBits(value >> 4); // set data high
wim 37:ce348c002929 3539 data[0] = _lcd_bus;
wim 37:ce348c002929 3540
wim 37:ce348c002929 3541 _setEnableBit(false); // clear E
wim 37:ce348c002929 3542 data[1] = _lcd_bus;
wim 37:ce348c002929 3543
wim 37:ce348c002929 3544 _setEnableBit(true); // set E
wim 37:ce348c002929 3545 _setDataBits(value); // set data low
wim 37:ce348c002929 3546 data[2] = _lcd_bus;
wim 37:ce348c002929 3547
wim 37:ce348c002929 3548 _setEnableBit(false); // clear E
wim 37:ce348c002929 3549 data[3] = _lcd_bus;
wim 37:ce348c002929 3550
wim 37:ce348c002929 3551 // write the packed data to the I2C portexpander
wim 37:ce348c002929 3552 _i2c->write(_slaveAddress, data, 4);
wim 37:ce348c002929 3553 #endif
wim 37:ce348c002929 3554 }
wim 37:ce348c002929 3555
wim 37:ce348c002929 3556 #endif /* I2C Expander PCF8574/MCP23008 */
wim 37:ce348c002929 3557 //---------- End TextLCD_I2C ------------
wim 37:ce348c002929 3558
wim 37:ce348c002929 3559
wim 37:ce348c002929 3560 //--------- Start TextLCD_SPI -----------
wim 37:ce348c002929 3561 #if(LCD_SPI == 1) /* SPI Expander SN74595 */
wim 37:ce348c002929 3562
wim 37:ce348c002929 3563 /** Create a TextLCD interface using an SPI 74595 portexpander
wim 37:ce348c002929 3564 *
wim 37:ce348c002929 3565 * @param spi SPI Bus
wim 37:ce348c002929 3566 * @param cs chip select pin (active low)
wim 37:ce348c002929 3567 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 37:ce348c002929 3568 * @param ctrl LCD controller (default = HD44780)
wim 37:ce348c002929 3569 */
wim 37:ce348c002929 3570 TextLCD_SPI::TextLCD_SPI(SPI *spi, PinName cs, LCDType type, LCDCtrl ctrl) :
wim 37:ce348c002929 3571 TextLCD_Base(type, ctrl),
wim 37:ce348c002929 3572 _spi(spi),
wim 38:cbe275b0b647 3573 _cs(cs) {
wim 37:ce348c002929 3574 // Init cs
wim 37:ce348c002929 3575 _cs = 1;
wim 37:ce348c002929 3576
wim 37:ce348c002929 3577 // Setup the spi for 8 bit data, low steady state clock,
wim 37:ce348c002929 3578 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 37:ce348c002929 3579 _spi->format(8,0);
wim 37:ce348c002929 3580 _spi->frequency(500000);
wim 37:ce348c002929 3581 //_spi.frequency(1000000);
wim 37:ce348c002929 3582
wim 38:cbe275b0b647 3583 wait_ms(100); // Wait 100ms to ensure LCD powered up
wim 38:cbe275b0b647 3584
wim 37:ce348c002929 3585 // Init the portexpander bus
wim 38:cbe275b0b647 3586 _lcd_bus = LCD_BUS_SPI_DEF;
wim 37:ce348c002929 3587
wim 37:ce348c002929 3588 // write the new data to the portexpander
wim 37:ce348c002929 3589 _cs = 0;
wim 37:ce348c002929 3590 _spi->write(_lcd_bus);
wim 37:ce348c002929 3591 _cs = 1;
wim 37:ce348c002929 3592
wim 37:ce348c002929 3593 _init(_LCD_DL_4); // Set Datalength to 4 bit for all serial expander interfaces
wim 37:ce348c002929 3594 }
wim 37:ce348c002929 3595
wim 37:ce348c002929 3596 // Set E pin (or E2 pin)
wim 37:ce348c002929 3597 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 37:ce348c002929 3598 void TextLCD_SPI::_setEnable(bool value) {
wim 37:ce348c002929 3599
wim 37:ce348c002929 3600 if(_ctrl_idx==_LCDCtrl_0) {
wim 37:ce348c002929 3601 if (value) {
wim 38:cbe275b0b647 3602 _lcd_bus |= LCD_BUS_SPI_E; // Set E bit
wim 37:ce348c002929 3603 }
wim 37:ce348c002929 3604 else {
wim 38:cbe275b0b647 3605 _lcd_bus &= ~LCD_BUS_SPI_E; // Reset E bit
wim 37:ce348c002929 3606 }
wim 37:ce348c002929 3607 }
wim 37:ce348c002929 3608 else {
wim 37:ce348c002929 3609 if (value) {
wim 38:cbe275b0b647 3610 _lcd_bus |= LCD_BUS_SPI_E2; // Set E2 bit
wim 37:ce348c002929 3611 }
wim 37:ce348c002929 3612 else {
wim 38:cbe275b0b647 3613 _lcd_bus &= ~LCD_BUS_SPI_E2; // Reset E2 bit
wim 37:ce348c002929 3614 }
wim 37:ce348c002929 3615 }
wim 37:ce348c002929 3616
wim 37:ce348c002929 3617 // write the new data to the SPI portexpander
wim 37:ce348c002929 3618 _cs = 0;
wim 37:ce348c002929 3619 _spi->write(_lcd_bus);
wim 37:ce348c002929 3620 _cs = 1;
wim 37:ce348c002929 3621 }
wim 37:ce348c002929 3622
wim 37:ce348c002929 3623 // Set RS pin
wim 37:ce348c002929 3624 // Used for mbed pins, I2C bus expander or SPI shiftregister and SPI_N
wim 37:ce348c002929 3625 void TextLCD_SPI::_setRS(bool value) {
wim 37:ce348c002929 3626
wim 37:ce348c002929 3627 if (value) {
wim 38:cbe275b0b647 3628 _lcd_bus |= LCD_BUS_SPI_RS; // Set RS bit
wim 37:ce348c002929 3629 }
wim 37:ce348c002929 3630 else {
wim 38:cbe275b0b647 3631 _lcd_bus &= ~LCD_BUS_SPI_RS; // Reset RS bit
wim 37:ce348c002929 3632 }
wim 37:ce348c002929 3633
wim 37:ce348c002929 3634 // write the new data to the SPI portexpander
wim 37:ce348c002929 3635 _cs = 0;
wim 37:ce348c002929 3636 _spi->write(_lcd_bus);
wim 37:ce348c002929 3637 _cs = 1;
wim 37:ce348c002929 3638 }
wim 37:ce348c002929 3639
wim 37:ce348c002929 3640 // Set BL pin
wim 37:ce348c002929 3641 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 37:ce348c002929 3642 void TextLCD_SPI::_setBL(bool value) {
wim 37:ce348c002929 3643
wim 37:ce348c002929 3644 if (value) {
wim 38:cbe275b0b647 3645 _lcd_bus |= LCD_BUS_SPI_BL; // Set BL bit
wim 37:ce348c002929 3646 }
wim 37:ce348c002929 3647 else {
wim 38:cbe275b0b647 3648 _lcd_bus &= ~LCD_BUS_SPI_BL; // Reset BL bit
wim 37:ce348c002929 3649 }
wim 37:ce348c002929 3650
wim 37:ce348c002929 3651 // write the new data to the SPI portexpander
wim 37:ce348c002929 3652 _cs = 0;
wim 37:ce348c002929 3653 _spi->write(_lcd_bus);
wim 37:ce348c002929 3654 _cs = 1;
wim 37:ce348c002929 3655 }
wim 21:9eb628d9e164 3656
wim 21:9eb628d9e164 3657 // Place the 4bit data on the databus
wim 37:ce348c002929 3658 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 37:ce348c002929 3659 void TextLCD_SPI::_setData(int value) {
wim 22:35742ec80c24 3660
wim 22:35742ec80c24 3661 // Set bit by bit to support any mapping of expander portpins to LCD pins
wim 37:ce348c002929 3662 if (value & 0x01) {
wim 38:cbe275b0b647 3663 _lcd_bus |= LCD_BUS_SPI_D4; // Set Databit
wim 26:bd897a001012 3664 }
wim 37:ce348c002929 3665 else {
wim 38:cbe275b0b647 3666 _lcd_bus &= ~LCD_BUS_SPI_D4; // Reset Databit
wim 37:ce348c002929 3667 }
wim 37:ce348c002929 3668
wim 37:ce348c002929 3669 if (value & 0x02) {
wim 38:cbe275b0b647 3670 _lcd_bus |= LCD_BUS_SPI_D5; // Set Databit
wim 26:bd897a001012 3671 }
wim 26:bd897a001012 3672 else {
wim 38:cbe275b0b647 3673 _lcd_bus &= ~LCD_BUS_SPI_D5; // Reset Databit
wim 37:ce348c002929 3674 }
wim 37:ce348c002929 3675
wim 37:ce348c002929 3676 if (value & 0x04) {
wim 38:cbe275b0b647 3677 _lcd_bus |= LCD_BUS_SPI_D6; // Set Databit
wim 26:bd897a001012 3678 }
wim 37:ce348c002929 3679 else {
wim 38:cbe275b0b647 3680 _lcd_bus &= ~LCD_BUS_SPI_D6; // Reset Databit
wim 37:ce348c002929 3681 }
wim 37:ce348c002929 3682
wim 37:ce348c002929 3683 if (value & 0x08) {
wim 38:cbe275b0b647 3684 _lcd_bus |= LCD_BUS_SPI_D7; // Set Databit
wim 26:bd897a001012 3685 }
wim 26:bd897a001012 3686 else {
wim 38:cbe275b0b647 3687 _lcd_bus &= ~LCD_BUS_SPI_D7; // Reset Databit
wim 26:bd897a001012 3688 }
wim 21:9eb628d9e164 3689
wim 37:ce348c002929 3690 // write the new data to the SPI portexpander
wim 37:ce348c002929 3691 _cs = 0;
wim 37:ce348c002929 3692 _spi->write(_lcd_bus);
wim 37:ce348c002929 3693 _cs = 1;
wim 22:35742ec80c24 3694 }
wim 21:9eb628d9e164 3695
wim 37:ce348c002929 3696 #endif /* SPI Expander SN74595 */
wim 37:ce348c002929 3697 //---------- End TextLCD_SPI ------------
wim 21:9eb628d9e164 3698
wim 21:9eb628d9e164 3699
wim 28:30fa94f7341c 3700 //--------- Start TextLCD_I2C_N ---------
wim 34:e5a0dcb43ecc 3701 #if(LCD_I2C_N == 1) /* Native I2C */
wim 28:30fa94f7341c 3702
wim 28:30fa94f7341c 3703 /** Create a TextLCD interface using a controller with native I2C interface
wim 28:30fa94f7341c 3704 *
wim 28:30fa94f7341c 3705 * @param i2c I2C Bus
wim 28:30fa94f7341c 3706 * @param deviceAddress I2C slave address (default = 0x7C)
wim 28:30fa94f7341c 3707 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 28:30fa94f7341c 3708 * @param bl Backlight control line (optional, default = NC)
wim 28:30fa94f7341c 3709 * @param ctrl LCD controller (default = ST7032_3V3)
wim 28:30fa94f7341c 3710 */
wim 28:30fa94f7341c 3711 TextLCD_I2C_N::TextLCD_I2C_N(I2C *i2c, char deviceAddress, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 28:30fa94f7341c 3712 TextLCD_Base(type, ctrl),
wim 32:59c4b8f648d4 3713
wim 33:900a94bc7585 3714 _i2c(i2c){
wim 30:033048611c01 3715
wim 28:30fa94f7341c 3716 _slaveAddress = deviceAddress & 0xFE;
wim 28:30fa94f7341c 3717
wim 28:30fa94f7341c 3718 // Setup the I2C bus
wim 29:a3663151aa65 3719 // The max bitrate for ST7032i is 400kbit, lets stick to default here
wim 29:a3663151aa65 3720 _i2c->frequency(100000);
wim 32:59c4b8f648d4 3721
wim 30:033048611c01 3722
wim 28:30fa94f7341c 3723 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 28:30fa94f7341c 3724 if (bl != NC) {
wim 28:30fa94f7341c 3725 _bl = new DigitalOut(bl); //Construct new pin
wim 28:30fa94f7341c 3726 _bl->write(0); //Deactivate
wim 28:30fa94f7341c 3727 }
wim 28:30fa94f7341c 3728 else {
wim 28:30fa94f7341c 3729 // No Hardware Backlight pin
wim 28:30fa94f7341c 3730 _bl = NULL; //Construct dummy pin
wim 28:30fa94f7341c 3731 }
wim 28:30fa94f7341c 3732
wim 30:033048611c01 3733 //Sanity check
wim 30:033048611c01 3734 if (_ctrl & LCD_C_I2C) {
wim 36:9f5f86dfd44a 3735 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 30:033048611c01 3736 }
wim 30:033048611c01 3737 else {
wim 30:033048611c01 3738 error("Error: LCD Controller type does not support native I2C interface\n\r");
wim 30:033048611c01 3739 }
wim 28:30fa94f7341c 3740 }
wim 28:30fa94f7341c 3741
wim 28:30fa94f7341c 3742 TextLCD_I2C_N::~TextLCD_I2C_N() {
wim 28:30fa94f7341c 3743 if (_bl != NULL) {delete _bl;} // BL pin
wim 28:30fa94f7341c 3744 }
wim 28:30fa94f7341c 3745
wim 28:30fa94f7341c 3746 // Not used in this mode
wim 28:30fa94f7341c 3747 void TextLCD_I2C_N::_setEnable(bool value) {
wim 28:30fa94f7341c 3748 }
wim 28:30fa94f7341c 3749
wim 28:30fa94f7341c 3750 // Set RS pin
wim 28:30fa94f7341c 3751 // Used for mbed pins, I2C bus expander or SPI shiftregister and native I2C or SPI
wim 28:30fa94f7341c 3752 void TextLCD_I2C_N::_setRS(bool value) {
wim 30:033048611c01 3753 // The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 3754 // Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
wim 30:033048611c01 3755 // Co RS RW 0 0 0 0 0 command or data
wim 30:033048611c01 3756 //
wim 30:033048611c01 3757 // C0=1 indicates that another controlbyte will follow after the next data or command byte
wim 30:033048611c01 3758 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 3759 // RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
wim 30:033048611c01 3760 // Many native I2C controllers dont support this option and it is not used by this lib.
wim 30:033048611c01 3761 //
wim 30:033048611c01 3762
wim 28:30fa94f7341c 3763 if (value) {
wim 28:30fa94f7341c 3764 _controlbyte = 0x40; // Next byte is data, No more control bytes will follow
wim 28:30fa94f7341c 3765 }
wim 28:30fa94f7341c 3766 else {
wim 28:30fa94f7341c 3767 _controlbyte = 0x00; // Next byte is command, No more control bytes will follow
wim 28:30fa94f7341c 3768 }
wim 28:30fa94f7341c 3769 }
wim 28:30fa94f7341c 3770
wim 28:30fa94f7341c 3771 // Set BL pin
wim 28:30fa94f7341c 3772 void TextLCD_I2C_N::_setBL(bool value) {
wim 28:30fa94f7341c 3773 if (_bl) {
wim 28:30fa94f7341c 3774 _bl->write(value);
wim 28:30fa94f7341c 3775 }
wim 28:30fa94f7341c 3776 }
wim 29:a3663151aa65 3777
wim 29:a3663151aa65 3778 // Not used in this mode
wim 29:a3663151aa65 3779 void TextLCD_I2C_N::_setData(int value) {
wim 29:a3663151aa65 3780 }
wim 29:a3663151aa65 3781
wim 28:30fa94f7341c 3782 // Write a byte using I2C
wim 28:30fa94f7341c 3783 void TextLCD_I2C_N::_writeByte(int value) {
wim 30:033048611c01 3784 // The controlbyte defines the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 3785 // Start Slaveaddress+RW b7 b6 b5 b4 b3 b2 b1 b0 b7...........b0 Stop
wim 30:033048611c01 3786 // Co RS RW 0 0 0 0 0 command or data
wim 30:033048611c01 3787 //
wim 30:033048611c01 3788 // C0=1 indicates that another controlbyte will follow after the next data or command byte
wim 30:033048611c01 3789 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 3790 // RW=0 means write to controller. RW=1 means that controller will be read from after the next command.
wim 30:033048611c01 3791 // Many native I2C controllers dont support this option and it is not used by this lib.
wim 30:033048611c01 3792 //
wim 28:30fa94f7341c 3793 char data[] = {_controlbyte, value};
wim 28:30fa94f7341c 3794
wim 32:59c4b8f648d4 3795 #if(LCD_I2C_ACK==1)
wim 32:59c4b8f648d4 3796 //Controllers that support ACK
wim 30:033048611c01 3797 _i2c->write(_slaveAddress, data, 2);
wim 32:59c4b8f648d4 3798 #else
wim 32:59c4b8f648d4 3799 //Controllers that dont support ACK
wim 37:ce348c002929 3800 //Note: This may be issue with some mbed platforms that dont fully/correctly support I2C byte operations.
wim 32:59c4b8f648d4 3801 _i2c->start();
wim 32:59c4b8f648d4 3802 _i2c->write(_slaveAddress);
wim 32:59c4b8f648d4 3803 _i2c->write(data[0]);
wim 32:59c4b8f648d4 3804 _i2c->write(data[1]);
wim 32:59c4b8f648d4 3805 _i2c->stop();
wim 32:59c4b8f648d4 3806 #endif
wim 28:30fa94f7341c 3807 }
wim 34:e5a0dcb43ecc 3808 #endif /* Native I2C */
wim 28:30fa94f7341c 3809 //-------- End TextLCD_I2C_N ------------
wim 28:30fa94f7341c 3810
wim 28:30fa94f7341c 3811
wim 25:6162b31128c9 3812 //--------- Start TextLCD_SPI_N ---------
wim 34:e5a0dcb43ecc 3813 #if(LCD_SPI_N == 1) /* Native SPI bus */
wim 30:033048611c01 3814 /** Create a TextLCD interface using a controller with a native SPI4 interface
Sissors 24:fb3399713710 3815 *
Sissors 24:fb3399713710 3816 * @param spi SPI Bus
Sissors 24:fb3399713710 3817 * @param cs chip select pin (active low)
wim 25:6162b31128c9 3818 * @param rs Instruction/data control line
Sissors 24:fb3399713710 3819 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 25:6162b31128c9 3820 * @param bl Backlight control line (optional, default = NC)
wim 26:bd897a001012 3821 * @param ctrl LCD controller (default = ST7032_3V3)
wim 25:6162b31128c9 3822 */
wim 25:6162b31128c9 3823 TextLCD_SPI_N::TextLCD_SPI_N(SPI *spi, PinName cs, PinName rs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 25:6162b31128c9 3824 TextLCD_Base(type, ctrl),
wim 25:6162b31128c9 3825 _spi(spi),
wim 25:6162b31128c9 3826 _cs(cs),
wim 25:6162b31128c9 3827 _rs(rs) {
Sissors 24:fb3399713710 3828
wim 32:59c4b8f648d4 3829 // Init CS
wim 32:59c4b8f648d4 3830 _cs = 1;
wim 32:59c4b8f648d4 3831
wim 36:9f5f86dfd44a 3832 // Setup the spi for 8 bit data, high steady state clock,
wim 36:9f5f86dfd44a 3833 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 36:9f5f86dfd44a 3834 // _spi->format(8,3);
wim 37:ce348c002929 3835 // _spi->frequency(500000);
wim 36:9f5f86dfd44a 3836 // _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3837
Sissors 24:fb3399713710 3838 // Setup the spi for 8 bit data, low steady state clock,
Sissors 24:fb3399713710 3839 // rising edge capture, with a 500KHz or 1MHz clock rate
Sissors 24:fb3399713710 3840 _spi->format(8,0);
wim 36:9f5f86dfd44a 3841 // _spi->frequency(500000);
Sissors 24:fb3399713710 3842 _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3843
Sissors 24:fb3399713710 3844 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
Sissors 24:fb3399713710 3845 if (bl != NC) {
Sissors 24:fb3399713710 3846 _bl = new DigitalOut(bl); //Construct new pin
Sissors 24:fb3399713710 3847 _bl->write(0); //Deactivate
Sissors 24:fb3399713710 3848 }
Sissors 24:fb3399713710 3849 else {
Sissors 24:fb3399713710 3850 // No Hardware Backlight pin
Sissors 24:fb3399713710 3851 _bl = NULL; //Construct dummy pin
Sissors 24:fb3399713710 3852 }
wim 30:033048611c01 3853
wim 30:033048611c01 3854 //Sanity check
wim 30:033048611c01 3855 if (_ctrl & LCD_C_SPI4) {
wim 36:9f5f86dfd44a 3856 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 36:9f5f86dfd44a 3857 // ST7070 must set datalength to 8 bits!
wim 30:033048611c01 3858 }
wim 30:033048611c01 3859 else {
wim 30:033048611c01 3860 error("Error: LCD Controller type does not support native SPI4 interface\n\r");
wim 30:033048611c01 3861 }
Sissors 24:fb3399713710 3862 }
Sissors 24:fb3399713710 3863
wim 25:6162b31128c9 3864 TextLCD_SPI_N::~TextLCD_SPI_N() {
Sissors 24:fb3399713710 3865 if (_bl != NULL) {delete _bl;} // BL pin
Sissors 24:fb3399713710 3866 }
Sissors 24:fb3399713710 3867
Sissors 24:fb3399713710 3868 // Not used in this mode
wim 25:6162b31128c9 3869 void TextLCD_SPI_N::_setEnable(bool value) {
Sissors 24:fb3399713710 3870 }
Sissors 24:fb3399713710 3871
Sissors 24:fb3399713710 3872 // Set RS pin
wim 36:9f5f86dfd44a 3873 // Used for mbed pins, I2C bus expander or SPI shiftregister, SPI_N
wim 25:6162b31128c9 3874 void TextLCD_SPI_N::_setRS(bool value) {
Sissors 24:fb3399713710 3875 _rs = value;
Sissors 24:fb3399713710 3876 }
Sissors 24:fb3399713710 3877
Sissors 24:fb3399713710 3878 // Set BL pin
wim 25:6162b31128c9 3879 void TextLCD_SPI_N::_setBL(bool value) {
wim 26:bd897a001012 3880 if (_bl) {
Sissors 24:fb3399713710 3881 _bl->write(value);
wim 26:bd897a001012 3882 }
Sissors 24:fb3399713710 3883 }
Sissors 24:fb3399713710 3884
wim 29:a3663151aa65 3885 // Not used in this mode
wim 29:a3663151aa65 3886 void TextLCD_SPI_N::_setData(int value) {
wim 29:a3663151aa65 3887 }
wim 29:a3663151aa65 3888
Sissors 24:fb3399713710 3889 // Write a byte using SPI
wim 25:6162b31128c9 3890 void TextLCD_SPI_N::_writeByte(int value) {
Sissors 24:fb3399713710 3891 _cs = 0;
Sissors 24:fb3399713710 3892 wait_us(1);
Sissors 24:fb3399713710 3893 _spi->write(value);
Sissors 24:fb3399713710 3894 wait_us(1);
Sissors 24:fb3399713710 3895 _cs = 1;
Sissors 24:fb3399713710 3896 }
wim 34:e5a0dcb43ecc 3897 #endif /* Native SPI bus */
wim 25:6162b31128c9 3898 //-------- End TextLCD_SPI_N ------------
wim 21:9eb628d9e164 3899
wim 21:9eb628d9e164 3900
wim 36:9f5f86dfd44a 3901 //-------- Start TextLCD_SPI_N_3_8 --------
wim 36:9f5f86dfd44a 3902 #if(LCD_SPI_N_3_8 == 1) /* Native SPI bus */
wim 36:9f5f86dfd44a 3903
wim 36:9f5f86dfd44a 3904 /** Create a TextLCD interface using a controller with a native SPI3 8 bits interface
wim 36:9f5f86dfd44a 3905 * This mode is supported by ST7070. Note that implementation in TexTLCD is not very efficient due to
wim 36:9f5f86dfd44a 3906 * structure of the TextLCD library: each databyte is written separately and requires a separate 'count command' set to 1 byte.
wim 36:9f5f86dfd44a 3907 *
wim 36:9f5f86dfd44a 3908 * @param spi SPI Bus
wim 36:9f5f86dfd44a 3909 * @param cs chip select pin (active low)
wim 36:9f5f86dfd44a 3910 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 36:9f5f86dfd44a 3911 * @param bl Backlight control line (optional, default = NC)
wim 36:9f5f86dfd44a 3912 * @param ctrl LCD controller (default = ST7070)
wim 36:9f5f86dfd44a 3913 */
wim 36:9f5f86dfd44a 3914 TextLCD_SPI_N_3_8::TextLCD_SPI_N_3_8(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 36:9f5f86dfd44a 3915 TextLCD_Base(type, ctrl),
wim 36:9f5f86dfd44a 3916 _spi(spi),
wim 36:9f5f86dfd44a 3917 _cs(cs) {
wim 36:9f5f86dfd44a 3918
wim 36:9f5f86dfd44a 3919 // Init CS
wim 36:9f5f86dfd44a 3920 _cs = 1;
wim 36:9f5f86dfd44a 3921
wim 36:9f5f86dfd44a 3922 // Setup the spi for 8 bit data, high steady state clock,
wim 36:9f5f86dfd44a 3923 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 36:9f5f86dfd44a 3924 // _spi->format(8,3);
wim 37:ce348c002929 3925 // _spi->frequency(500000);
wim 36:9f5f86dfd44a 3926 // _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3927
wim 36:9f5f86dfd44a 3928 // Setup the spi for 8 bit data, low steady state clock,
wim 36:9f5f86dfd44a 3929 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 36:9f5f86dfd44a 3930 _spi->format(8,0);
wim 36:9f5f86dfd44a 3931 // _spi->frequency(500000);
wim 36:9f5f86dfd44a 3932 _spi->frequency(1000000);
wim 36:9f5f86dfd44a 3933
wim 36:9f5f86dfd44a 3934
wim 36:9f5f86dfd44a 3935 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 36:9f5f86dfd44a 3936 if (bl != NC) {
wim 36:9f5f86dfd44a 3937 _bl = new DigitalOut(bl); //Construct new pin
wim 36:9f5f86dfd44a 3938 _bl->write(0); //Deactivate
wim 36:9f5f86dfd44a 3939 }
wim 36:9f5f86dfd44a 3940 else {
wim 36:9f5f86dfd44a 3941 // No Hardware Backlight pin
wim 36:9f5f86dfd44a 3942 _bl = NULL; //Construct dummy pin
wim 36:9f5f86dfd44a 3943 }
wim 36:9f5f86dfd44a 3944
wim 36:9f5f86dfd44a 3945 //Sanity check
wim 36:9f5f86dfd44a 3946 if (_ctrl & LCD_C_SPI3_8) {
wim 36:9f5f86dfd44a 3947 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 36:9f5f86dfd44a 3948 }
wim 36:9f5f86dfd44a 3949 else {
wim 36:9f5f86dfd44a 3950 error("Error: LCD Controller type does not support native SPI3 8 bits interface\n\r");
wim 36:9f5f86dfd44a 3951 }
wim 36:9f5f86dfd44a 3952 }
wim 36:9f5f86dfd44a 3953
wim 36:9f5f86dfd44a 3954 TextLCD_SPI_N_3_8::~TextLCD_SPI_N_3_8() {
wim 36:9f5f86dfd44a 3955 if (_bl != NULL) {delete _bl;} // BL pin
wim 36:9f5f86dfd44a 3956 }
wim 36:9f5f86dfd44a 3957
wim 36:9f5f86dfd44a 3958 // Not used in this mode
wim 36:9f5f86dfd44a 3959 void TextLCD_SPI_N_3_8::_setEnable(bool value) {
wim 36:9f5f86dfd44a 3960 }
wim 36:9f5f86dfd44a 3961
wim 36:9f5f86dfd44a 3962 // Used for mbed pins, I2C bus expander or SPI shiftregister, SPI_N
wim 36:9f5f86dfd44a 3963 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 36:9f5f86dfd44a 3964 void TextLCD_SPI_N_3_8::_setRS(bool value) {
wim 36:9f5f86dfd44a 3965
wim 36:9f5f86dfd44a 3966 if (value) {
wim 36:9f5f86dfd44a 3967 _controlbyte = 0x01; // Next byte is data, No more control bytes will follow
wim 36:9f5f86dfd44a 3968 }
wim 36:9f5f86dfd44a 3969 else {
wim 36:9f5f86dfd44a 3970 _controlbyte = 0x00; // Next byte is command, No more control bytes will follow
wim 36:9f5f86dfd44a 3971 }
wim 36:9f5f86dfd44a 3972 }
wim 36:9f5f86dfd44a 3973
wim 36:9f5f86dfd44a 3974 // Set BL pin
wim 36:9f5f86dfd44a 3975 void TextLCD_SPI_N_3_8::_setBL(bool value) {
wim 36:9f5f86dfd44a 3976 if (_bl) {
wim 36:9f5f86dfd44a 3977 _bl->write(value);
wim 36:9f5f86dfd44a 3978 }
wim 36:9f5f86dfd44a 3979 }
wim 36:9f5f86dfd44a 3980
wim 36:9f5f86dfd44a 3981 // Not used in this mode
wim 36:9f5f86dfd44a 3982 void TextLCD_SPI_N_3_8::_setData(int value) {
wim 36:9f5f86dfd44a 3983 }
wim 36:9f5f86dfd44a 3984
wim 36:9f5f86dfd44a 3985 // Write a byte using SPI3 8 bits mode (ST7070)
wim 36:9f5f86dfd44a 3986 void TextLCD_SPI_N_3_8::_writeByte(int value) {
wim 36:9f5f86dfd44a 3987
wim 36:9f5f86dfd44a 3988 if (_controlbyte == 0x00) { // Byte is command
wim 36:9f5f86dfd44a 3989 _cs = 0;
wim 36:9f5f86dfd44a 3990 wait_us(1);
wim 36:9f5f86dfd44a 3991 _spi->write(value);
wim 36:9f5f86dfd44a 3992 wait_us(1);
wim 36:9f5f86dfd44a 3993 _cs = 1;
wim 36:9f5f86dfd44a 3994 }
wim 36:9f5f86dfd44a 3995 else { // Byte is data
wim 36:9f5f86dfd44a 3996 // Select Extended Instr Set
wim 36:9f5f86dfd44a 3997 _cs = 0;
wim 36:9f5f86dfd44a 3998 wait_us(1);
wim 36:9f5f86dfd44a 3999 _spi->write(0x20 | _function | 0x04); // Set function, 0 0 1 DL N EXT=1 x x (Select Instr Set = 1));
wim 36:9f5f86dfd44a 4000 wait_us(1);
wim 36:9f5f86dfd44a 4001 _cs = 1;
wim 36:9f5f86dfd44a 4002
wim 36:9f5f86dfd44a 4003 wait_us(40); // Wait until command has finished...
wim 36:9f5f86dfd44a 4004
wim 36:9f5f86dfd44a 4005 // Set Count to 1 databyte
wim 36:9f5f86dfd44a 4006 _cs = 0;
wim 36:9f5f86dfd44a 4007 wait_us(1);
wim 36:9f5f86dfd44a 4008 _spi->write(0x80); // Set display data length, 1 L6 L5 L4 L3 L2 L1 L0 (Instr Set = 1)
wim 36:9f5f86dfd44a 4009 wait_us(1);
wim 36:9f5f86dfd44a 4010 _cs = 1;
wim 36:9f5f86dfd44a 4011
wim 36:9f5f86dfd44a 4012 wait_us(40);
wim 36:9f5f86dfd44a 4013
wim 36:9f5f86dfd44a 4014 // Write 1 databyte
wim 36:9f5f86dfd44a 4015 _cs = 0;
wim 36:9f5f86dfd44a 4016 wait_us(1);
wim 36:9f5f86dfd44a 4017 _spi->write(value); // Write data (Instr Set = 1)
wim 36:9f5f86dfd44a 4018 wait_us(1);
wim 36:9f5f86dfd44a 4019 _cs = 1;
wim 36:9f5f86dfd44a 4020
wim 36:9f5f86dfd44a 4021 wait_us(40);
wim 36:9f5f86dfd44a 4022
wim 36:9f5f86dfd44a 4023 // Select Standard Instr Set
wim 36:9f5f86dfd44a 4024 _cs = 0;
wim 36:9f5f86dfd44a 4025 wait_us(1);
wim 36:9f5f86dfd44a 4026 _spi->write(0x20 | _function); // Set function, 0 0 1 DL N EXT=0 x x (Select Instr Set = 0));
wim 36:9f5f86dfd44a 4027 wait_us(1);
wim 36:9f5f86dfd44a 4028 _cs = 1;
wim 36:9f5f86dfd44a 4029 }
wim 36:9f5f86dfd44a 4030 }
wim 36:9f5f86dfd44a 4031 #endif /* Native SPI bus */
wim 36:9f5f86dfd44a 4032 //------- End TextLCD_SPI_N_3_8 -----------
wim 36:9f5f86dfd44a 4033
wim 36:9f5f86dfd44a 4034
wim 30:033048611c01 4035 //-------- Start TextLCD_SPI_N_3_9 --------
wim 34:e5a0dcb43ecc 4036 #if(LCD_SPI_N_3_9 == 1) /* Native SPI bus */
wim 34:e5a0dcb43ecc 4037 //Code checked out on logic analyser. Not yet tested on hardware..
wim 30:033048611c01 4038
wim 30:033048611c01 4039 /** Create a TextLCD interface using a controller with a native SPI3 9 bits interface
wim 30:033048611c01 4040 *
wim 30:033048611c01 4041 * @param spi SPI Bus
wim 30:033048611c01 4042 * @param cs chip select pin (active low)
wim 30:033048611c01 4043 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 30:033048611c01 4044 * @param bl Backlight control line (optional, default = NC)
wim 30:033048611c01 4045 * @param ctrl LCD controller (default = AIP31068)
wim 30:033048611c01 4046 */
wim 30:033048611c01 4047 TextLCD_SPI_N_3_9::TextLCD_SPI_N_3_9(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 30:033048611c01 4048 TextLCD_Base(type, ctrl),
wim 30:033048611c01 4049 _spi(spi),
wim 33:900a94bc7585 4050 _cs(cs) {
wim 32:59c4b8f648d4 4051
wim 32:59c4b8f648d4 4052 // Init CS
wim 32:59c4b8f648d4 4053 _cs = 1;
wim 32:59c4b8f648d4 4054
wim 34:e5a0dcb43ecc 4055 // Setup the spi for 9 bit data, high steady state clock,
wim 30:033048611c01 4056 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 32:59c4b8f648d4 4057 _spi->format(9,3);
wim 30:033048611c01 4058 _spi->frequency(1000000);
wim 30:033048611c01 4059
wim 30:033048611c01 4060 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 30:033048611c01 4061 if (bl != NC) {
wim 30:033048611c01 4062 _bl = new DigitalOut(bl); //Construct new pin
wim 30:033048611c01 4063 _bl->write(0); //Deactivate
wim 30:033048611c01 4064 }
wim 30:033048611c01 4065 else {
wim 30:033048611c01 4066 // No Hardware Backlight pin
wim 30:033048611c01 4067 _bl = NULL; //Construct dummy pin
wim 30:033048611c01 4068 }
wim 30:033048611c01 4069
wim 30:033048611c01 4070 //Sanity check
wim 36:9f5f86dfd44a 4071 if (_ctrl & LCD_C_SPI3_9) {
wim 36:9f5f86dfd44a 4072 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 30:033048611c01 4073 }
wim 30:033048611c01 4074 else {
wim 30:033048611c01 4075 error("Error: LCD Controller type does not support native SPI3 9 bits interface\n\r");
wim 30:033048611c01 4076 }
wim 30:033048611c01 4077 }
wim 30:033048611c01 4078
wim 30:033048611c01 4079 TextLCD_SPI_N_3_9::~TextLCD_SPI_N_3_9() {
wim 30:033048611c01 4080 if (_bl != NULL) {delete _bl;} // BL pin
wim 30:033048611c01 4081 }
wim 30:033048611c01 4082
wim 30:033048611c01 4083 // Not used in this mode
wim 30:033048611c01 4084 void TextLCD_SPI_N_3_9::_setEnable(bool value) {
wim 30:033048611c01 4085 }
wim 30:033048611c01 4086
wim 30:033048611c01 4087 // Set RS pin
wim 30:033048611c01 4088 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 30:033048611c01 4089 void TextLCD_SPI_N_3_9::_setRS(bool value) {
wim 30:033048611c01 4090 // The controlbits define the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 4091 // b8 b7...........b0
wim 30:033048611c01 4092 // RS command or data
wim 30:033048611c01 4093 //
wim 30:033048611c01 4094 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 4095 //
wim 30:033048611c01 4096
wim 30:033048611c01 4097 if (value) {
wim 30:033048611c01 4098 _controlbyte = 0x01; // Next byte is data
wim 30:033048611c01 4099 }
wim 30:033048611c01 4100 else {
wim 30:033048611c01 4101 _controlbyte = 0x00; // Next byte is command
wim 34:e5a0dcb43ecc 4102 }
wim 30:033048611c01 4103 }
wim 30:033048611c01 4104
wim 30:033048611c01 4105 // Set BL pin
wim 30:033048611c01 4106 void TextLCD_SPI_N_3_9::_setBL(bool value) {
wim 30:033048611c01 4107 if (_bl) {
wim 30:033048611c01 4108 _bl->write(value);
wim 30:033048611c01 4109 }
wim 30:033048611c01 4110 }
wim 30:033048611c01 4111
wim 30:033048611c01 4112 // Not used in this mode
wim 30:033048611c01 4113 void TextLCD_SPI_N_3_9::_setData(int value) {
wim 30:033048611c01 4114 }
wim 30:033048611c01 4115
wim 30:033048611c01 4116 // Write a byte using SPI3 9 bits mode
wim 30:033048611c01 4117 void TextLCD_SPI_N_3_9::_writeByte(int value) {
wim 30:033048611c01 4118 _cs = 0;
wim 30:033048611c01 4119 wait_us(1);
wim 30:033048611c01 4120 _spi->write( (_controlbyte << 8) | (value & 0xFF));
wim 30:033048611c01 4121 wait_us(1);
wim 30:033048611c01 4122 _cs = 1;
wim 30:033048611c01 4123 }
wim 34:e5a0dcb43ecc 4124 #endif /* Native SPI bus */
wim 30:033048611c01 4125 //------- End TextLCD_SPI_N_3_9 -----------
wim 34:e5a0dcb43ecc 4126
wim 34:e5a0dcb43ecc 4127
wim 30:033048611c01 4128 //------- Start TextLCD_SPI_N_3_10 --------
wim 34:e5a0dcb43ecc 4129 #if(LCD_SPI_N_3_10 == 1) /* Native SPI bus */
wim 30:033048611c01 4130
wim 30:033048611c01 4131 /** Create a TextLCD interface using a controller with a native SPI3 10 bits interface
wim 30:033048611c01 4132 *
wim 30:033048611c01 4133 * @param spi SPI Bus
wim 30:033048611c01 4134 * @param cs chip select pin (active low)
wim 30:033048611c01 4135 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 30:033048611c01 4136 * @param bl Backlight control line (optional, default = NC)
wim 30:033048611c01 4137 * @param ctrl LCD controller (default = AIP31068)
wim 30:033048611c01 4138 */
wim 30:033048611c01 4139 TextLCD_SPI_N_3_10::TextLCD_SPI_N_3_10(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 30:033048611c01 4140 TextLCD_Base(type, ctrl),
wim 30:033048611c01 4141 _spi(spi),
wim 30:033048611c01 4142 _cs(cs) {
wim 30:033048611c01 4143
wim 32:59c4b8f648d4 4144 // Init CS
wim 32:59c4b8f648d4 4145 _cs = 1;
wim 32:59c4b8f648d4 4146
wim 30:033048611c01 4147 // Setup the spi for 10 bit data, low steady state clock,
wim 30:033048611c01 4148 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 30:033048611c01 4149 _spi->format(10,0);
wim 30:033048611c01 4150 _spi->frequency(1000000);
wim 30:033048611c01 4151
wim 30:033048611c01 4152 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 30:033048611c01 4153 if (bl != NC) {
wim 30:033048611c01 4154 _bl = new DigitalOut(bl); //Construct new pin
wim 30:033048611c01 4155 _bl->write(0); //Deactivate
wim 30:033048611c01 4156 }
wim 30:033048611c01 4157 else {
wim 30:033048611c01 4158 // No Hardware Backlight pin
wim 30:033048611c01 4159 _bl = NULL; //Construct dummy pin
wim 30:033048611c01 4160 }
wim 30:033048611c01 4161
wim 30:033048611c01 4162 //Sanity check
wim 30:033048611c01 4163 if (_ctrl & LCD_C_SPI3_10) {
wim 36:9f5f86dfd44a 4164 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 30:033048611c01 4165 }
wim 30:033048611c01 4166 else {
wim 30:033048611c01 4167 error("Error: LCD Controller type does not support native SPI3 10 bits interface\n\r");
wim 30:033048611c01 4168 }
wim 30:033048611c01 4169 }
wim 30:033048611c01 4170
wim 30:033048611c01 4171 TextLCD_SPI_N_3_10::~TextLCD_SPI_N_3_10() {
wim 30:033048611c01 4172 if (_bl != NULL) {delete _bl;} // BL pin
wim 30:033048611c01 4173 }
wim 30:033048611c01 4174
wim 30:033048611c01 4175 // Not used in this mode
wim 30:033048611c01 4176 void TextLCD_SPI_N_3_10::_setEnable(bool value) {
wim 30:033048611c01 4177 }
wim 30:033048611c01 4178
wim 30:033048611c01 4179 // Set RS pin
wim 30:033048611c01 4180 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 30:033048611c01 4181 void TextLCD_SPI_N_3_10::_setRS(bool value) {
wim 30:033048611c01 4182 // The controlbits define the meaning of the next byte. This next byte can either be data or command.
wim 30:033048611c01 4183 // b9 b8 b7...........b0
wim 30:033048611c01 4184 // RS RW command or data
wim 30:033048611c01 4185 //
wim 30:033048611c01 4186 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 30:033048611c01 4187 // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
wim 30:033048611c01 4188 //
wim 30:033048611c01 4189
wim 30:033048611c01 4190 if (value) {
wim 30:033048611c01 4191 _controlbyte = 0x02; // Next byte is data
wim 30:033048611c01 4192 }
wim 30:033048611c01 4193 else {
wim 30:033048611c01 4194 _controlbyte = 0x00; // Next byte is command
wim 34:e5a0dcb43ecc 4195 }
wim 30:033048611c01 4196 }
wim 30:033048611c01 4197
wim 30:033048611c01 4198 // Set BL pin
wim 30:033048611c01 4199 void TextLCD_SPI_N_3_10::_setBL(bool value) {
wim 30:033048611c01 4200 if (_bl) {
wim 30:033048611c01 4201 _bl->write(value);
wim 30:033048611c01 4202 }
wim 30:033048611c01 4203 }
wim 30:033048611c01 4204
wim 30:033048611c01 4205 // Not used in this mode
wim 30:033048611c01 4206 void TextLCD_SPI_N_3_10::_setData(int value) {
wim 30:033048611c01 4207 }
wim 30:033048611c01 4208
wim 30:033048611c01 4209 // Write a byte using SPI3 10 bits mode
wim 30:033048611c01 4210 void TextLCD_SPI_N_3_10::_writeByte(int value) {
wim 30:033048611c01 4211 _cs = 0;
wim 30:033048611c01 4212 wait_us(1);
wim 30:033048611c01 4213 _spi->write( (_controlbyte << 8) | (value & 0xFF));
wim 30:033048611c01 4214 wait_us(1);
wim 30:033048611c01 4215 _cs = 1;
wim 30:033048611c01 4216 }
wim 34:e5a0dcb43ecc 4217 #endif /* Native SPI bus */
wim 30:033048611c01 4218 //------- End TextLCD_SPI_N_3_10 ----------
wim 34:e5a0dcb43ecc 4219
wim 32:59c4b8f648d4 4220
wim 32:59c4b8f648d4 4221 //------- Start TextLCD_SPI_N_3_16 --------
wim 34:e5a0dcb43ecc 4222 #if(LCD_SPI_N_3_16 == 1) /* Native SPI bus */
wim 32:59c4b8f648d4 4223
wim 32:59c4b8f648d4 4224 /** Create a TextLCD interface using a controller with a native SPI3 16 bits interface
wim 32:59c4b8f648d4 4225 *
wim 32:59c4b8f648d4 4226 * @param spi SPI Bus
wim 32:59c4b8f648d4 4227 * @param cs chip select pin (active low)
wim 32:59c4b8f648d4 4228 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 32:59c4b8f648d4 4229 * @param bl Backlight control line (optional, default = NC)
wim 32:59c4b8f648d4 4230 * @param ctrl LCD controller (default = PT6314)
wim 32:59c4b8f648d4 4231 */
wim 32:59c4b8f648d4 4232 TextLCD_SPI_N_3_16::TextLCD_SPI_N_3_16(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 32:59c4b8f648d4 4233 TextLCD_Base(type, ctrl),
wim 32:59c4b8f648d4 4234 _spi(spi),
wim 32:59c4b8f648d4 4235 _cs(cs) {
wim 32:59c4b8f648d4 4236
wim 32:59c4b8f648d4 4237 // Init CS
wim 32:59c4b8f648d4 4238 _cs = 1;
wim 32:59c4b8f648d4 4239
wim 32:59c4b8f648d4 4240 // Setup the spi for 8 bit data, low steady state clock,
wim 32:59c4b8f648d4 4241 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 32:59c4b8f648d4 4242 _spi->format(8,0);
wim 32:59c4b8f648d4 4243 _spi->frequency(1000000);
wim 32:59c4b8f648d4 4244
wim 32:59c4b8f648d4 4245 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 32:59c4b8f648d4 4246 if (bl != NC) {
wim 32:59c4b8f648d4 4247 _bl = new DigitalOut(bl); //Construct new pin
wim 32:59c4b8f648d4 4248 _bl->write(0); //Deactivate
wim 32:59c4b8f648d4 4249 }
wim 32:59c4b8f648d4 4250 else {
wim 32:59c4b8f648d4 4251 // No Hardware Backlight pin
wim 32:59c4b8f648d4 4252 _bl = NULL; //Construct dummy pin
wim 32:59c4b8f648d4 4253 }
wim 32:59c4b8f648d4 4254
wim 32:59c4b8f648d4 4255 //Sanity check
wim 32:59c4b8f648d4 4256 if (_ctrl & LCD_C_SPI3_16) {
wim 36:9f5f86dfd44a 4257 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 32:59c4b8f648d4 4258 }
wim 32:59c4b8f648d4 4259 else {
wim 32:59c4b8f648d4 4260 error("Error: LCD Controller type does not support native SPI3 16 bits interface\n\r");
wim 32:59c4b8f648d4 4261 }
wim 32:59c4b8f648d4 4262 }
wim 32:59c4b8f648d4 4263
wim 32:59c4b8f648d4 4264 TextLCD_SPI_N_3_16::~TextLCD_SPI_N_3_16() {
wim 32:59c4b8f648d4 4265 if (_bl != NULL) {delete _bl;} // BL pin
wim 32:59c4b8f648d4 4266 }
wim 32:59c4b8f648d4 4267
wim 32:59c4b8f648d4 4268 // Not used in this mode
wim 32:59c4b8f648d4 4269 void TextLCD_SPI_N_3_16::_setEnable(bool value) {
wim 32:59c4b8f648d4 4270 }
wim 32:59c4b8f648d4 4271
wim 32:59c4b8f648d4 4272 // Set RS pin
wim 32:59c4b8f648d4 4273 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 32:59c4b8f648d4 4274 void TextLCD_SPI_N_3_16::_setRS(bool value) {
wim 32:59c4b8f648d4 4275 // The 16bit mode is split in 2 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next byte.
wim 32:59c4b8f648d4 4276 // The 8 actual bits represent either a data or a command byte.
wim 32:59c4b8f648d4 4277 // b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0
wim 32:59c4b8f648d4 4278 // 1 1 1 1 1 RW RS 0 d7 d6 d5 d4 d3 d2 d1 d0
wim 32:59c4b8f648d4 4279 //
wim 32:59c4b8f648d4 4280 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 32:59c4b8f648d4 4281 // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
wim 32:59c4b8f648d4 4282 //
wim 32:59c4b8f648d4 4283
wim 32:59c4b8f648d4 4284 if (value) {
wim 32:59c4b8f648d4 4285 _controlbyte = 0xFA; // Next byte is data
wim 32:59c4b8f648d4 4286 }
wim 32:59c4b8f648d4 4287 else {
wim 32:59c4b8f648d4 4288 _controlbyte = 0xF8; // Next byte is command
wim 32:59c4b8f648d4 4289 }
wim 32:59c4b8f648d4 4290 }
wim 32:59c4b8f648d4 4291
wim 32:59c4b8f648d4 4292 // Set BL pin
wim 32:59c4b8f648d4 4293 void TextLCD_SPI_N_3_16::_setBL(bool value) {
wim 32:59c4b8f648d4 4294 if (_bl) {
wim 32:59c4b8f648d4 4295 _bl->write(value);
wim 32:59c4b8f648d4 4296 }
wim 32:59c4b8f648d4 4297 }
wim 32:59c4b8f648d4 4298
wim 32:59c4b8f648d4 4299 // Not used in this mode
wim 32:59c4b8f648d4 4300 void TextLCD_SPI_N_3_16::_setData(int value) {
wim 32:59c4b8f648d4 4301 }
wim 34:e5a0dcb43ecc 4302
wim 32:59c4b8f648d4 4303 // Write a byte using SPI3 16 bits mode
wim 32:59c4b8f648d4 4304 void TextLCD_SPI_N_3_16::_writeByte(int value) {
wim 32:59c4b8f648d4 4305 _cs = 0;
wim 32:59c4b8f648d4 4306 wait_us(1);
wim 32:59c4b8f648d4 4307
wim 32:59c4b8f648d4 4308 _spi->write(_controlbyte);
wim 32:59c4b8f648d4 4309
wim 32:59c4b8f648d4 4310 _spi->write(value);
wim 32:59c4b8f648d4 4311
wim 32:59c4b8f648d4 4312 wait_us(1);
wim 32:59c4b8f648d4 4313 _cs = 1;
wim 32:59c4b8f648d4 4314 }
wim 34:e5a0dcb43ecc 4315 #endif /* Native SPI bus */
wim 32:59c4b8f648d4 4316 //------- End TextLCD_SPI_N_3_16 ----------
wim 34:e5a0dcb43ecc 4317
wim 34:e5a0dcb43ecc 4318
wim 32:59c4b8f648d4 4319 //------- Start TextLCD_SPI_N_3_24 --------
wim 34:e5a0dcb43ecc 4320 #if(LCD_SPI_N_3_24 == 1) /* Native SPI bus */
wim 32:59c4b8f648d4 4321
wim 32:59c4b8f648d4 4322 /** Create a TextLCD interface using a controller with a native SPI3 24 bits interface
wim 32:59c4b8f648d4 4323 *
wim 32:59c4b8f648d4 4324 * @param spi SPI Bus
wim 32:59c4b8f648d4 4325 * @param cs chip select pin (active low)
wim 32:59c4b8f648d4 4326 * @param type Sets the panel size/addressing mode (default = LCD16x2)
wim 32:59c4b8f648d4 4327 * @param bl Backlight control line (optional, default = NC)
wim 32:59c4b8f648d4 4328 * @param ctrl LCD controller (default = SSD1803)
wim 32:59c4b8f648d4 4329 */
wim 32:59c4b8f648d4 4330 TextLCD_SPI_N_3_24::TextLCD_SPI_N_3_24(SPI *spi, PinName cs, LCDType type, PinName bl, LCDCtrl ctrl) :
wim 32:59c4b8f648d4 4331 TextLCD_Base(type, ctrl),
wim 32:59c4b8f648d4 4332 _spi(spi),
wim 32:59c4b8f648d4 4333 _cs(cs) {
wim 32:59c4b8f648d4 4334
wim 32:59c4b8f648d4 4335 // Init CS
wim 32:59c4b8f648d4 4336 _cs = 1;
wim 32:59c4b8f648d4 4337
wim 34:e5a0dcb43ecc 4338 // Setup the spi for 8 bit data, high steady state clock,
wim 32:59c4b8f648d4 4339 // rising edge capture, with a 500KHz or 1MHz clock rate
wim 34:e5a0dcb43ecc 4340 _spi->format(8,3);
wim 32:59c4b8f648d4 4341 _spi->frequency(1000000);
wim 32:59c4b8f648d4 4342
wim 32:59c4b8f648d4 4343 // The hardware Backlight pin is optional. Test and make sure whether it exists or not to prevent illegal access.
wim 32:59c4b8f648d4 4344 if (bl != NC) {
wim 32:59c4b8f648d4 4345 _bl = new DigitalOut(bl); //Construct new pin
wim 32:59c4b8f648d4 4346 _bl->write(0); //Deactivate
wim 32:59c4b8f648d4 4347 }
wim 32:59c4b8f648d4 4348 else {
wim 32:59c4b8f648d4 4349 // No Hardware Backlight pin
wim 32:59c4b8f648d4 4350 _bl = NULL; //Construct dummy pin
wim 32:59c4b8f648d4 4351 }
wim 32:59c4b8f648d4 4352
wim 32:59c4b8f648d4 4353 //Sanity check
wim 32:59c4b8f648d4 4354 if (_ctrl & LCD_C_SPI3_24) {
wim 36:9f5f86dfd44a 4355 _init(_LCD_DL_8); // Set Datalength to 8 bit for all native serial interfaces
wim 32:59c4b8f648d4 4356 }
wim 32:59c4b8f648d4 4357 else {
wim 32:59c4b8f648d4 4358 error("Error: LCD Controller type does not support native SPI3 24 bits interface\n\r");
wim 32:59c4b8f648d4 4359 }
wim 32:59c4b8f648d4 4360 }
wim 32:59c4b8f648d4 4361
wim 32:59c4b8f648d4 4362 TextLCD_SPI_N_3_24::~TextLCD_SPI_N_3_24() {
wim 32:59c4b8f648d4 4363 if (_bl != NULL) {delete _bl;} // BL pin
wim 32:59c4b8f648d4 4364 }
wim 32:59c4b8f648d4 4365
wim 32:59c4b8f648d4 4366 // Not used in this mode
wim 32:59c4b8f648d4 4367 void TextLCD_SPI_N_3_24::_setEnable(bool value) {
wim 32:59c4b8f648d4 4368 }
wim 32:59c4b8f648d4 4369
wim 32:59c4b8f648d4 4370 // Set RS pin
wim 32:59c4b8f648d4 4371 // Used for mbed pins, I2C bus expander or SPI shiftregister
wim 32:59c4b8f648d4 4372 void TextLCD_SPI_N_3_24::_setRS(bool value) {
wim 32:59c4b8f648d4 4373 // The 24bit mode is split in 3 bytes. The first byte is for synchronisation and controlbits. The controlbits define the meaning of the next two bytes.
wim 32:59c4b8f648d4 4374 // Each byte encodes 4 actual bits. The 8 actual bits represent either a data or a command byte.
wim 32:59c4b8f648d4 4375 // b23 b22 b21 b20 b19 b18 b17 b16 - b15 b14 b13 b12 b11 b10 b9 b8 - b7 b6 b5 b4 b3 b2 b1 b0
wim 32:59c4b8f648d4 4376 // 1 1 1 1 1 RW RS 0 d0 d1 d2 d3 0 0 0 0 d4 d5 d6 d7 0 0 0 0
wim 32:59c4b8f648d4 4377 //
wim 32:59c4b8f648d4 4378 // RS=1 means that next byte is data, RS=0 means that next byte is command
wim 32:59c4b8f648d4 4379 // RW=0 means that next byte is writen, RW=1 means that next byte is read (not used in this lib)
wim 32:59c4b8f648d4 4380 //
wim 32:59c4b8f648d4 4381 // Note: SPI3_24 expects LSB first. This is inconsistent with regular SPI convention (and hardware) that sends MSB first.
wim 32:59c4b8f648d4 4382
wim 32:59c4b8f648d4 4383 if (value) {
wim 32:59c4b8f648d4 4384 _controlbyte = 0xFA; // Next byte is data
wim 32:59c4b8f648d4 4385 }
wim 32:59c4b8f648d4 4386 else {
wim 32:59c4b8f648d4 4387 _controlbyte = 0xF8; // Next byte is command
wim 34:e5a0dcb43ecc 4388 }
wim 32:59c4b8f648d4 4389 }
wim 32:59c4b8f648d4 4390
wim 32:59c4b8f648d4 4391 // Set BL pin
wim 32:59c4b8f648d4 4392 void TextLCD_SPI_N_3_24::_setBL(bool value) {
wim 32:59c4b8f648d4 4393 if (_bl) {
wim 32:59c4b8f648d4 4394 _bl->write(value);
wim 32:59c4b8f648d4 4395 }
wim 32:59c4b8f648d4 4396 }
wim 32:59c4b8f648d4 4397
wim 32:59c4b8f648d4 4398 // Not used in this mode
wim 32:59c4b8f648d4 4399 void TextLCD_SPI_N_3_24::_setData(int value) {
wim 32:59c4b8f648d4 4400 }
wim 32:59c4b8f648d4 4401
wim 32:59c4b8f648d4 4402 //Mapping table to flip the bits around cause SPI3_24 expects LSB first.
wim 32:59c4b8f648d4 4403 const uint8_t map3_24[16] = {0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0};
wim 32:59c4b8f648d4 4404
wim 32:59c4b8f648d4 4405 // Write a byte using SPI3 24 bits mode
wim 32:59c4b8f648d4 4406 void TextLCD_SPI_N_3_24::_writeByte(int value) {
wim 32:59c4b8f648d4 4407 _cs = 0;
wim 32:59c4b8f648d4 4408 wait_us(1);
wim 32:59c4b8f648d4 4409 _spi->write(_controlbyte);
wim 32:59c4b8f648d4 4410
wim 32:59c4b8f648d4 4411 //Map and send the LSB nibble
wim 32:59c4b8f648d4 4412 _spi->write( map3_24[value & 0x0F]);
wim 32:59c4b8f648d4 4413
wim 32:59c4b8f648d4 4414 //Map and send the MSB nibble
wim 32:59c4b8f648d4 4415 _spi->write( map3_24[(value >> 4) & 0x0F]);
wim 32:59c4b8f648d4 4416
wim 32:59c4b8f648d4 4417 wait_us(1);
wim 32:59c4b8f648d4 4418 _cs = 1;
wim 32:59c4b8f648d4 4419 }
wim 34:e5a0dcb43ecc 4420 #endif /* Native SPI bus */
wim 32:59c4b8f648d4 4421 //------- End TextLCD_SPI_N_3_24 ----------