pro vyuku PSS v Jecne

Committer:
vladvana
Date:
Sun Sep 24 12:31:52 2017 +0000
Revision:
0:23d1f73bf130
podklady pro cviceni z PSS

Who changed what in which revision?

UserRevisionLine numberNew contents of line
vladvana 0:23d1f73bf130 1 /* ----------------------------------------------------------------------
vladvana 0:23d1f73bf130 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
vladvana 0:23d1f73bf130 3 *
vladvana 0:23d1f73bf130 4 * $Date: 19. March 2015
vladvana 0:23d1f73bf130 5 * $Revision: V.1.4.5
vladvana 0:23d1f73bf130 6 *
vladvana 0:23d1f73bf130 7 * Project: CMSIS DSP Library
vladvana 0:23d1f73bf130 8 * Title: arm_math.h
vladvana 0:23d1f73bf130 9 *
vladvana 0:23d1f73bf130 10 * Description: Public header file for CMSIS DSP Library
vladvana 0:23d1f73bf130 11 *
vladvana 0:23d1f73bf130 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
vladvana 0:23d1f73bf130 13 *
vladvana 0:23d1f73bf130 14 * Redistribution and use in source and binary forms, with or without
vladvana 0:23d1f73bf130 15 * modification, are permitted provided that the following conditions
vladvana 0:23d1f73bf130 16 * are met:
vladvana 0:23d1f73bf130 17 * - Redistributions of source code must retain the above copyright
vladvana 0:23d1f73bf130 18 * notice, this list of conditions and the following disclaimer.
vladvana 0:23d1f73bf130 19 * - Redistributions in binary form must reproduce the above copyright
vladvana 0:23d1f73bf130 20 * notice, this list of conditions and the following disclaimer in
vladvana 0:23d1f73bf130 21 * the documentation and/or other materials provided with the
vladvana 0:23d1f73bf130 22 * distribution.
vladvana 0:23d1f73bf130 23 * - Neither the name of ARM LIMITED nor the names of its contributors
vladvana 0:23d1f73bf130 24 * may be used to endorse or promote products derived from this
vladvana 0:23d1f73bf130 25 * software without specific prior written permission.
vladvana 0:23d1f73bf130 26 *
vladvana 0:23d1f73bf130 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
vladvana 0:23d1f73bf130 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
vladvana 0:23d1f73bf130 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
vladvana 0:23d1f73bf130 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
vladvana 0:23d1f73bf130 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
vladvana 0:23d1f73bf130 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
vladvana 0:23d1f73bf130 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
vladvana 0:23d1f73bf130 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
vladvana 0:23d1f73bf130 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
vladvana 0:23d1f73bf130 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
vladvana 0:23d1f73bf130 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
vladvana 0:23d1f73bf130 38 * POSSIBILITY OF SUCH DAMAGE.
vladvana 0:23d1f73bf130 39 * -------------------------------------------------------------------- */
vladvana 0:23d1f73bf130 40
vladvana 0:23d1f73bf130 41 /**
vladvana 0:23d1f73bf130 42 \mainpage CMSIS DSP Software Library
vladvana 0:23d1f73bf130 43 *
vladvana 0:23d1f73bf130 44 * Introduction
vladvana 0:23d1f73bf130 45 * ------------
vladvana 0:23d1f73bf130 46 *
vladvana 0:23d1f73bf130 47 * This user manual describes the CMSIS DSP software library,
vladvana 0:23d1f73bf130 48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
vladvana 0:23d1f73bf130 49 *
vladvana 0:23d1f73bf130 50 * The library is divided into a number of functions each covering a specific category:
vladvana 0:23d1f73bf130 51 * - Basic math functions
vladvana 0:23d1f73bf130 52 * - Fast math functions
vladvana 0:23d1f73bf130 53 * - Complex math functions
vladvana 0:23d1f73bf130 54 * - Filters
vladvana 0:23d1f73bf130 55 * - Matrix functions
vladvana 0:23d1f73bf130 56 * - Transforms
vladvana 0:23d1f73bf130 57 * - Motor control functions
vladvana 0:23d1f73bf130 58 * - Statistical functions
vladvana 0:23d1f73bf130 59 * - Support functions
vladvana 0:23d1f73bf130 60 * - Interpolation functions
vladvana 0:23d1f73bf130 61 *
vladvana 0:23d1f73bf130 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
vladvana 0:23d1f73bf130 63 * 32-bit integer and 32-bit floating-point values.
vladvana 0:23d1f73bf130 64 *
vladvana 0:23d1f73bf130 65 * Using the Library
vladvana 0:23d1f73bf130 66 * ------------
vladvana 0:23d1f73bf130 67 *
vladvana 0:23d1f73bf130 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
vladvana 0:23d1f73bf130 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
vladvana 0:23d1f73bf130 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
vladvana 0:23d1f73bf130 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
vladvana 0:23d1f73bf130 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
vladvana 0:23d1f73bf130 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
vladvana 0:23d1f73bf130 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
vladvana 0:23d1f73bf130 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
vladvana 0:23d1f73bf130 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
vladvana 0:23d1f73bf130 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
vladvana 0:23d1f73bf130 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
vladvana 0:23d1f73bf130 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
vladvana 0:23d1f73bf130 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
vladvana 0:23d1f73bf130 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
vladvana 0:23d1f73bf130 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
vladvana 0:23d1f73bf130 83 *
vladvana 0:23d1f73bf130 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
vladvana 0:23d1f73bf130 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
vladvana 0:23d1f73bf130 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
vladvana 0:23d1f73bf130 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
vladvana 0:23d1f73bf130 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
vladvana 0:23d1f73bf130 89 *
vladvana 0:23d1f73bf130 90 * Examples
vladvana 0:23d1f73bf130 91 * --------
vladvana 0:23d1f73bf130 92 *
vladvana 0:23d1f73bf130 93 * The library ships with a number of examples which demonstrate how to use the library functions.
vladvana 0:23d1f73bf130 94 *
vladvana 0:23d1f73bf130 95 * Toolchain Support
vladvana 0:23d1f73bf130 96 * ------------
vladvana 0:23d1f73bf130 97 *
vladvana 0:23d1f73bf130 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
vladvana 0:23d1f73bf130 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
vladvana 0:23d1f73bf130 100 *
vladvana 0:23d1f73bf130 101 * Building the Library
vladvana 0:23d1f73bf130 102 * ------------
vladvana 0:23d1f73bf130 103 *
vladvana 0:23d1f73bf130 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
vladvana 0:23d1f73bf130 105 * - arm_cortexM_math.uvprojx
vladvana 0:23d1f73bf130 106 *
vladvana 0:23d1f73bf130 107 *
vladvana 0:23d1f73bf130 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
vladvana 0:23d1f73bf130 109 *
vladvana 0:23d1f73bf130 110 * Pre-processor Macros
vladvana 0:23d1f73bf130 111 * ------------
vladvana 0:23d1f73bf130 112 *
vladvana 0:23d1f73bf130 113 * Each library project have differant pre-processor macros.
vladvana 0:23d1f73bf130 114 *
vladvana 0:23d1f73bf130 115 * - UNALIGNED_SUPPORT_DISABLE:
vladvana 0:23d1f73bf130 116 *
vladvana 0:23d1f73bf130 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
vladvana 0:23d1f73bf130 118 *
vladvana 0:23d1f73bf130 119 * - ARM_MATH_BIG_ENDIAN:
vladvana 0:23d1f73bf130 120 *
vladvana 0:23d1f73bf130 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
vladvana 0:23d1f73bf130 122 *
vladvana 0:23d1f73bf130 123 * - ARM_MATH_MATRIX_CHECK:
vladvana 0:23d1f73bf130 124 *
vladvana 0:23d1f73bf130 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
vladvana 0:23d1f73bf130 126 *
vladvana 0:23d1f73bf130 127 * - ARM_MATH_ROUNDING:
vladvana 0:23d1f73bf130 128 *
vladvana 0:23d1f73bf130 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
vladvana 0:23d1f73bf130 130 *
vladvana 0:23d1f73bf130 131 * - ARM_MATH_CMx:
vladvana 0:23d1f73bf130 132 *
vladvana 0:23d1f73bf130 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
vladvana 0:23d1f73bf130 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
vladvana 0:23d1f73bf130 135 * ARM_MATH_CM7 for building the library on cortex-M7.
vladvana 0:23d1f73bf130 136 *
vladvana 0:23d1f73bf130 137 * - __FPU_PRESENT:
vladvana 0:23d1f73bf130 138 *
vladvana 0:23d1f73bf130 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
vladvana 0:23d1f73bf130 140 *
vladvana 0:23d1f73bf130 141 * <hr>
vladvana 0:23d1f73bf130 142 * CMSIS-DSP in ARM::CMSIS Pack
vladvana 0:23d1f73bf130 143 * -----------------------------
vladvana 0:23d1f73bf130 144 *
vladvana 0:23d1f73bf130 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
vladvana 0:23d1f73bf130 146 * |File/Folder |Content |
vladvana 0:23d1f73bf130 147 * |------------------------------|------------------------------------------------------------------------|
vladvana 0:23d1f73bf130 148 * |\b CMSIS\\Documentation\\DSP | This documentation |
vladvana 0:23d1f73bf130 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
vladvana 0:23d1f73bf130 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
vladvana 0:23d1f73bf130 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
vladvana 0:23d1f73bf130 152 *
vladvana 0:23d1f73bf130 153 * <hr>
vladvana 0:23d1f73bf130 154 * Revision History of CMSIS-DSP
vladvana 0:23d1f73bf130 155 * ------------
vladvana 0:23d1f73bf130 156 * Please refer to \ref ChangeLog_pg.
vladvana 0:23d1f73bf130 157 *
vladvana 0:23d1f73bf130 158 * Copyright Notice
vladvana 0:23d1f73bf130 159 * ------------
vladvana 0:23d1f73bf130 160 *
vladvana 0:23d1f73bf130 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
vladvana 0:23d1f73bf130 162 */
vladvana 0:23d1f73bf130 163
vladvana 0:23d1f73bf130 164
vladvana 0:23d1f73bf130 165 /**
vladvana 0:23d1f73bf130 166 * @defgroup groupMath Basic Math Functions
vladvana 0:23d1f73bf130 167 */
vladvana 0:23d1f73bf130 168
vladvana 0:23d1f73bf130 169 /**
vladvana 0:23d1f73bf130 170 * @defgroup groupFastMath Fast Math Functions
vladvana 0:23d1f73bf130 171 * This set of functions provides a fast approximation to sine, cosine, and square root.
vladvana 0:23d1f73bf130 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
vladvana 0:23d1f73bf130 173 * operate on individual values and not arrays.
vladvana 0:23d1f73bf130 174 * There are separate functions for Q15, Q31, and floating-point data.
vladvana 0:23d1f73bf130 175 *
vladvana 0:23d1f73bf130 176 */
vladvana 0:23d1f73bf130 177
vladvana 0:23d1f73bf130 178 /**
vladvana 0:23d1f73bf130 179 * @defgroup groupCmplxMath Complex Math Functions
vladvana 0:23d1f73bf130 180 * This set of functions operates on complex data vectors.
vladvana 0:23d1f73bf130 181 * The data in the complex arrays is stored in an interleaved fashion
vladvana 0:23d1f73bf130 182 * (real, imag, real, imag, ...).
vladvana 0:23d1f73bf130 183 * In the API functions, the number of samples in a complex array refers
vladvana 0:23d1f73bf130 184 * to the number of complex values; the array contains twice this number of
vladvana 0:23d1f73bf130 185 * real values.
vladvana 0:23d1f73bf130 186 */
vladvana 0:23d1f73bf130 187
vladvana 0:23d1f73bf130 188 /**
vladvana 0:23d1f73bf130 189 * @defgroup groupFilters Filtering Functions
vladvana 0:23d1f73bf130 190 */
vladvana 0:23d1f73bf130 191
vladvana 0:23d1f73bf130 192 /**
vladvana 0:23d1f73bf130 193 * @defgroup groupMatrix Matrix Functions
vladvana 0:23d1f73bf130 194 *
vladvana 0:23d1f73bf130 195 * This set of functions provides basic matrix math operations.
vladvana 0:23d1f73bf130 196 * The functions operate on matrix data structures. For example,
vladvana 0:23d1f73bf130 197 * the type
vladvana 0:23d1f73bf130 198 * definition for the floating-point matrix structure is shown
vladvana 0:23d1f73bf130 199 * below:
vladvana 0:23d1f73bf130 200 * <pre>
vladvana 0:23d1f73bf130 201 * typedef struct
vladvana 0:23d1f73bf130 202 * {
vladvana 0:23d1f73bf130 203 * uint16_t numRows; // number of rows of the matrix.
vladvana 0:23d1f73bf130 204 * uint16_t numCols; // number of columns of the matrix.
vladvana 0:23d1f73bf130 205 * float32_t *pData; // points to the data of the matrix.
vladvana 0:23d1f73bf130 206 * } arm_matrix_instance_f32;
vladvana 0:23d1f73bf130 207 * </pre>
vladvana 0:23d1f73bf130 208 * There are similar definitions for Q15 and Q31 data types.
vladvana 0:23d1f73bf130 209 *
vladvana 0:23d1f73bf130 210 * The structure specifies the size of the matrix and then points to
vladvana 0:23d1f73bf130 211 * an array of data. The array is of size <code>numRows X numCols</code>
vladvana 0:23d1f73bf130 212 * and the values are arranged in row order. That is, the
vladvana 0:23d1f73bf130 213 * matrix element (i, j) is stored at:
vladvana 0:23d1f73bf130 214 * <pre>
vladvana 0:23d1f73bf130 215 * pData[i*numCols + j]
vladvana 0:23d1f73bf130 216 * </pre>
vladvana 0:23d1f73bf130 217 *
vladvana 0:23d1f73bf130 218 * \par Init Functions
vladvana 0:23d1f73bf130 219 * There is an associated initialization function for each type of matrix
vladvana 0:23d1f73bf130 220 * data structure.
vladvana 0:23d1f73bf130 221 * The initialization function sets the values of the internal structure fields.
vladvana 0:23d1f73bf130 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
vladvana 0:23d1f73bf130 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
vladvana 0:23d1f73bf130 224 *
vladvana 0:23d1f73bf130 225 * \par
vladvana 0:23d1f73bf130 226 * Use of the initialization function is optional. However, if initialization function is used
vladvana 0:23d1f73bf130 227 * then the instance structure cannot be placed into a const data section.
vladvana 0:23d1f73bf130 228 * To place the instance structure in a const data
vladvana 0:23d1f73bf130 229 * section, manually initialize the data structure. For example:
vladvana 0:23d1f73bf130 230 * <pre>
vladvana 0:23d1f73bf130 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
vladvana 0:23d1f73bf130 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
vladvana 0:23d1f73bf130 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
vladvana 0:23d1f73bf130 234 * </pre>
vladvana 0:23d1f73bf130 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
vladvana 0:23d1f73bf130 236 * specifies the number of columns, and <code>pData</code> points to the
vladvana 0:23d1f73bf130 237 * data array.
vladvana 0:23d1f73bf130 238 *
vladvana 0:23d1f73bf130 239 * \par Size Checking
vladvana 0:23d1f73bf130 240 * By default all of the matrix functions perform size checking on the input and
vladvana 0:23d1f73bf130 241 * output matrices. For example, the matrix addition function verifies that the
vladvana 0:23d1f73bf130 242 * two input matrices and the output matrix all have the same number of rows and
vladvana 0:23d1f73bf130 243 * columns. If the size check fails the functions return:
vladvana 0:23d1f73bf130 244 * <pre>
vladvana 0:23d1f73bf130 245 * ARM_MATH_SIZE_MISMATCH
vladvana 0:23d1f73bf130 246 * </pre>
vladvana 0:23d1f73bf130 247 * Otherwise the functions return
vladvana 0:23d1f73bf130 248 * <pre>
vladvana 0:23d1f73bf130 249 * ARM_MATH_SUCCESS
vladvana 0:23d1f73bf130 250 * </pre>
vladvana 0:23d1f73bf130 251 * There is some overhead associated with this matrix size checking.
vladvana 0:23d1f73bf130 252 * The matrix size checking is enabled via the \#define
vladvana 0:23d1f73bf130 253 * <pre>
vladvana 0:23d1f73bf130 254 * ARM_MATH_MATRIX_CHECK
vladvana 0:23d1f73bf130 255 * </pre>
vladvana 0:23d1f73bf130 256 * within the library project settings. By default this macro is defined
vladvana 0:23d1f73bf130 257 * and size checking is enabled. By changing the project settings and
vladvana 0:23d1f73bf130 258 * undefining this macro size checking is eliminated and the functions
vladvana 0:23d1f73bf130 259 * run a bit faster. With size checking disabled the functions always
vladvana 0:23d1f73bf130 260 * return <code>ARM_MATH_SUCCESS</code>.
vladvana 0:23d1f73bf130 261 */
vladvana 0:23d1f73bf130 262
vladvana 0:23d1f73bf130 263 /**
vladvana 0:23d1f73bf130 264 * @defgroup groupTransforms Transform Functions
vladvana 0:23d1f73bf130 265 */
vladvana 0:23d1f73bf130 266
vladvana 0:23d1f73bf130 267 /**
vladvana 0:23d1f73bf130 268 * @defgroup groupController Controller Functions
vladvana 0:23d1f73bf130 269 */
vladvana 0:23d1f73bf130 270
vladvana 0:23d1f73bf130 271 /**
vladvana 0:23d1f73bf130 272 * @defgroup groupStats Statistics Functions
vladvana 0:23d1f73bf130 273 */
vladvana 0:23d1f73bf130 274 /**
vladvana 0:23d1f73bf130 275 * @defgroup groupSupport Support Functions
vladvana 0:23d1f73bf130 276 */
vladvana 0:23d1f73bf130 277
vladvana 0:23d1f73bf130 278 /**
vladvana 0:23d1f73bf130 279 * @defgroup groupInterpolation Interpolation Functions
vladvana 0:23d1f73bf130 280 * These functions perform 1- and 2-dimensional interpolation of data.
vladvana 0:23d1f73bf130 281 * Linear interpolation is used for 1-dimensional data and
vladvana 0:23d1f73bf130 282 * bilinear interpolation is used for 2-dimensional data.
vladvana 0:23d1f73bf130 283 */
vladvana 0:23d1f73bf130 284
vladvana 0:23d1f73bf130 285 /**
vladvana 0:23d1f73bf130 286 * @defgroup groupExamples Examples
vladvana 0:23d1f73bf130 287 */
vladvana 0:23d1f73bf130 288 #ifndef _ARM_MATH_H
vladvana 0:23d1f73bf130 289 #define _ARM_MATH_H
vladvana 0:23d1f73bf130 290
vladvana 0:23d1f73bf130 291 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
vladvana 0:23d1f73bf130 292
vladvana 0:23d1f73bf130 293 #if defined(ARM_MATH_CM7)
vladvana 0:23d1f73bf130 294 #include "core_cm7.h"
vladvana 0:23d1f73bf130 295 #elif defined (ARM_MATH_CM4)
vladvana 0:23d1f73bf130 296 #include "core_cm4.h"
vladvana 0:23d1f73bf130 297 #elif defined (ARM_MATH_CM3)
vladvana 0:23d1f73bf130 298 #include "core_cm3.h"
vladvana 0:23d1f73bf130 299 #elif defined (ARM_MATH_CM0)
vladvana 0:23d1f73bf130 300 #include "core_cm0.h"
vladvana 0:23d1f73bf130 301 #define ARM_MATH_CM0_FAMILY
vladvana 0:23d1f73bf130 302 #elif defined (ARM_MATH_CM0PLUS)
vladvana 0:23d1f73bf130 303 #include "core_cm0plus.h"
vladvana 0:23d1f73bf130 304 #define ARM_MATH_CM0_FAMILY
vladvana 0:23d1f73bf130 305 #else
vladvana 0:23d1f73bf130 306 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
vladvana 0:23d1f73bf130 307 #endif
vladvana 0:23d1f73bf130 308
vladvana 0:23d1f73bf130 309 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
vladvana 0:23d1f73bf130 310 #include "string.h"
vladvana 0:23d1f73bf130 311 #include "math.h"
vladvana 0:23d1f73bf130 312 #ifdef __cplusplus
vladvana 0:23d1f73bf130 313 extern "C"
vladvana 0:23d1f73bf130 314 {
vladvana 0:23d1f73bf130 315 #endif
vladvana 0:23d1f73bf130 316
vladvana 0:23d1f73bf130 317
vladvana 0:23d1f73bf130 318 /**
vladvana 0:23d1f73bf130 319 * @brief Macros required for reciprocal calculation in Normalized LMS
vladvana 0:23d1f73bf130 320 */
vladvana 0:23d1f73bf130 321
vladvana 0:23d1f73bf130 322 #define DELTA_Q31 (0x100)
vladvana 0:23d1f73bf130 323 #define DELTA_Q15 0x5
vladvana 0:23d1f73bf130 324 #define INDEX_MASK 0x0000003F
vladvana 0:23d1f73bf130 325 #ifndef PI
vladvana 0:23d1f73bf130 326 #define PI 3.14159265358979f
vladvana 0:23d1f73bf130 327 #endif
vladvana 0:23d1f73bf130 328
vladvana 0:23d1f73bf130 329 /**
vladvana 0:23d1f73bf130 330 * @brief Macros required for SINE and COSINE Fast math approximations
vladvana 0:23d1f73bf130 331 */
vladvana 0:23d1f73bf130 332
vladvana 0:23d1f73bf130 333 #define FAST_MATH_TABLE_SIZE 512
vladvana 0:23d1f73bf130 334 #define FAST_MATH_Q31_SHIFT (32 - 10)
vladvana 0:23d1f73bf130 335 #define FAST_MATH_Q15_SHIFT (16 - 10)
vladvana 0:23d1f73bf130 336 #define CONTROLLER_Q31_SHIFT (32 - 9)
vladvana 0:23d1f73bf130 337 #define TABLE_SIZE 256
vladvana 0:23d1f73bf130 338 #define TABLE_SPACING_Q31 0x400000
vladvana 0:23d1f73bf130 339 #define TABLE_SPACING_Q15 0x80
vladvana 0:23d1f73bf130 340
vladvana 0:23d1f73bf130 341 /**
vladvana 0:23d1f73bf130 342 * @brief Macros required for SINE and COSINE Controller functions
vladvana 0:23d1f73bf130 343 */
vladvana 0:23d1f73bf130 344 /* 1.31(q31) Fixed value of 2/360 */
vladvana 0:23d1f73bf130 345 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
vladvana 0:23d1f73bf130 346 #define INPUT_SPACING 0xB60B61
vladvana 0:23d1f73bf130 347
vladvana 0:23d1f73bf130 348 /**
vladvana 0:23d1f73bf130 349 * @brief Macro for Unaligned Support
vladvana 0:23d1f73bf130 350 */
vladvana 0:23d1f73bf130 351 #ifndef UNALIGNED_SUPPORT_DISABLE
vladvana 0:23d1f73bf130 352 #define ALIGN4
vladvana 0:23d1f73bf130 353 #else
vladvana 0:23d1f73bf130 354 #if defined (__GNUC__)
vladvana 0:23d1f73bf130 355 #define ALIGN4 __attribute__((aligned(4)))
vladvana 0:23d1f73bf130 356 #else
vladvana 0:23d1f73bf130 357 #define ALIGN4 __align(4)
vladvana 0:23d1f73bf130 358 #endif
vladvana 0:23d1f73bf130 359 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
vladvana 0:23d1f73bf130 360
vladvana 0:23d1f73bf130 361 /**
vladvana 0:23d1f73bf130 362 * @brief Error status returned by some functions in the library.
vladvana 0:23d1f73bf130 363 */
vladvana 0:23d1f73bf130 364
vladvana 0:23d1f73bf130 365 typedef enum
vladvana 0:23d1f73bf130 366 {
vladvana 0:23d1f73bf130 367 ARM_MATH_SUCCESS = 0, /**< No error */
vladvana 0:23d1f73bf130 368 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
vladvana 0:23d1f73bf130 369 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
vladvana 0:23d1f73bf130 370 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
vladvana 0:23d1f73bf130 371 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
vladvana 0:23d1f73bf130 372 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
vladvana 0:23d1f73bf130 373 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
vladvana 0:23d1f73bf130 374 } arm_status;
vladvana 0:23d1f73bf130 375
vladvana 0:23d1f73bf130 376 /**
vladvana 0:23d1f73bf130 377 * @brief 8-bit fractional data type in 1.7 format.
vladvana 0:23d1f73bf130 378 */
vladvana 0:23d1f73bf130 379 typedef int8_t q7_t;
vladvana 0:23d1f73bf130 380
vladvana 0:23d1f73bf130 381 /**
vladvana 0:23d1f73bf130 382 * @brief 16-bit fractional data type in 1.15 format.
vladvana 0:23d1f73bf130 383 */
vladvana 0:23d1f73bf130 384 typedef int16_t q15_t;
vladvana 0:23d1f73bf130 385
vladvana 0:23d1f73bf130 386 /**
vladvana 0:23d1f73bf130 387 * @brief 32-bit fractional data type in 1.31 format.
vladvana 0:23d1f73bf130 388 */
vladvana 0:23d1f73bf130 389 typedef int32_t q31_t;
vladvana 0:23d1f73bf130 390
vladvana 0:23d1f73bf130 391 /**
vladvana 0:23d1f73bf130 392 * @brief 64-bit fractional data type in 1.63 format.
vladvana 0:23d1f73bf130 393 */
vladvana 0:23d1f73bf130 394 typedef int64_t q63_t;
vladvana 0:23d1f73bf130 395
vladvana 0:23d1f73bf130 396 /**
vladvana 0:23d1f73bf130 397 * @brief 32-bit floating-point type definition.
vladvana 0:23d1f73bf130 398 */
vladvana 0:23d1f73bf130 399 typedef float float32_t;
vladvana 0:23d1f73bf130 400
vladvana 0:23d1f73bf130 401 /**
vladvana 0:23d1f73bf130 402 * @brief 64-bit floating-point type definition.
vladvana 0:23d1f73bf130 403 */
vladvana 0:23d1f73bf130 404 typedef double float64_t;
vladvana 0:23d1f73bf130 405
vladvana 0:23d1f73bf130 406 /**
vladvana 0:23d1f73bf130 407 * @brief definition to read/write two 16 bit values.
vladvana 0:23d1f73bf130 408 */
vladvana 0:23d1f73bf130 409 #if defined __CC_ARM
vladvana 0:23d1f73bf130 410 #define __SIMD32_TYPE int32_t __packed
vladvana 0:23d1f73bf130 411 #define CMSIS_UNUSED __attribute__((unused))
vladvana 0:23d1f73bf130 412 #elif defined __ICCARM__
vladvana 0:23d1f73bf130 413 #define __SIMD32_TYPE int32_t __packed
vladvana 0:23d1f73bf130 414 #define CMSIS_UNUSED
vladvana 0:23d1f73bf130 415 #elif defined __GNUC__
vladvana 0:23d1f73bf130 416 #define __SIMD32_TYPE int32_t
vladvana 0:23d1f73bf130 417 #define CMSIS_UNUSED __attribute__((unused))
vladvana 0:23d1f73bf130 418 #elif defined __CSMC__ /* Cosmic */
vladvana 0:23d1f73bf130 419 #define __SIMD32_TYPE int32_t
vladvana 0:23d1f73bf130 420 #define CMSIS_UNUSED
vladvana 0:23d1f73bf130 421 #elif defined __TASKING__
vladvana 0:23d1f73bf130 422 #define __SIMD32_TYPE __unaligned int32_t
vladvana 0:23d1f73bf130 423 #define CMSIS_UNUSED
vladvana 0:23d1f73bf130 424 #else
vladvana 0:23d1f73bf130 425 #error Unknown compiler
vladvana 0:23d1f73bf130 426 #endif
vladvana 0:23d1f73bf130 427
vladvana 0:23d1f73bf130 428 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
vladvana 0:23d1f73bf130 429 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
vladvana 0:23d1f73bf130 430
vladvana 0:23d1f73bf130 431 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
vladvana 0:23d1f73bf130 432
vladvana 0:23d1f73bf130 433 #define __SIMD64(addr) (*(int64_t **) & (addr))
vladvana 0:23d1f73bf130 434
vladvana 0:23d1f73bf130 435 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
vladvana 0:23d1f73bf130 436 /**
vladvana 0:23d1f73bf130 437 * @brief definition to pack two 16 bit values.
vladvana 0:23d1f73bf130 438 */
vladvana 0:23d1f73bf130 439 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
vladvana 0:23d1f73bf130 440 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
vladvana 0:23d1f73bf130 441 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
vladvana 0:23d1f73bf130 442 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
vladvana 0:23d1f73bf130 443
vladvana 0:23d1f73bf130 444 #endif
vladvana 0:23d1f73bf130 445
vladvana 0:23d1f73bf130 446
vladvana 0:23d1f73bf130 447 /**
vladvana 0:23d1f73bf130 448 * @brief definition to pack four 8 bit values.
vladvana 0:23d1f73bf130 449 */
vladvana 0:23d1f73bf130 450 #ifndef ARM_MATH_BIG_ENDIAN
vladvana 0:23d1f73bf130 451
vladvana 0:23d1f73bf130 452 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
vladvana 0:23d1f73bf130 453 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
vladvana 0:23d1f73bf130 454 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
vladvana 0:23d1f73bf130 455 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
vladvana 0:23d1f73bf130 456 #else
vladvana 0:23d1f73bf130 457
vladvana 0:23d1f73bf130 458 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
vladvana 0:23d1f73bf130 459 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
vladvana 0:23d1f73bf130 460 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
vladvana 0:23d1f73bf130 461 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
vladvana 0:23d1f73bf130 462
vladvana 0:23d1f73bf130 463 #endif
vladvana 0:23d1f73bf130 464
vladvana 0:23d1f73bf130 465
vladvana 0:23d1f73bf130 466 /**
vladvana 0:23d1f73bf130 467 * @brief Clips Q63 to Q31 values.
vladvana 0:23d1f73bf130 468 */
vladvana 0:23d1f73bf130 469 static __INLINE q31_t clip_q63_to_q31(
vladvana 0:23d1f73bf130 470 q63_t x)
vladvana 0:23d1f73bf130 471 {
vladvana 0:23d1f73bf130 472 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
vladvana 0:23d1f73bf130 473 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
vladvana 0:23d1f73bf130 474 }
vladvana 0:23d1f73bf130 475
vladvana 0:23d1f73bf130 476 /**
vladvana 0:23d1f73bf130 477 * @brief Clips Q63 to Q15 values.
vladvana 0:23d1f73bf130 478 */
vladvana 0:23d1f73bf130 479 static __INLINE q15_t clip_q63_to_q15(
vladvana 0:23d1f73bf130 480 q63_t x)
vladvana 0:23d1f73bf130 481 {
vladvana 0:23d1f73bf130 482 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
vladvana 0:23d1f73bf130 483 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
vladvana 0:23d1f73bf130 484 }
vladvana 0:23d1f73bf130 485
vladvana 0:23d1f73bf130 486 /**
vladvana 0:23d1f73bf130 487 * @brief Clips Q31 to Q7 values.
vladvana 0:23d1f73bf130 488 */
vladvana 0:23d1f73bf130 489 static __INLINE q7_t clip_q31_to_q7(
vladvana 0:23d1f73bf130 490 q31_t x)
vladvana 0:23d1f73bf130 491 {
vladvana 0:23d1f73bf130 492 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
vladvana 0:23d1f73bf130 493 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
vladvana 0:23d1f73bf130 494 }
vladvana 0:23d1f73bf130 495
vladvana 0:23d1f73bf130 496 /**
vladvana 0:23d1f73bf130 497 * @brief Clips Q31 to Q15 values.
vladvana 0:23d1f73bf130 498 */
vladvana 0:23d1f73bf130 499 static __INLINE q15_t clip_q31_to_q15(
vladvana 0:23d1f73bf130 500 q31_t x)
vladvana 0:23d1f73bf130 501 {
vladvana 0:23d1f73bf130 502 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
vladvana 0:23d1f73bf130 503 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
vladvana 0:23d1f73bf130 504 }
vladvana 0:23d1f73bf130 505
vladvana 0:23d1f73bf130 506 /**
vladvana 0:23d1f73bf130 507 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
vladvana 0:23d1f73bf130 508 */
vladvana 0:23d1f73bf130 509
vladvana 0:23d1f73bf130 510 static __INLINE q63_t mult32x64(
vladvana 0:23d1f73bf130 511 q63_t x,
vladvana 0:23d1f73bf130 512 q31_t y)
vladvana 0:23d1f73bf130 513 {
vladvana 0:23d1f73bf130 514 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
vladvana 0:23d1f73bf130 515 (((q63_t) (x >> 32) * y)));
vladvana 0:23d1f73bf130 516 }
vladvana 0:23d1f73bf130 517
vladvana 0:23d1f73bf130 518
vladvana 0:23d1f73bf130 519 //#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
vladvana 0:23d1f73bf130 520 //#define __CLZ __clz
vladvana 0:23d1f73bf130 521 //#endif
vladvana 0:23d1f73bf130 522
vladvana 0:23d1f73bf130 523 //note: function can be removed when all toolchain support __CLZ for Cortex-M0
vladvana 0:23d1f73bf130 524 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
vladvana 0:23d1f73bf130 525
vladvana 0:23d1f73bf130 526 static __INLINE uint32_t __CLZ(
vladvana 0:23d1f73bf130 527 q31_t data);
vladvana 0:23d1f73bf130 528
vladvana 0:23d1f73bf130 529
vladvana 0:23d1f73bf130 530 static __INLINE uint32_t __CLZ(
vladvana 0:23d1f73bf130 531 q31_t data)
vladvana 0:23d1f73bf130 532 {
vladvana 0:23d1f73bf130 533 uint32_t count = 0;
vladvana 0:23d1f73bf130 534 uint32_t mask = 0x80000000;
vladvana 0:23d1f73bf130 535
vladvana 0:23d1f73bf130 536 while((data & mask) == 0)
vladvana 0:23d1f73bf130 537 {
vladvana 0:23d1f73bf130 538 count += 1u;
vladvana 0:23d1f73bf130 539 mask = mask >> 1u;
vladvana 0:23d1f73bf130 540 }
vladvana 0:23d1f73bf130 541
vladvana 0:23d1f73bf130 542 return (count);
vladvana 0:23d1f73bf130 543
vladvana 0:23d1f73bf130 544 }
vladvana 0:23d1f73bf130 545
vladvana 0:23d1f73bf130 546 #endif
vladvana 0:23d1f73bf130 547
vladvana 0:23d1f73bf130 548 /**
vladvana 0:23d1f73bf130 549 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
vladvana 0:23d1f73bf130 550 */
vladvana 0:23d1f73bf130 551
vladvana 0:23d1f73bf130 552 static __INLINE uint32_t arm_recip_q31(
vladvana 0:23d1f73bf130 553 q31_t in,
vladvana 0:23d1f73bf130 554 q31_t * dst,
vladvana 0:23d1f73bf130 555 q31_t * pRecipTable)
vladvana 0:23d1f73bf130 556 {
vladvana 0:23d1f73bf130 557
vladvana 0:23d1f73bf130 558 uint32_t out, tempVal;
vladvana 0:23d1f73bf130 559 uint32_t index, i;
vladvana 0:23d1f73bf130 560 uint32_t signBits;
vladvana 0:23d1f73bf130 561
vladvana 0:23d1f73bf130 562 if(in > 0)
vladvana 0:23d1f73bf130 563 {
vladvana 0:23d1f73bf130 564 signBits = __CLZ(in) - 1;
vladvana 0:23d1f73bf130 565 }
vladvana 0:23d1f73bf130 566 else
vladvana 0:23d1f73bf130 567 {
vladvana 0:23d1f73bf130 568 signBits = __CLZ(-in) - 1;
vladvana 0:23d1f73bf130 569 }
vladvana 0:23d1f73bf130 570
vladvana 0:23d1f73bf130 571 /* Convert input sample to 1.31 format */
vladvana 0:23d1f73bf130 572 in = in << signBits;
vladvana 0:23d1f73bf130 573
vladvana 0:23d1f73bf130 574 /* calculation of index for initial approximated Val */
vladvana 0:23d1f73bf130 575 index = (uint32_t) (in >> 24u);
vladvana 0:23d1f73bf130 576 index = (index & INDEX_MASK);
vladvana 0:23d1f73bf130 577
vladvana 0:23d1f73bf130 578 /* 1.31 with exp 1 */
vladvana 0:23d1f73bf130 579 out = pRecipTable[index];
vladvana 0:23d1f73bf130 580
vladvana 0:23d1f73bf130 581 /* calculation of reciprocal value */
vladvana 0:23d1f73bf130 582 /* running approximation for two iterations */
vladvana 0:23d1f73bf130 583 for (i = 0u; i < 2u; i++)
vladvana 0:23d1f73bf130 584 {
vladvana 0:23d1f73bf130 585 tempVal = (q31_t) (((q63_t) in * out) >> 31u);
vladvana 0:23d1f73bf130 586 tempVal = 0x7FFFFFFF - tempVal;
vladvana 0:23d1f73bf130 587 /* 1.31 with exp 1 */
vladvana 0:23d1f73bf130 588 //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
vladvana 0:23d1f73bf130 589 out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
vladvana 0:23d1f73bf130 590 }
vladvana 0:23d1f73bf130 591
vladvana 0:23d1f73bf130 592 /* write output */
vladvana 0:23d1f73bf130 593 *dst = out;
vladvana 0:23d1f73bf130 594
vladvana 0:23d1f73bf130 595 /* return num of signbits of out = 1/in value */
vladvana 0:23d1f73bf130 596 return (signBits + 1u);
vladvana 0:23d1f73bf130 597
vladvana 0:23d1f73bf130 598 }
vladvana 0:23d1f73bf130 599
vladvana 0:23d1f73bf130 600 /**
vladvana 0:23d1f73bf130 601 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
vladvana 0:23d1f73bf130 602 */
vladvana 0:23d1f73bf130 603 static __INLINE uint32_t arm_recip_q15(
vladvana 0:23d1f73bf130 604 q15_t in,
vladvana 0:23d1f73bf130 605 q15_t * dst,
vladvana 0:23d1f73bf130 606 q15_t * pRecipTable)
vladvana 0:23d1f73bf130 607 {
vladvana 0:23d1f73bf130 608
vladvana 0:23d1f73bf130 609 uint32_t out = 0, tempVal = 0;
vladvana 0:23d1f73bf130 610 uint32_t index = 0, i = 0;
vladvana 0:23d1f73bf130 611 uint32_t signBits = 0;
vladvana 0:23d1f73bf130 612
vladvana 0:23d1f73bf130 613 if(in > 0)
vladvana 0:23d1f73bf130 614 {
vladvana 0:23d1f73bf130 615 signBits = __CLZ(in) - 17;
vladvana 0:23d1f73bf130 616 }
vladvana 0:23d1f73bf130 617 else
vladvana 0:23d1f73bf130 618 {
vladvana 0:23d1f73bf130 619 signBits = __CLZ(-in) - 17;
vladvana 0:23d1f73bf130 620 }
vladvana 0:23d1f73bf130 621
vladvana 0:23d1f73bf130 622 /* Convert input sample to 1.15 format */
vladvana 0:23d1f73bf130 623 in = in << signBits;
vladvana 0:23d1f73bf130 624
vladvana 0:23d1f73bf130 625 /* calculation of index for initial approximated Val */
vladvana 0:23d1f73bf130 626 index = in >> 8;
vladvana 0:23d1f73bf130 627 index = (index & INDEX_MASK);
vladvana 0:23d1f73bf130 628
vladvana 0:23d1f73bf130 629 /* 1.15 with exp 1 */
vladvana 0:23d1f73bf130 630 out = pRecipTable[index];
vladvana 0:23d1f73bf130 631
vladvana 0:23d1f73bf130 632 /* calculation of reciprocal value */
vladvana 0:23d1f73bf130 633 /* running approximation for two iterations */
vladvana 0:23d1f73bf130 634 for (i = 0; i < 2; i++)
vladvana 0:23d1f73bf130 635 {
vladvana 0:23d1f73bf130 636 tempVal = (q15_t) (((q31_t) in * out) >> 15);
vladvana 0:23d1f73bf130 637 tempVal = 0x7FFF - tempVal;
vladvana 0:23d1f73bf130 638 /* 1.15 with exp 1 */
vladvana 0:23d1f73bf130 639 out = (q15_t) (((q31_t) out * tempVal) >> 14);
vladvana 0:23d1f73bf130 640 }
vladvana 0:23d1f73bf130 641
vladvana 0:23d1f73bf130 642 /* write output */
vladvana 0:23d1f73bf130 643 *dst = out;
vladvana 0:23d1f73bf130 644
vladvana 0:23d1f73bf130 645 /* return num of signbits of out = 1/in value */
vladvana 0:23d1f73bf130 646 return (signBits + 1);
vladvana 0:23d1f73bf130 647
vladvana 0:23d1f73bf130 648 }
vladvana 0:23d1f73bf130 649
vladvana 0:23d1f73bf130 650
vladvana 0:23d1f73bf130 651 /*
vladvana 0:23d1f73bf130 652 * @brief C custom defined intrinisic function for only M0 processors
vladvana 0:23d1f73bf130 653 */
vladvana 0:23d1f73bf130 654 #if defined(ARM_MATH_CM0_FAMILY)
vladvana 0:23d1f73bf130 655
vladvana 0:23d1f73bf130 656 static __INLINE q31_t __SSAT(
vladvana 0:23d1f73bf130 657 q31_t x,
vladvana 0:23d1f73bf130 658 uint32_t y)
vladvana 0:23d1f73bf130 659 {
vladvana 0:23d1f73bf130 660 int32_t posMax, negMin;
vladvana 0:23d1f73bf130 661 uint32_t i;
vladvana 0:23d1f73bf130 662
vladvana 0:23d1f73bf130 663 posMax = 1;
vladvana 0:23d1f73bf130 664 for (i = 0; i < (y - 1); i++)
vladvana 0:23d1f73bf130 665 {
vladvana 0:23d1f73bf130 666 posMax = posMax * 2;
vladvana 0:23d1f73bf130 667 }
vladvana 0:23d1f73bf130 668
vladvana 0:23d1f73bf130 669 if(x > 0)
vladvana 0:23d1f73bf130 670 {
vladvana 0:23d1f73bf130 671 posMax = (posMax - 1);
vladvana 0:23d1f73bf130 672
vladvana 0:23d1f73bf130 673 if(x > posMax)
vladvana 0:23d1f73bf130 674 {
vladvana 0:23d1f73bf130 675 x = posMax;
vladvana 0:23d1f73bf130 676 }
vladvana 0:23d1f73bf130 677 }
vladvana 0:23d1f73bf130 678 else
vladvana 0:23d1f73bf130 679 {
vladvana 0:23d1f73bf130 680 negMin = -posMax;
vladvana 0:23d1f73bf130 681
vladvana 0:23d1f73bf130 682 if(x < negMin)
vladvana 0:23d1f73bf130 683 {
vladvana 0:23d1f73bf130 684 x = negMin;
vladvana 0:23d1f73bf130 685 }
vladvana 0:23d1f73bf130 686 }
vladvana 0:23d1f73bf130 687 return (x);
vladvana 0:23d1f73bf130 688
vladvana 0:23d1f73bf130 689
vladvana 0:23d1f73bf130 690 }
vladvana 0:23d1f73bf130 691
vladvana 0:23d1f73bf130 692 #endif /* end of ARM_MATH_CM0_FAMILY */
vladvana 0:23d1f73bf130 693
vladvana 0:23d1f73bf130 694
vladvana 0:23d1f73bf130 695
vladvana 0:23d1f73bf130 696 /*
vladvana 0:23d1f73bf130 697 * @brief C custom defined intrinsic function for M3 and M0 processors
vladvana 0:23d1f73bf130 698 */
vladvana 0:23d1f73bf130 699 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
vladvana 0:23d1f73bf130 700
vladvana 0:23d1f73bf130 701 /*
vladvana 0:23d1f73bf130 702 * @brief C custom defined QADD8 for M3 and M0 processors
vladvana 0:23d1f73bf130 703 */
vladvana 0:23d1f73bf130 704 static __INLINE q31_t __QADD8(
vladvana 0:23d1f73bf130 705 q31_t x,
vladvana 0:23d1f73bf130 706 q31_t y)
vladvana 0:23d1f73bf130 707 {
vladvana 0:23d1f73bf130 708
vladvana 0:23d1f73bf130 709 q31_t sum;
vladvana 0:23d1f73bf130 710 q7_t r, s, t, u;
vladvana 0:23d1f73bf130 711
vladvana 0:23d1f73bf130 712 r = (q7_t) x;
vladvana 0:23d1f73bf130 713 s = (q7_t) y;
vladvana 0:23d1f73bf130 714
vladvana 0:23d1f73bf130 715 r = __SSAT((q31_t) (r + s), 8);
vladvana 0:23d1f73bf130 716 s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
vladvana 0:23d1f73bf130 717 t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
vladvana 0:23d1f73bf130 718 u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
vladvana 0:23d1f73bf130 719
vladvana 0:23d1f73bf130 720 sum =
vladvana 0:23d1f73bf130 721 (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
vladvana 0:23d1f73bf130 722 (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
vladvana 0:23d1f73bf130 723
vladvana 0:23d1f73bf130 724 return sum;
vladvana 0:23d1f73bf130 725
vladvana 0:23d1f73bf130 726 }
vladvana 0:23d1f73bf130 727
vladvana 0:23d1f73bf130 728 /*
vladvana 0:23d1f73bf130 729 * @brief C custom defined QSUB8 for M3 and M0 processors
vladvana 0:23d1f73bf130 730 */
vladvana 0:23d1f73bf130 731 static __INLINE q31_t __QSUB8(
vladvana 0:23d1f73bf130 732 q31_t x,
vladvana 0:23d1f73bf130 733 q31_t y)
vladvana 0:23d1f73bf130 734 {
vladvana 0:23d1f73bf130 735
vladvana 0:23d1f73bf130 736 q31_t sum;
vladvana 0:23d1f73bf130 737 q31_t r, s, t, u;
vladvana 0:23d1f73bf130 738
vladvana 0:23d1f73bf130 739 r = (q7_t) x;
vladvana 0:23d1f73bf130 740 s = (q7_t) y;
vladvana 0:23d1f73bf130 741
vladvana 0:23d1f73bf130 742 r = __SSAT((r - s), 8);
vladvana 0:23d1f73bf130 743 s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
vladvana 0:23d1f73bf130 744 t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
vladvana 0:23d1f73bf130 745 u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
vladvana 0:23d1f73bf130 746
vladvana 0:23d1f73bf130 747 sum =
vladvana 0:23d1f73bf130 748 (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
vladvana 0:23d1f73bf130 749 0x000000FF);
vladvana 0:23d1f73bf130 750
vladvana 0:23d1f73bf130 751 return sum;
vladvana 0:23d1f73bf130 752 }
vladvana 0:23d1f73bf130 753
vladvana 0:23d1f73bf130 754 /*
vladvana 0:23d1f73bf130 755 * @brief C custom defined QADD16 for M3 and M0 processors
vladvana 0:23d1f73bf130 756 */
vladvana 0:23d1f73bf130 757
vladvana 0:23d1f73bf130 758 /*
vladvana 0:23d1f73bf130 759 * @brief C custom defined QADD16 for M3 and M0 processors
vladvana 0:23d1f73bf130 760 */
vladvana 0:23d1f73bf130 761 static __INLINE q31_t __QADD16(
vladvana 0:23d1f73bf130 762 q31_t x,
vladvana 0:23d1f73bf130 763 q31_t y)
vladvana 0:23d1f73bf130 764 {
vladvana 0:23d1f73bf130 765
vladvana 0:23d1f73bf130 766 q31_t sum;
vladvana 0:23d1f73bf130 767 q31_t r, s;
vladvana 0:23d1f73bf130 768
vladvana 0:23d1f73bf130 769 r = (q15_t) x;
vladvana 0:23d1f73bf130 770 s = (q15_t) y;
vladvana 0:23d1f73bf130 771
vladvana 0:23d1f73bf130 772 r = __SSAT(r + s, 16);
vladvana 0:23d1f73bf130 773 s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
vladvana 0:23d1f73bf130 774
vladvana 0:23d1f73bf130 775 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
vladvana 0:23d1f73bf130 776
vladvana 0:23d1f73bf130 777 return sum;
vladvana 0:23d1f73bf130 778
vladvana 0:23d1f73bf130 779 }
vladvana 0:23d1f73bf130 780
vladvana 0:23d1f73bf130 781 /*
vladvana 0:23d1f73bf130 782 * @brief C custom defined SHADD16 for M3 and M0 processors
vladvana 0:23d1f73bf130 783 */
vladvana 0:23d1f73bf130 784 static __INLINE q31_t __SHADD16(
vladvana 0:23d1f73bf130 785 q31_t x,
vladvana 0:23d1f73bf130 786 q31_t y)
vladvana 0:23d1f73bf130 787 {
vladvana 0:23d1f73bf130 788
vladvana 0:23d1f73bf130 789 q31_t sum;
vladvana 0:23d1f73bf130 790 q31_t r, s;
vladvana 0:23d1f73bf130 791
vladvana 0:23d1f73bf130 792 r = (q15_t) x;
vladvana 0:23d1f73bf130 793 s = (q15_t) y;
vladvana 0:23d1f73bf130 794
vladvana 0:23d1f73bf130 795 r = ((r >> 1) + (s >> 1));
vladvana 0:23d1f73bf130 796 s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
vladvana 0:23d1f73bf130 797
vladvana 0:23d1f73bf130 798 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
vladvana 0:23d1f73bf130 799
vladvana 0:23d1f73bf130 800 return sum;
vladvana 0:23d1f73bf130 801
vladvana 0:23d1f73bf130 802 }
vladvana 0:23d1f73bf130 803
vladvana 0:23d1f73bf130 804 /*
vladvana 0:23d1f73bf130 805 * @brief C custom defined QSUB16 for M3 and M0 processors
vladvana 0:23d1f73bf130 806 */
vladvana 0:23d1f73bf130 807 static __INLINE q31_t __QSUB16(
vladvana 0:23d1f73bf130 808 q31_t x,
vladvana 0:23d1f73bf130 809 q31_t y)
vladvana 0:23d1f73bf130 810 {
vladvana 0:23d1f73bf130 811
vladvana 0:23d1f73bf130 812 q31_t sum;
vladvana 0:23d1f73bf130 813 q31_t r, s;
vladvana 0:23d1f73bf130 814
vladvana 0:23d1f73bf130 815 r = (q15_t) x;
vladvana 0:23d1f73bf130 816 s = (q15_t) y;
vladvana 0:23d1f73bf130 817
vladvana 0:23d1f73bf130 818 r = __SSAT(r - s, 16);
vladvana 0:23d1f73bf130 819 s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
vladvana 0:23d1f73bf130 820
vladvana 0:23d1f73bf130 821 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
vladvana 0:23d1f73bf130 822
vladvana 0:23d1f73bf130 823 return sum;
vladvana 0:23d1f73bf130 824 }
vladvana 0:23d1f73bf130 825
vladvana 0:23d1f73bf130 826 /*
vladvana 0:23d1f73bf130 827 * @brief C custom defined SHSUB16 for M3 and M0 processors
vladvana 0:23d1f73bf130 828 */
vladvana 0:23d1f73bf130 829 static __INLINE q31_t __SHSUB16(
vladvana 0:23d1f73bf130 830 q31_t x,
vladvana 0:23d1f73bf130 831 q31_t y)
vladvana 0:23d1f73bf130 832 {
vladvana 0:23d1f73bf130 833
vladvana 0:23d1f73bf130 834 q31_t diff;
vladvana 0:23d1f73bf130 835 q31_t r, s;
vladvana 0:23d1f73bf130 836
vladvana 0:23d1f73bf130 837 r = (q15_t) x;
vladvana 0:23d1f73bf130 838 s = (q15_t) y;
vladvana 0:23d1f73bf130 839
vladvana 0:23d1f73bf130 840 r = ((r >> 1) - (s >> 1));
vladvana 0:23d1f73bf130 841 s = (((x >> 17) - (y >> 17)) << 16);
vladvana 0:23d1f73bf130 842
vladvana 0:23d1f73bf130 843 diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
vladvana 0:23d1f73bf130 844
vladvana 0:23d1f73bf130 845 return diff;
vladvana 0:23d1f73bf130 846 }
vladvana 0:23d1f73bf130 847
vladvana 0:23d1f73bf130 848 /*
vladvana 0:23d1f73bf130 849 * @brief C custom defined QASX for M3 and M0 processors
vladvana 0:23d1f73bf130 850 */
vladvana 0:23d1f73bf130 851 static __INLINE q31_t __QASX(
vladvana 0:23d1f73bf130 852 q31_t x,
vladvana 0:23d1f73bf130 853 q31_t y)
vladvana 0:23d1f73bf130 854 {
vladvana 0:23d1f73bf130 855
vladvana 0:23d1f73bf130 856 q31_t sum = 0;
vladvana 0:23d1f73bf130 857
vladvana 0:23d1f73bf130 858 sum =
vladvana 0:23d1f73bf130 859 ((sum +
vladvana 0:23d1f73bf130 860 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
vladvana 0:23d1f73bf130 861 clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
vladvana 0:23d1f73bf130 862
vladvana 0:23d1f73bf130 863 return sum;
vladvana 0:23d1f73bf130 864 }
vladvana 0:23d1f73bf130 865
vladvana 0:23d1f73bf130 866 /*
vladvana 0:23d1f73bf130 867 * @brief C custom defined SHASX for M3 and M0 processors
vladvana 0:23d1f73bf130 868 */
vladvana 0:23d1f73bf130 869 static __INLINE q31_t __SHASX(
vladvana 0:23d1f73bf130 870 q31_t x,
vladvana 0:23d1f73bf130 871 q31_t y)
vladvana 0:23d1f73bf130 872 {
vladvana 0:23d1f73bf130 873
vladvana 0:23d1f73bf130 874 q31_t sum;
vladvana 0:23d1f73bf130 875 q31_t r, s;
vladvana 0:23d1f73bf130 876
vladvana 0:23d1f73bf130 877 r = (q15_t) x;
vladvana 0:23d1f73bf130 878 s = (q15_t) y;
vladvana 0:23d1f73bf130 879
vladvana 0:23d1f73bf130 880 r = ((r >> 1) - (y >> 17));
vladvana 0:23d1f73bf130 881 s = (((x >> 17) + (s >> 1)) << 16);
vladvana 0:23d1f73bf130 882
vladvana 0:23d1f73bf130 883 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
vladvana 0:23d1f73bf130 884
vladvana 0:23d1f73bf130 885 return sum;
vladvana 0:23d1f73bf130 886 }
vladvana 0:23d1f73bf130 887
vladvana 0:23d1f73bf130 888
vladvana 0:23d1f73bf130 889 /*
vladvana 0:23d1f73bf130 890 * @brief C custom defined QSAX for M3 and M0 processors
vladvana 0:23d1f73bf130 891 */
vladvana 0:23d1f73bf130 892 static __INLINE q31_t __QSAX(
vladvana 0:23d1f73bf130 893 q31_t x,
vladvana 0:23d1f73bf130 894 q31_t y)
vladvana 0:23d1f73bf130 895 {
vladvana 0:23d1f73bf130 896
vladvana 0:23d1f73bf130 897 q31_t sum = 0;
vladvana 0:23d1f73bf130 898
vladvana 0:23d1f73bf130 899 sum =
vladvana 0:23d1f73bf130 900 ((sum +
vladvana 0:23d1f73bf130 901 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
vladvana 0:23d1f73bf130 902 clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
vladvana 0:23d1f73bf130 903
vladvana 0:23d1f73bf130 904 return sum;
vladvana 0:23d1f73bf130 905 }
vladvana 0:23d1f73bf130 906
vladvana 0:23d1f73bf130 907 /*
vladvana 0:23d1f73bf130 908 * @brief C custom defined SHSAX for M3 and M0 processors
vladvana 0:23d1f73bf130 909 */
vladvana 0:23d1f73bf130 910 static __INLINE q31_t __SHSAX(
vladvana 0:23d1f73bf130 911 q31_t x,
vladvana 0:23d1f73bf130 912 q31_t y)
vladvana 0:23d1f73bf130 913 {
vladvana 0:23d1f73bf130 914
vladvana 0:23d1f73bf130 915 q31_t sum;
vladvana 0:23d1f73bf130 916 q31_t r, s;
vladvana 0:23d1f73bf130 917
vladvana 0:23d1f73bf130 918 r = (q15_t) x;
vladvana 0:23d1f73bf130 919 s = (q15_t) y;
vladvana 0:23d1f73bf130 920
vladvana 0:23d1f73bf130 921 r = ((r >> 1) + (y >> 17));
vladvana 0:23d1f73bf130 922 s = (((x >> 17) - (s >> 1)) << 16);
vladvana 0:23d1f73bf130 923
vladvana 0:23d1f73bf130 924 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
vladvana 0:23d1f73bf130 925
vladvana 0:23d1f73bf130 926 return sum;
vladvana 0:23d1f73bf130 927 }
vladvana 0:23d1f73bf130 928
vladvana 0:23d1f73bf130 929 /*
vladvana 0:23d1f73bf130 930 * @brief C custom defined SMUSDX for M3 and M0 processors
vladvana 0:23d1f73bf130 931 */
vladvana 0:23d1f73bf130 932 static __INLINE q31_t __SMUSDX(
vladvana 0:23d1f73bf130 933 q31_t x,
vladvana 0:23d1f73bf130 934 q31_t y)
vladvana 0:23d1f73bf130 935 {
vladvana 0:23d1f73bf130 936
vladvana 0:23d1f73bf130 937 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
vladvana 0:23d1f73bf130 938 ((q15_t) (x >> 16) * (q15_t) y)));
vladvana 0:23d1f73bf130 939 }
vladvana 0:23d1f73bf130 940
vladvana 0:23d1f73bf130 941 /*
vladvana 0:23d1f73bf130 942 * @brief C custom defined SMUADX for M3 and M0 processors
vladvana 0:23d1f73bf130 943 */
vladvana 0:23d1f73bf130 944 static __INLINE q31_t __SMUADX(
vladvana 0:23d1f73bf130 945 q31_t x,
vladvana 0:23d1f73bf130 946 q31_t y)
vladvana 0:23d1f73bf130 947 {
vladvana 0:23d1f73bf130 948
vladvana 0:23d1f73bf130 949 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
vladvana 0:23d1f73bf130 950 ((q15_t) (x >> 16) * (q15_t) y)));
vladvana 0:23d1f73bf130 951 }
vladvana 0:23d1f73bf130 952
vladvana 0:23d1f73bf130 953 /*
vladvana 0:23d1f73bf130 954 * @brief C custom defined QADD for M3 and M0 processors
vladvana 0:23d1f73bf130 955 */
vladvana 0:23d1f73bf130 956 static __INLINE q31_t __QADD(
vladvana 0:23d1f73bf130 957 q31_t x,
vladvana 0:23d1f73bf130 958 q31_t y)
vladvana 0:23d1f73bf130 959 {
vladvana 0:23d1f73bf130 960 return clip_q63_to_q31((q63_t) x + y);
vladvana 0:23d1f73bf130 961 }
vladvana 0:23d1f73bf130 962
vladvana 0:23d1f73bf130 963 /*
vladvana 0:23d1f73bf130 964 * @brief C custom defined QSUB for M3 and M0 processors
vladvana 0:23d1f73bf130 965 */
vladvana 0:23d1f73bf130 966 static __INLINE q31_t __QSUB(
vladvana 0:23d1f73bf130 967 q31_t x,
vladvana 0:23d1f73bf130 968 q31_t y)
vladvana 0:23d1f73bf130 969 {
vladvana 0:23d1f73bf130 970 return clip_q63_to_q31((q63_t) x - y);
vladvana 0:23d1f73bf130 971 }
vladvana 0:23d1f73bf130 972
vladvana 0:23d1f73bf130 973 /*
vladvana 0:23d1f73bf130 974 * @brief C custom defined SMLAD for M3 and M0 processors
vladvana 0:23d1f73bf130 975 */
vladvana 0:23d1f73bf130 976 static __INLINE q31_t __SMLAD(
vladvana 0:23d1f73bf130 977 q31_t x,
vladvana 0:23d1f73bf130 978 q31_t y,
vladvana 0:23d1f73bf130 979 q31_t sum)
vladvana 0:23d1f73bf130 980 {
vladvana 0:23d1f73bf130 981
vladvana 0:23d1f73bf130 982 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
vladvana 0:23d1f73bf130 983 ((q15_t) x * (q15_t) y));
vladvana 0:23d1f73bf130 984 }
vladvana 0:23d1f73bf130 985
vladvana 0:23d1f73bf130 986 /*
vladvana 0:23d1f73bf130 987 * @brief C custom defined SMLADX for M3 and M0 processors
vladvana 0:23d1f73bf130 988 */
vladvana 0:23d1f73bf130 989 static __INLINE q31_t __SMLADX(
vladvana 0:23d1f73bf130 990 q31_t x,
vladvana 0:23d1f73bf130 991 q31_t y,
vladvana 0:23d1f73bf130 992 q31_t sum)
vladvana 0:23d1f73bf130 993 {
vladvana 0:23d1f73bf130 994
vladvana 0:23d1f73bf130 995 return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
vladvana 0:23d1f73bf130 996 ((q15_t) x * (q15_t) (y >> 16)));
vladvana 0:23d1f73bf130 997 }
vladvana 0:23d1f73bf130 998
vladvana 0:23d1f73bf130 999 /*
vladvana 0:23d1f73bf130 1000 * @brief C custom defined SMLSDX for M3 and M0 processors
vladvana 0:23d1f73bf130 1001 */
vladvana 0:23d1f73bf130 1002 static __INLINE q31_t __SMLSDX(
vladvana 0:23d1f73bf130 1003 q31_t x,
vladvana 0:23d1f73bf130 1004 q31_t y,
vladvana 0:23d1f73bf130 1005 q31_t sum)
vladvana 0:23d1f73bf130 1006 {
vladvana 0:23d1f73bf130 1007
vladvana 0:23d1f73bf130 1008 return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
vladvana 0:23d1f73bf130 1009 ((q15_t) x * (q15_t) (y >> 16)));
vladvana 0:23d1f73bf130 1010 }
vladvana 0:23d1f73bf130 1011
vladvana 0:23d1f73bf130 1012 /*
vladvana 0:23d1f73bf130 1013 * @brief C custom defined SMLALD for M3 and M0 processors
vladvana 0:23d1f73bf130 1014 */
vladvana 0:23d1f73bf130 1015 static __INLINE q63_t __SMLALD(
vladvana 0:23d1f73bf130 1016 q31_t x,
vladvana 0:23d1f73bf130 1017 q31_t y,
vladvana 0:23d1f73bf130 1018 q63_t sum)
vladvana 0:23d1f73bf130 1019 {
vladvana 0:23d1f73bf130 1020
vladvana 0:23d1f73bf130 1021 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
vladvana 0:23d1f73bf130 1022 ((q15_t) x * (q15_t) y));
vladvana 0:23d1f73bf130 1023 }
vladvana 0:23d1f73bf130 1024
vladvana 0:23d1f73bf130 1025 /*
vladvana 0:23d1f73bf130 1026 * @brief C custom defined SMLALDX for M3 and M0 processors
vladvana 0:23d1f73bf130 1027 */
vladvana 0:23d1f73bf130 1028 static __INLINE q63_t __SMLALDX(
vladvana 0:23d1f73bf130 1029 q31_t x,
vladvana 0:23d1f73bf130 1030 q31_t y,
vladvana 0:23d1f73bf130 1031 q63_t sum)
vladvana 0:23d1f73bf130 1032 {
vladvana 0:23d1f73bf130 1033
vladvana 0:23d1f73bf130 1034 return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
vladvana 0:23d1f73bf130 1035 ((q15_t) x * (q15_t) (y >> 16));
vladvana 0:23d1f73bf130 1036 }
vladvana 0:23d1f73bf130 1037
vladvana 0:23d1f73bf130 1038 /*
vladvana 0:23d1f73bf130 1039 * @brief C custom defined SMUAD for M3 and M0 processors
vladvana 0:23d1f73bf130 1040 */
vladvana 0:23d1f73bf130 1041 static __INLINE q31_t __SMUAD(
vladvana 0:23d1f73bf130 1042 q31_t x,
vladvana 0:23d1f73bf130 1043 q31_t y)
vladvana 0:23d1f73bf130 1044 {
vladvana 0:23d1f73bf130 1045
vladvana 0:23d1f73bf130 1046 return (((x >> 16) * (y >> 16)) +
vladvana 0:23d1f73bf130 1047 (((x << 16) >> 16) * ((y << 16) >> 16)));
vladvana 0:23d1f73bf130 1048 }
vladvana 0:23d1f73bf130 1049
vladvana 0:23d1f73bf130 1050 /*
vladvana 0:23d1f73bf130 1051 * @brief C custom defined SMUSD for M3 and M0 processors
vladvana 0:23d1f73bf130 1052 */
vladvana 0:23d1f73bf130 1053 static __INLINE q31_t __SMUSD(
vladvana 0:23d1f73bf130 1054 q31_t x,
vladvana 0:23d1f73bf130 1055 q31_t y)
vladvana 0:23d1f73bf130 1056 {
vladvana 0:23d1f73bf130 1057
vladvana 0:23d1f73bf130 1058 return (-((x >> 16) * (y >> 16)) +
vladvana 0:23d1f73bf130 1059 (((x << 16) >> 16) * ((y << 16) >> 16)));
vladvana 0:23d1f73bf130 1060 }
vladvana 0:23d1f73bf130 1061
vladvana 0:23d1f73bf130 1062
vladvana 0:23d1f73bf130 1063 /*
vladvana 0:23d1f73bf130 1064 * @brief C custom defined SXTB16 for M3 and M0 processors
vladvana 0:23d1f73bf130 1065 */
vladvana 0:23d1f73bf130 1066 static __INLINE q31_t __SXTB16(
vladvana 0:23d1f73bf130 1067 q31_t x)
vladvana 0:23d1f73bf130 1068 {
vladvana 0:23d1f73bf130 1069
vladvana 0:23d1f73bf130 1070 return ((((x << 24) >> 24) & 0x0000FFFF) |
vladvana 0:23d1f73bf130 1071 (((x << 8) >> 8) & 0xFFFF0000));
vladvana 0:23d1f73bf130 1072 }
vladvana 0:23d1f73bf130 1073
vladvana 0:23d1f73bf130 1074
vladvana 0:23d1f73bf130 1075 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
vladvana 0:23d1f73bf130 1076
vladvana 0:23d1f73bf130 1077
vladvana 0:23d1f73bf130 1078 /**
vladvana 0:23d1f73bf130 1079 * @brief Instance structure for the Q7 FIR filter.
vladvana 0:23d1f73bf130 1080 */
vladvana 0:23d1f73bf130 1081 typedef struct
vladvana 0:23d1f73bf130 1082 {
vladvana 0:23d1f73bf130 1083 uint16_t numTaps; /**< number of filter coefficients in the filter. */
vladvana 0:23d1f73bf130 1084 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 1085 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
vladvana 0:23d1f73bf130 1086 } arm_fir_instance_q7;
vladvana 0:23d1f73bf130 1087
vladvana 0:23d1f73bf130 1088 /**
vladvana 0:23d1f73bf130 1089 * @brief Instance structure for the Q15 FIR filter.
vladvana 0:23d1f73bf130 1090 */
vladvana 0:23d1f73bf130 1091 typedef struct
vladvana 0:23d1f73bf130 1092 {
vladvana 0:23d1f73bf130 1093 uint16_t numTaps; /**< number of filter coefficients in the filter. */
vladvana 0:23d1f73bf130 1094 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 1095 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
vladvana 0:23d1f73bf130 1096 } arm_fir_instance_q15;
vladvana 0:23d1f73bf130 1097
vladvana 0:23d1f73bf130 1098 /**
vladvana 0:23d1f73bf130 1099 * @brief Instance structure for the Q31 FIR filter.
vladvana 0:23d1f73bf130 1100 */
vladvana 0:23d1f73bf130 1101 typedef struct
vladvana 0:23d1f73bf130 1102 {
vladvana 0:23d1f73bf130 1103 uint16_t numTaps; /**< number of filter coefficients in the filter. */
vladvana 0:23d1f73bf130 1104 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 1105 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
vladvana 0:23d1f73bf130 1106 } arm_fir_instance_q31;
vladvana 0:23d1f73bf130 1107
vladvana 0:23d1f73bf130 1108 /**
vladvana 0:23d1f73bf130 1109 * @brief Instance structure for the floating-point FIR filter.
vladvana 0:23d1f73bf130 1110 */
vladvana 0:23d1f73bf130 1111 typedef struct
vladvana 0:23d1f73bf130 1112 {
vladvana 0:23d1f73bf130 1113 uint16_t numTaps; /**< number of filter coefficients in the filter. */
vladvana 0:23d1f73bf130 1114 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 1115 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
vladvana 0:23d1f73bf130 1116 } arm_fir_instance_f32;
vladvana 0:23d1f73bf130 1117
vladvana 0:23d1f73bf130 1118
vladvana 0:23d1f73bf130 1119 /**
vladvana 0:23d1f73bf130 1120 * @brief Processing function for the Q7 FIR filter.
vladvana 0:23d1f73bf130 1121 * @param[in] *S points to an instance of the Q7 FIR filter structure.
vladvana 0:23d1f73bf130 1122 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1123 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1124 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1125 * @return none.
vladvana 0:23d1f73bf130 1126 */
vladvana 0:23d1f73bf130 1127 void arm_fir_q7(
vladvana 0:23d1f73bf130 1128 const arm_fir_instance_q7 * S,
vladvana 0:23d1f73bf130 1129 q7_t * pSrc,
vladvana 0:23d1f73bf130 1130 q7_t * pDst,
vladvana 0:23d1f73bf130 1131 uint32_t blockSize);
vladvana 0:23d1f73bf130 1132
vladvana 0:23d1f73bf130 1133
vladvana 0:23d1f73bf130 1134 /**
vladvana 0:23d1f73bf130 1135 * @brief Initialization function for the Q7 FIR filter.
vladvana 0:23d1f73bf130 1136 * @param[in,out] *S points to an instance of the Q7 FIR structure.
vladvana 0:23d1f73bf130 1137 * @param[in] numTaps Number of filter coefficients in the filter.
vladvana 0:23d1f73bf130 1138 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 1139 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 1140 * @param[in] blockSize number of samples that are processed.
vladvana 0:23d1f73bf130 1141 * @return none
vladvana 0:23d1f73bf130 1142 */
vladvana 0:23d1f73bf130 1143 void arm_fir_init_q7(
vladvana 0:23d1f73bf130 1144 arm_fir_instance_q7 * S,
vladvana 0:23d1f73bf130 1145 uint16_t numTaps,
vladvana 0:23d1f73bf130 1146 q7_t * pCoeffs,
vladvana 0:23d1f73bf130 1147 q7_t * pState,
vladvana 0:23d1f73bf130 1148 uint32_t blockSize);
vladvana 0:23d1f73bf130 1149
vladvana 0:23d1f73bf130 1150
vladvana 0:23d1f73bf130 1151 /**
vladvana 0:23d1f73bf130 1152 * @brief Processing function for the Q15 FIR filter.
vladvana 0:23d1f73bf130 1153 * @param[in] *S points to an instance of the Q15 FIR structure.
vladvana 0:23d1f73bf130 1154 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1155 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1156 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1157 * @return none.
vladvana 0:23d1f73bf130 1158 */
vladvana 0:23d1f73bf130 1159 void arm_fir_q15(
vladvana 0:23d1f73bf130 1160 const arm_fir_instance_q15 * S,
vladvana 0:23d1f73bf130 1161 q15_t * pSrc,
vladvana 0:23d1f73bf130 1162 q15_t * pDst,
vladvana 0:23d1f73bf130 1163 uint32_t blockSize);
vladvana 0:23d1f73bf130 1164
vladvana 0:23d1f73bf130 1165 /**
vladvana 0:23d1f73bf130 1166 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
vladvana 0:23d1f73bf130 1167 * @param[in] *S points to an instance of the Q15 FIR filter structure.
vladvana 0:23d1f73bf130 1168 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1169 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1170 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1171 * @return none.
vladvana 0:23d1f73bf130 1172 */
vladvana 0:23d1f73bf130 1173 void arm_fir_fast_q15(
vladvana 0:23d1f73bf130 1174 const arm_fir_instance_q15 * S,
vladvana 0:23d1f73bf130 1175 q15_t * pSrc,
vladvana 0:23d1f73bf130 1176 q15_t * pDst,
vladvana 0:23d1f73bf130 1177 uint32_t blockSize);
vladvana 0:23d1f73bf130 1178
vladvana 0:23d1f73bf130 1179 /**
vladvana 0:23d1f73bf130 1180 * @brief Initialization function for the Q15 FIR filter.
vladvana 0:23d1f73bf130 1181 * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
vladvana 0:23d1f73bf130 1182 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
vladvana 0:23d1f73bf130 1183 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 1184 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 1185 * @param[in] blockSize number of samples that are processed at a time.
vladvana 0:23d1f73bf130 1186 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
vladvana 0:23d1f73bf130 1187 * <code>numTaps</code> is not a supported value.
vladvana 0:23d1f73bf130 1188 */
vladvana 0:23d1f73bf130 1189
vladvana 0:23d1f73bf130 1190 arm_status arm_fir_init_q15(
vladvana 0:23d1f73bf130 1191 arm_fir_instance_q15 * S,
vladvana 0:23d1f73bf130 1192 uint16_t numTaps,
vladvana 0:23d1f73bf130 1193 q15_t * pCoeffs,
vladvana 0:23d1f73bf130 1194 q15_t * pState,
vladvana 0:23d1f73bf130 1195 uint32_t blockSize);
vladvana 0:23d1f73bf130 1196
vladvana 0:23d1f73bf130 1197 /**
vladvana 0:23d1f73bf130 1198 * @brief Processing function for the Q31 FIR filter.
vladvana 0:23d1f73bf130 1199 * @param[in] *S points to an instance of the Q31 FIR filter structure.
vladvana 0:23d1f73bf130 1200 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1201 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1202 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1203 * @return none.
vladvana 0:23d1f73bf130 1204 */
vladvana 0:23d1f73bf130 1205 void arm_fir_q31(
vladvana 0:23d1f73bf130 1206 const arm_fir_instance_q31 * S,
vladvana 0:23d1f73bf130 1207 q31_t * pSrc,
vladvana 0:23d1f73bf130 1208 q31_t * pDst,
vladvana 0:23d1f73bf130 1209 uint32_t blockSize);
vladvana 0:23d1f73bf130 1210
vladvana 0:23d1f73bf130 1211 /**
vladvana 0:23d1f73bf130 1212 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
vladvana 0:23d1f73bf130 1213 * @param[in] *S points to an instance of the Q31 FIR structure.
vladvana 0:23d1f73bf130 1214 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1215 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1216 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1217 * @return none.
vladvana 0:23d1f73bf130 1218 */
vladvana 0:23d1f73bf130 1219 void arm_fir_fast_q31(
vladvana 0:23d1f73bf130 1220 const arm_fir_instance_q31 * S,
vladvana 0:23d1f73bf130 1221 q31_t * pSrc,
vladvana 0:23d1f73bf130 1222 q31_t * pDst,
vladvana 0:23d1f73bf130 1223 uint32_t blockSize);
vladvana 0:23d1f73bf130 1224
vladvana 0:23d1f73bf130 1225 /**
vladvana 0:23d1f73bf130 1226 * @brief Initialization function for the Q31 FIR filter.
vladvana 0:23d1f73bf130 1227 * @param[in,out] *S points to an instance of the Q31 FIR structure.
vladvana 0:23d1f73bf130 1228 * @param[in] numTaps Number of filter coefficients in the filter.
vladvana 0:23d1f73bf130 1229 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 1230 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 1231 * @param[in] blockSize number of samples that are processed at a time.
vladvana 0:23d1f73bf130 1232 * @return none.
vladvana 0:23d1f73bf130 1233 */
vladvana 0:23d1f73bf130 1234 void arm_fir_init_q31(
vladvana 0:23d1f73bf130 1235 arm_fir_instance_q31 * S,
vladvana 0:23d1f73bf130 1236 uint16_t numTaps,
vladvana 0:23d1f73bf130 1237 q31_t * pCoeffs,
vladvana 0:23d1f73bf130 1238 q31_t * pState,
vladvana 0:23d1f73bf130 1239 uint32_t blockSize);
vladvana 0:23d1f73bf130 1240
vladvana 0:23d1f73bf130 1241 /**
vladvana 0:23d1f73bf130 1242 * @brief Processing function for the floating-point FIR filter.
vladvana 0:23d1f73bf130 1243 * @param[in] *S points to an instance of the floating-point FIR structure.
vladvana 0:23d1f73bf130 1244 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1245 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1246 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1247 * @return none.
vladvana 0:23d1f73bf130 1248 */
vladvana 0:23d1f73bf130 1249 void arm_fir_f32(
vladvana 0:23d1f73bf130 1250 const arm_fir_instance_f32 * S,
vladvana 0:23d1f73bf130 1251 float32_t * pSrc,
vladvana 0:23d1f73bf130 1252 float32_t * pDst,
vladvana 0:23d1f73bf130 1253 uint32_t blockSize);
vladvana 0:23d1f73bf130 1254
vladvana 0:23d1f73bf130 1255 /**
vladvana 0:23d1f73bf130 1256 * @brief Initialization function for the floating-point FIR filter.
vladvana 0:23d1f73bf130 1257 * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
vladvana 0:23d1f73bf130 1258 * @param[in] numTaps Number of filter coefficients in the filter.
vladvana 0:23d1f73bf130 1259 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 1260 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 1261 * @param[in] blockSize number of samples that are processed at a time.
vladvana 0:23d1f73bf130 1262 * @return none.
vladvana 0:23d1f73bf130 1263 */
vladvana 0:23d1f73bf130 1264 void arm_fir_init_f32(
vladvana 0:23d1f73bf130 1265 arm_fir_instance_f32 * S,
vladvana 0:23d1f73bf130 1266 uint16_t numTaps,
vladvana 0:23d1f73bf130 1267 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 1268 float32_t * pState,
vladvana 0:23d1f73bf130 1269 uint32_t blockSize);
vladvana 0:23d1f73bf130 1270
vladvana 0:23d1f73bf130 1271
vladvana 0:23d1f73bf130 1272 /**
vladvana 0:23d1f73bf130 1273 * @brief Instance structure for the Q15 Biquad cascade filter.
vladvana 0:23d1f73bf130 1274 */
vladvana 0:23d1f73bf130 1275 typedef struct
vladvana 0:23d1f73bf130 1276 {
vladvana 0:23d1f73bf130 1277 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
vladvana 0:23d1f73bf130 1278 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
vladvana 0:23d1f73bf130 1279 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
vladvana 0:23d1f73bf130 1280 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
vladvana 0:23d1f73bf130 1281
vladvana 0:23d1f73bf130 1282 } arm_biquad_casd_df1_inst_q15;
vladvana 0:23d1f73bf130 1283
vladvana 0:23d1f73bf130 1284
vladvana 0:23d1f73bf130 1285 /**
vladvana 0:23d1f73bf130 1286 * @brief Instance structure for the Q31 Biquad cascade filter.
vladvana 0:23d1f73bf130 1287 */
vladvana 0:23d1f73bf130 1288 typedef struct
vladvana 0:23d1f73bf130 1289 {
vladvana 0:23d1f73bf130 1290 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
vladvana 0:23d1f73bf130 1291 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
vladvana 0:23d1f73bf130 1292 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
vladvana 0:23d1f73bf130 1293 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
vladvana 0:23d1f73bf130 1294
vladvana 0:23d1f73bf130 1295 } arm_biquad_casd_df1_inst_q31;
vladvana 0:23d1f73bf130 1296
vladvana 0:23d1f73bf130 1297 /**
vladvana 0:23d1f73bf130 1298 * @brief Instance structure for the floating-point Biquad cascade filter.
vladvana 0:23d1f73bf130 1299 */
vladvana 0:23d1f73bf130 1300 typedef struct
vladvana 0:23d1f73bf130 1301 {
vladvana 0:23d1f73bf130 1302 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
vladvana 0:23d1f73bf130 1303 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
vladvana 0:23d1f73bf130 1304 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
vladvana 0:23d1f73bf130 1305
vladvana 0:23d1f73bf130 1306
vladvana 0:23d1f73bf130 1307 } arm_biquad_casd_df1_inst_f32;
vladvana 0:23d1f73bf130 1308
vladvana 0:23d1f73bf130 1309
vladvana 0:23d1f73bf130 1310
vladvana 0:23d1f73bf130 1311 /**
vladvana 0:23d1f73bf130 1312 * @brief Processing function for the Q15 Biquad cascade filter.
vladvana 0:23d1f73bf130 1313 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
vladvana 0:23d1f73bf130 1314 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1315 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1316 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1317 * @return none.
vladvana 0:23d1f73bf130 1318 */
vladvana 0:23d1f73bf130 1319
vladvana 0:23d1f73bf130 1320 void arm_biquad_cascade_df1_q15(
vladvana 0:23d1f73bf130 1321 const arm_biquad_casd_df1_inst_q15 * S,
vladvana 0:23d1f73bf130 1322 q15_t * pSrc,
vladvana 0:23d1f73bf130 1323 q15_t * pDst,
vladvana 0:23d1f73bf130 1324 uint32_t blockSize);
vladvana 0:23d1f73bf130 1325
vladvana 0:23d1f73bf130 1326 /**
vladvana 0:23d1f73bf130 1327 * @brief Initialization function for the Q15 Biquad cascade filter.
vladvana 0:23d1f73bf130 1328 * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
vladvana 0:23d1f73bf130 1329 * @param[in] numStages number of 2nd order stages in the filter.
vladvana 0:23d1f73bf130 1330 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 1331 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 1332 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
vladvana 0:23d1f73bf130 1333 * @return none
vladvana 0:23d1f73bf130 1334 */
vladvana 0:23d1f73bf130 1335
vladvana 0:23d1f73bf130 1336 void arm_biquad_cascade_df1_init_q15(
vladvana 0:23d1f73bf130 1337 arm_biquad_casd_df1_inst_q15 * S,
vladvana 0:23d1f73bf130 1338 uint8_t numStages,
vladvana 0:23d1f73bf130 1339 q15_t * pCoeffs,
vladvana 0:23d1f73bf130 1340 q15_t * pState,
vladvana 0:23d1f73bf130 1341 int8_t postShift);
vladvana 0:23d1f73bf130 1342
vladvana 0:23d1f73bf130 1343
vladvana 0:23d1f73bf130 1344 /**
vladvana 0:23d1f73bf130 1345 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
vladvana 0:23d1f73bf130 1346 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
vladvana 0:23d1f73bf130 1347 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1348 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1349 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1350 * @return none.
vladvana 0:23d1f73bf130 1351 */
vladvana 0:23d1f73bf130 1352
vladvana 0:23d1f73bf130 1353 void arm_biquad_cascade_df1_fast_q15(
vladvana 0:23d1f73bf130 1354 const arm_biquad_casd_df1_inst_q15 * S,
vladvana 0:23d1f73bf130 1355 q15_t * pSrc,
vladvana 0:23d1f73bf130 1356 q15_t * pDst,
vladvana 0:23d1f73bf130 1357 uint32_t blockSize);
vladvana 0:23d1f73bf130 1358
vladvana 0:23d1f73bf130 1359
vladvana 0:23d1f73bf130 1360 /**
vladvana 0:23d1f73bf130 1361 * @brief Processing function for the Q31 Biquad cascade filter
vladvana 0:23d1f73bf130 1362 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
vladvana 0:23d1f73bf130 1363 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1364 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1365 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1366 * @return none.
vladvana 0:23d1f73bf130 1367 */
vladvana 0:23d1f73bf130 1368
vladvana 0:23d1f73bf130 1369 void arm_biquad_cascade_df1_q31(
vladvana 0:23d1f73bf130 1370 const arm_biquad_casd_df1_inst_q31 * S,
vladvana 0:23d1f73bf130 1371 q31_t * pSrc,
vladvana 0:23d1f73bf130 1372 q31_t * pDst,
vladvana 0:23d1f73bf130 1373 uint32_t blockSize);
vladvana 0:23d1f73bf130 1374
vladvana 0:23d1f73bf130 1375 /**
vladvana 0:23d1f73bf130 1376 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
vladvana 0:23d1f73bf130 1377 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
vladvana 0:23d1f73bf130 1378 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1379 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1380 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1381 * @return none.
vladvana 0:23d1f73bf130 1382 */
vladvana 0:23d1f73bf130 1383
vladvana 0:23d1f73bf130 1384 void arm_biquad_cascade_df1_fast_q31(
vladvana 0:23d1f73bf130 1385 const arm_biquad_casd_df1_inst_q31 * S,
vladvana 0:23d1f73bf130 1386 q31_t * pSrc,
vladvana 0:23d1f73bf130 1387 q31_t * pDst,
vladvana 0:23d1f73bf130 1388 uint32_t blockSize);
vladvana 0:23d1f73bf130 1389
vladvana 0:23d1f73bf130 1390 /**
vladvana 0:23d1f73bf130 1391 * @brief Initialization function for the Q31 Biquad cascade filter.
vladvana 0:23d1f73bf130 1392 * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
vladvana 0:23d1f73bf130 1393 * @param[in] numStages number of 2nd order stages in the filter.
vladvana 0:23d1f73bf130 1394 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 1395 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 1396 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
vladvana 0:23d1f73bf130 1397 * @return none
vladvana 0:23d1f73bf130 1398 */
vladvana 0:23d1f73bf130 1399
vladvana 0:23d1f73bf130 1400 void arm_biquad_cascade_df1_init_q31(
vladvana 0:23d1f73bf130 1401 arm_biquad_casd_df1_inst_q31 * S,
vladvana 0:23d1f73bf130 1402 uint8_t numStages,
vladvana 0:23d1f73bf130 1403 q31_t * pCoeffs,
vladvana 0:23d1f73bf130 1404 q31_t * pState,
vladvana 0:23d1f73bf130 1405 int8_t postShift);
vladvana 0:23d1f73bf130 1406
vladvana 0:23d1f73bf130 1407 /**
vladvana 0:23d1f73bf130 1408 * @brief Processing function for the floating-point Biquad cascade filter.
vladvana 0:23d1f73bf130 1409 * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
vladvana 0:23d1f73bf130 1410 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 1411 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 1412 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 1413 * @return none.
vladvana 0:23d1f73bf130 1414 */
vladvana 0:23d1f73bf130 1415
vladvana 0:23d1f73bf130 1416 void arm_biquad_cascade_df1_f32(
vladvana 0:23d1f73bf130 1417 const arm_biquad_casd_df1_inst_f32 * S,
vladvana 0:23d1f73bf130 1418 float32_t * pSrc,
vladvana 0:23d1f73bf130 1419 float32_t * pDst,
vladvana 0:23d1f73bf130 1420 uint32_t blockSize);
vladvana 0:23d1f73bf130 1421
vladvana 0:23d1f73bf130 1422 /**
vladvana 0:23d1f73bf130 1423 * @brief Initialization function for the floating-point Biquad cascade filter.
vladvana 0:23d1f73bf130 1424 * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
vladvana 0:23d1f73bf130 1425 * @param[in] numStages number of 2nd order stages in the filter.
vladvana 0:23d1f73bf130 1426 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 1427 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 1428 * @return none
vladvana 0:23d1f73bf130 1429 */
vladvana 0:23d1f73bf130 1430
vladvana 0:23d1f73bf130 1431 void arm_biquad_cascade_df1_init_f32(
vladvana 0:23d1f73bf130 1432 arm_biquad_casd_df1_inst_f32 * S,
vladvana 0:23d1f73bf130 1433 uint8_t numStages,
vladvana 0:23d1f73bf130 1434 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 1435 float32_t * pState);
vladvana 0:23d1f73bf130 1436
vladvana 0:23d1f73bf130 1437
vladvana 0:23d1f73bf130 1438 /**
vladvana 0:23d1f73bf130 1439 * @brief Instance structure for the floating-point matrix structure.
vladvana 0:23d1f73bf130 1440 */
vladvana 0:23d1f73bf130 1441
vladvana 0:23d1f73bf130 1442 typedef struct
vladvana 0:23d1f73bf130 1443 {
vladvana 0:23d1f73bf130 1444 uint16_t numRows; /**< number of rows of the matrix. */
vladvana 0:23d1f73bf130 1445 uint16_t numCols; /**< number of columns of the matrix. */
vladvana 0:23d1f73bf130 1446 float32_t *pData; /**< points to the data of the matrix. */
vladvana 0:23d1f73bf130 1447 } arm_matrix_instance_f32;
vladvana 0:23d1f73bf130 1448
vladvana 0:23d1f73bf130 1449
vladvana 0:23d1f73bf130 1450 /**
vladvana 0:23d1f73bf130 1451 * @brief Instance structure for the floating-point matrix structure.
vladvana 0:23d1f73bf130 1452 */
vladvana 0:23d1f73bf130 1453
vladvana 0:23d1f73bf130 1454 typedef struct
vladvana 0:23d1f73bf130 1455 {
vladvana 0:23d1f73bf130 1456 uint16_t numRows; /**< number of rows of the matrix. */
vladvana 0:23d1f73bf130 1457 uint16_t numCols; /**< number of columns of the matrix. */
vladvana 0:23d1f73bf130 1458 float64_t *pData; /**< points to the data of the matrix. */
vladvana 0:23d1f73bf130 1459 } arm_matrix_instance_f64;
vladvana 0:23d1f73bf130 1460
vladvana 0:23d1f73bf130 1461 /**
vladvana 0:23d1f73bf130 1462 * @brief Instance structure for the Q15 matrix structure.
vladvana 0:23d1f73bf130 1463 */
vladvana 0:23d1f73bf130 1464
vladvana 0:23d1f73bf130 1465 typedef struct
vladvana 0:23d1f73bf130 1466 {
vladvana 0:23d1f73bf130 1467 uint16_t numRows; /**< number of rows of the matrix. */
vladvana 0:23d1f73bf130 1468 uint16_t numCols; /**< number of columns of the matrix. */
vladvana 0:23d1f73bf130 1469 q15_t *pData; /**< points to the data of the matrix. */
vladvana 0:23d1f73bf130 1470
vladvana 0:23d1f73bf130 1471 } arm_matrix_instance_q15;
vladvana 0:23d1f73bf130 1472
vladvana 0:23d1f73bf130 1473 /**
vladvana 0:23d1f73bf130 1474 * @brief Instance structure for the Q31 matrix structure.
vladvana 0:23d1f73bf130 1475 */
vladvana 0:23d1f73bf130 1476
vladvana 0:23d1f73bf130 1477 typedef struct
vladvana 0:23d1f73bf130 1478 {
vladvana 0:23d1f73bf130 1479 uint16_t numRows; /**< number of rows of the matrix. */
vladvana 0:23d1f73bf130 1480 uint16_t numCols; /**< number of columns of the matrix. */
vladvana 0:23d1f73bf130 1481 q31_t *pData; /**< points to the data of the matrix. */
vladvana 0:23d1f73bf130 1482
vladvana 0:23d1f73bf130 1483 } arm_matrix_instance_q31;
vladvana 0:23d1f73bf130 1484
vladvana 0:23d1f73bf130 1485
vladvana 0:23d1f73bf130 1486
vladvana 0:23d1f73bf130 1487 /**
vladvana 0:23d1f73bf130 1488 * @brief Floating-point matrix addition.
vladvana 0:23d1f73bf130 1489 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1490 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1491 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1492 * @return The function returns either
vladvana 0:23d1f73bf130 1493 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1494 */
vladvana 0:23d1f73bf130 1495
vladvana 0:23d1f73bf130 1496 arm_status arm_mat_add_f32(
vladvana 0:23d1f73bf130 1497 const arm_matrix_instance_f32 * pSrcA,
vladvana 0:23d1f73bf130 1498 const arm_matrix_instance_f32 * pSrcB,
vladvana 0:23d1f73bf130 1499 arm_matrix_instance_f32 * pDst);
vladvana 0:23d1f73bf130 1500
vladvana 0:23d1f73bf130 1501 /**
vladvana 0:23d1f73bf130 1502 * @brief Q15 matrix addition.
vladvana 0:23d1f73bf130 1503 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1504 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1505 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1506 * @return The function returns either
vladvana 0:23d1f73bf130 1507 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1508 */
vladvana 0:23d1f73bf130 1509
vladvana 0:23d1f73bf130 1510 arm_status arm_mat_add_q15(
vladvana 0:23d1f73bf130 1511 const arm_matrix_instance_q15 * pSrcA,
vladvana 0:23d1f73bf130 1512 const arm_matrix_instance_q15 * pSrcB,
vladvana 0:23d1f73bf130 1513 arm_matrix_instance_q15 * pDst);
vladvana 0:23d1f73bf130 1514
vladvana 0:23d1f73bf130 1515 /**
vladvana 0:23d1f73bf130 1516 * @brief Q31 matrix addition.
vladvana 0:23d1f73bf130 1517 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1518 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1519 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1520 * @return The function returns either
vladvana 0:23d1f73bf130 1521 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1522 */
vladvana 0:23d1f73bf130 1523
vladvana 0:23d1f73bf130 1524 arm_status arm_mat_add_q31(
vladvana 0:23d1f73bf130 1525 const arm_matrix_instance_q31 * pSrcA,
vladvana 0:23d1f73bf130 1526 const arm_matrix_instance_q31 * pSrcB,
vladvana 0:23d1f73bf130 1527 arm_matrix_instance_q31 * pDst);
vladvana 0:23d1f73bf130 1528
vladvana 0:23d1f73bf130 1529 /**
vladvana 0:23d1f73bf130 1530 * @brief Floating-point, complex, matrix multiplication.
vladvana 0:23d1f73bf130 1531 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1532 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1533 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1534 * @return The function returns either
vladvana 0:23d1f73bf130 1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1536 */
vladvana 0:23d1f73bf130 1537
vladvana 0:23d1f73bf130 1538 arm_status arm_mat_cmplx_mult_f32(
vladvana 0:23d1f73bf130 1539 const arm_matrix_instance_f32 * pSrcA,
vladvana 0:23d1f73bf130 1540 const arm_matrix_instance_f32 * pSrcB,
vladvana 0:23d1f73bf130 1541 arm_matrix_instance_f32 * pDst);
vladvana 0:23d1f73bf130 1542
vladvana 0:23d1f73bf130 1543 /**
vladvana 0:23d1f73bf130 1544 * @brief Q15, complex, matrix multiplication.
vladvana 0:23d1f73bf130 1545 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1546 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1547 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1548 * @return The function returns either
vladvana 0:23d1f73bf130 1549 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1550 */
vladvana 0:23d1f73bf130 1551
vladvana 0:23d1f73bf130 1552 arm_status arm_mat_cmplx_mult_q15(
vladvana 0:23d1f73bf130 1553 const arm_matrix_instance_q15 * pSrcA,
vladvana 0:23d1f73bf130 1554 const arm_matrix_instance_q15 * pSrcB,
vladvana 0:23d1f73bf130 1555 arm_matrix_instance_q15 * pDst,
vladvana 0:23d1f73bf130 1556 q15_t * pScratch);
vladvana 0:23d1f73bf130 1557
vladvana 0:23d1f73bf130 1558 /**
vladvana 0:23d1f73bf130 1559 * @brief Q31, complex, matrix multiplication.
vladvana 0:23d1f73bf130 1560 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1561 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1562 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1563 * @return The function returns either
vladvana 0:23d1f73bf130 1564 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1565 */
vladvana 0:23d1f73bf130 1566
vladvana 0:23d1f73bf130 1567 arm_status arm_mat_cmplx_mult_q31(
vladvana 0:23d1f73bf130 1568 const arm_matrix_instance_q31 * pSrcA,
vladvana 0:23d1f73bf130 1569 const arm_matrix_instance_q31 * pSrcB,
vladvana 0:23d1f73bf130 1570 arm_matrix_instance_q31 * pDst);
vladvana 0:23d1f73bf130 1571
vladvana 0:23d1f73bf130 1572
vladvana 0:23d1f73bf130 1573 /**
vladvana 0:23d1f73bf130 1574 * @brief Floating-point matrix transpose.
vladvana 0:23d1f73bf130 1575 * @param[in] *pSrc points to the input matrix
vladvana 0:23d1f73bf130 1576 * @param[out] *pDst points to the output matrix
vladvana 0:23d1f73bf130 1577 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
vladvana 0:23d1f73bf130 1578 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1579 */
vladvana 0:23d1f73bf130 1580
vladvana 0:23d1f73bf130 1581 arm_status arm_mat_trans_f32(
vladvana 0:23d1f73bf130 1582 const arm_matrix_instance_f32 * pSrc,
vladvana 0:23d1f73bf130 1583 arm_matrix_instance_f32 * pDst);
vladvana 0:23d1f73bf130 1584
vladvana 0:23d1f73bf130 1585
vladvana 0:23d1f73bf130 1586 /**
vladvana 0:23d1f73bf130 1587 * @brief Q15 matrix transpose.
vladvana 0:23d1f73bf130 1588 * @param[in] *pSrc points to the input matrix
vladvana 0:23d1f73bf130 1589 * @param[out] *pDst points to the output matrix
vladvana 0:23d1f73bf130 1590 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
vladvana 0:23d1f73bf130 1591 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1592 */
vladvana 0:23d1f73bf130 1593
vladvana 0:23d1f73bf130 1594 arm_status arm_mat_trans_q15(
vladvana 0:23d1f73bf130 1595 const arm_matrix_instance_q15 * pSrc,
vladvana 0:23d1f73bf130 1596 arm_matrix_instance_q15 * pDst);
vladvana 0:23d1f73bf130 1597
vladvana 0:23d1f73bf130 1598 /**
vladvana 0:23d1f73bf130 1599 * @brief Q31 matrix transpose.
vladvana 0:23d1f73bf130 1600 * @param[in] *pSrc points to the input matrix
vladvana 0:23d1f73bf130 1601 * @param[out] *pDst points to the output matrix
vladvana 0:23d1f73bf130 1602 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
vladvana 0:23d1f73bf130 1603 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1604 */
vladvana 0:23d1f73bf130 1605
vladvana 0:23d1f73bf130 1606 arm_status arm_mat_trans_q31(
vladvana 0:23d1f73bf130 1607 const arm_matrix_instance_q31 * pSrc,
vladvana 0:23d1f73bf130 1608 arm_matrix_instance_q31 * pDst);
vladvana 0:23d1f73bf130 1609
vladvana 0:23d1f73bf130 1610
vladvana 0:23d1f73bf130 1611 /**
vladvana 0:23d1f73bf130 1612 * @brief Floating-point matrix multiplication
vladvana 0:23d1f73bf130 1613 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1614 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1615 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1616 * @return The function returns either
vladvana 0:23d1f73bf130 1617 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1618 */
vladvana 0:23d1f73bf130 1619
vladvana 0:23d1f73bf130 1620 arm_status arm_mat_mult_f32(
vladvana 0:23d1f73bf130 1621 const arm_matrix_instance_f32 * pSrcA,
vladvana 0:23d1f73bf130 1622 const arm_matrix_instance_f32 * pSrcB,
vladvana 0:23d1f73bf130 1623 arm_matrix_instance_f32 * pDst);
vladvana 0:23d1f73bf130 1624
vladvana 0:23d1f73bf130 1625 /**
vladvana 0:23d1f73bf130 1626 * @brief Q15 matrix multiplication
vladvana 0:23d1f73bf130 1627 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1628 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1629 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1630 * @param[in] *pState points to the array for storing intermediate results
vladvana 0:23d1f73bf130 1631 * @return The function returns either
vladvana 0:23d1f73bf130 1632 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1633 */
vladvana 0:23d1f73bf130 1634
vladvana 0:23d1f73bf130 1635 arm_status arm_mat_mult_q15(
vladvana 0:23d1f73bf130 1636 const arm_matrix_instance_q15 * pSrcA,
vladvana 0:23d1f73bf130 1637 const arm_matrix_instance_q15 * pSrcB,
vladvana 0:23d1f73bf130 1638 arm_matrix_instance_q15 * pDst,
vladvana 0:23d1f73bf130 1639 q15_t * pState);
vladvana 0:23d1f73bf130 1640
vladvana 0:23d1f73bf130 1641 /**
vladvana 0:23d1f73bf130 1642 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
vladvana 0:23d1f73bf130 1643 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1644 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1645 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1646 * @param[in] *pState points to the array for storing intermediate results
vladvana 0:23d1f73bf130 1647 * @return The function returns either
vladvana 0:23d1f73bf130 1648 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1649 */
vladvana 0:23d1f73bf130 1650
vladvana 0:23d1f73bf130 1651 arm_status arm_mat_mult_fast_q15(
vladvana 0:23d1f73bf130 1652 const arm_matrix_instance_q15 * pSrcA,
vladvana 0:23d1f73bf130 1653 const arm_matrix_instance_q15 * pSrcB,
vladvana 0:23d1f73bf130 1654 arm_matrix_instance_q15 * pDst,
vladvana 0:23d1f73bf130 1655 q15_t * pState);
vladvana 0:23d1f73bf130 1656
vladvana 0:23d1f73bf130 1657 /**
vladvana 0:23d1f73bf130 1658 * @brief Q31 matrix multiplication
vladvana 0:23d1f73bf130 1659 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1660 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1661 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1662 * @return The function returns either
vladvana 0:23d1f73bf130 1663 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1664 */
vladvana 0:23d1f73bf130 1665
vladvana 0:23d1f73bf130 1666 arm_status arm_mat_mult_q31(
vladvana 0:23d1f73bf130 1667 const arm_matrix_instance_q31 * pSrcA,
vladvana 0:23d1f73bf130 1668 const arm_matrix_instance_q31 * pSrcB,
vladvana 0:23d1f73bf130 1669 arm_matrix_instance_q31 * pDst);
vladvana 0:23d1f73bf130 1670
vladvana 0:23d1f73bf130 1671 /**
vladvana 0:23d1f73bf130 1672 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
vladvana 0:23d1f73bf130 1673 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1674 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1675 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1676 * @return The function returns either
vladvana 0:23d1f73bf130 1677 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1678 */
vladvana 0:23d1f73bf130 1679
vladvana 0:23d1f73bf130 1680 arm_status arm_mat_mult_fast_q31(
vladvana 0:23d1f73bf130 1681 const arm_matrix_instance_q31 * pSrcA,
vladvana 0:23d1f73bf130 1682 const arm_matrix_instance_q31 * pSrcB,
vladvana 0:23d1f73bf130 1683 arm_matrix_instance_q31 * pDst);
vladvana 0:23d1f73bf130 1684
vladvana 0:23d1f73bf130 1685
vladvana 0:23d1f73bf130 1686 /**
vladvana 0:23d1f73bf130 1687 * @brief Floating-point matrix subtraction
vladvana 0:23d1f73bf130 1688 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1689 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1690 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1691 * @return The function returns either
vladvana 0:23d1f73bf130 1692 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1693 */
vladvana 0:23d1f73bf130 1694
vladvana 0:23d1f73bf130 1695 arm_status arm_mat_sub_f32(
vladvana 0:23d1f73bf130 1696 const arm_matrix_instance_f32 * pSrcA,
vladvana 0:23d1f73bf130 1697 const arm_matrix_instance_f32 * pSrcB,
vladvana 0:23d1f73bf130 1698 arm_matrix_instance_f32 * pDst);
vladvana 0:23d1f73bf130 1699
vladvana 0:23d1f73bf130 1700 /**
vladvana 0:23d1f73bf130 1701 * @brief Q15 matrix subtraction
vladvana 0:23d1f73bf130 1702 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1703 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1704 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1705 * @return The function returns either
vladvana 0:23d1f73bf130 1706 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1707 */
vladvana 0:23d1f73bf130 1708
vladvana 0:23d1f73bf130 1709 arm_status arm_mat_sub_q15(
vladvana 0:23d1f73bf130 1710 const arm_matrix_instance_q15 * pSrcA,
vladvana 0:23d1f73bf130 1711 const arm_matrix_instance_q15 * pSrcB,
vladvana 0:23d1f73bf130 1712 arm_matrix_instance_q15 * pDst);
vladvana 0:23d1f73bf130 1713
vladvana 0:23d1f73bf130 1714 /**
vladvana 0:23d1f73bf130 1715 * @brief Q31 matrix subtraction
vladvana 0:23d1f73bf130 1716 * @param[in] *pSrcA points to the first input matrix structure
vladvana 0:23d1f73bf130 1717 * @param[in] *pSrcB points to the second input matrix structure
vladvana 0:23d1f73bf130 1718 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1719 * @return The function returns either
vladvana 0:23d1f73bf130 1720 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1721 */
vladvana 0:23d1f73bf130 1722
vladvana 0:23d1f73bf130 1723 arm_status arm_mat_sub_q31(
vladvana 0:23d1f73bf130 1724 const arm_matrix_instance_q31 * pSrcA,
vladvana 0:23d1f73bf130 1725 const arm_matrix_instance_q31 * pSrcB,
vladvana 0:23d1f73bf130 1726 arm_matrix_instance_q31 * pDst);
vladvana 0:23d1f73bf130 1727
vladvana 0:23d1f73bf130 1728 /**
vladvana 0:23d1f73bf130 1729 * @brief Floating-point matrix scaling.
vladvana 0:23d1f73bf130 1730 * @param[in] *pSrc points to the input matrix
vladvana 0:23d1f73bf130 1731 * @param[in] scale scale factor
vladvana 0:23d1f73bf130 1732 * @param[out] *pDst points to the output matrix
vladvana 0:23d1f73bf130 1733 * @return The function returns either
vladvana 0:23d1f73bf130 1734 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1735 */
vladvana 0:23d1f73bf130 1736
vladvana 0:23d1f73bf130 1737 arm_status arm_mat_scale_f32(
vladvana 0:23d1f73bf130 1738 const arm_matrix_instance_f32 * pSrc,
vladvana 0:23d1f73bf130 1739 float32_t scale,
vladvana 0:23d1f73bf130 1740 arm_matrix_instance_f32 * pDst);
vladvana 0:23d1f73bf130 1741
vladvana 0:23d1f73bf130 1742 /**
vladvana 0:23d1f73bf130 1743 * @brief Q15 matrix scaling.
vladvana 0:23d1f73bf130 1744 * @param[in] *pSrc points to input matrix
vladvana 0:23d1f73bf130 1745 * @param[in] scaleFract fractional portion of the scale factor
vladvana 0:23d1f73bf130 1746 * @param[in] shift number of bits to shift the result by
vladvana 0:23d1f73bf130 1747 * @param[out] *pDst points to output matrix
vladvana 0:23d1f73bf130 1748 * @return The function returns either
vladvana 0:23d1f73bf130 1749 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1750 */
vladvana 0:23d1f73bf130 1751
vladvana 0:23d1f73bf130 1752 arm_status arm_mat_scale_q15(
vladvana 0:23d1f73bf130 1753 const arm_matrix_instance_q15 * pSrc,
vladvana 0:23d1f73bf130 1754 q15_t scaleFract,
vladvana 0:23d1f73bf130 1755 int32_t shift,
vladvana 0:23d1f73bf130 1756 arm_matrix_instance_q15 * pDst);
vladvana 0:23d1f73bf130 1757
vladvana 0:23d1f73bf130 1758 /**
vladvana 0:23d1f73bf130 1759 * @brief Q31 matrix scaling.
vladvana 0:23d1f73bf130 1760 * @param[in] *pSrc points to input matrix
vladvana 0:23d1f73bf130 1761 * @param[in] scaleFract fractional portion of the scale factor
vladvana 0:23d1f73bf130 1762 * @param[in] shift number of bits to shift the result by
vladvana 0:23d1f73bf130 1763 * @param[out] *pDst points to output matrix structure
vladvana 0:23d1f73bf130 1764 * @return The function returns either
vladvana 0:23d1f73bf130 1765 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
vladvana 0:23d1f73bf130 1766 */
vladvana 0:23d1f73bf130 1767
vladvana 0:23d1f73bf130 1768 arm_status arm_mat_scale_q31(
vladvana 0:23d1f73bf130 1769 const arm_matrix_instance_q31 * pSrc,
vladvana 0:23d1f73bf130 1770 q31_t scaleFract,
vladvana 0:23d1f73bf130 1771 int32_t shift,
vladvana 0:23d1f73bf130 1772 arm_matrix_instance_q31 * pDst);
vladvana 0:23d1f73bf130 1773
vladvana 0:23d1f73bf130 1774
vladvana 0:23d1f73bf130 1775 /**
vladvana 0:23d1f73bf130 1776 * @brief Q31 matrix initialization.
vladvana 0:23d1f73bf130 1777 * @param[in,out] *S points to an instance of the floating-point matrix structure.
vladvana 0:23d1f73bf130 1778 * @param[in] nRows number of rows in the matrix.
vladvana 0:23d1f73bf130 1779 * @param[in] nColumns number of columns in the matrix.
vladvana 0:23d1f73bf130 1780 * @param[in] *pData points to the matrix data array.
vladvana 0:23d1f73bf130 1781 * @return none
vladvana 0:23d1f73bf130 1782 */
vladvana 0:23d1f73bf130 1783
vladvana 0:23d1f73bf130 1784 void arm_mat_init_q31(
vladvana 0:23d1f73bf130 1785 arm_matrix_instance_q31 * S,
vladvana 0:23d1f73bf130 1786 uint16_t nRows,
vladvana 0:23d1f73bf130 1787 uint16_t nColumns,
vladvana 0:23d1f73bf130 1788 q31_t * pData);
vladvana 0:23d1f73bf130 1789
vladvana 0:23d1f73bf130 1790 /**
vladvana 0:23d1f73bf130 1791 * @brief Q15 matrix initialization.
vladvana 0:23d1f73bf130 1792 * @param[in,out] *S points to an instance of the floating-point matrix structure.
vladvana 0:23d1f73bf130 1793 * @param[in] nRows number of rows in the matrix.
vladvana 0:23d1f73bf130 1794 * @param[in] nColumns number of columns in the matrix.
vladvana 0:23d1f73bf130 1795 * @param[in] *pData points to the matrix data array.
vladvana 0:23d1f73bf130 1796 * @return none
vladvana 0:23d1f73bf130 1797 */
vladvana 0:23d1f73bf130 1798
vladvana 0:23d1f73bf130 1799 void arm_mat_init_q15(
vladvana 0:23d1f73bf130 1800 arm_matrix_instance_q15 * S,
vladvana 0:23d1f73bf130 1801 uint16_t nRows,
vladvana 0:23d1f73bf130 1802 uint16_t nColumns,
vladvana 0:23d1f73bf130 1803 q15_t * pData);
vladvana 0:23d1f73bf130 1804
vladvana 0:23d1f73bf130 1805 /**
vladvana 0:23d1f73bf130 1806 * @brief Floating-point matrix initialization.
vladvana 0:23d1f73bf130 1807 * @param[in,out] *S points to an instance of the floating-point matrix structure.
vladvana 0:23d1f73bf130 1808 * @param[in] nRows number of rows in the matrix.
vladvana 0:23d1f73bf130 1809 * @param[in] nColumns number of columns in the matrix.
vladvana 0:23d1f73bf130 1810 * @param[in] *pData points to the matrix data array.
vladvana 0:23d1f73bf130 1811 * @return none
vladvana 0:23d1f73bf130 1812 */
vladvana 0:23d1f73bf130 1813
vladvana 0:23d1f73bf130 1814 void arm_mat_init_f32(
vladvana 0:23d1f73bf130 1815 arm_matrix_instance_f32 * S,
vladvana 0:23d1f73bf130 1816 uint16_t nRows,
vladvana 0:23d1f73bf130 1817 uint16_t nColumns,
vladvana 0:23d1f73bf130 1818 float32_t * pData);
vladvana 0:23d1f73bf130 1819
vladvana 0:23d1f73bf130 1820
vladvana 0:23d1f73bf130 1821
vladvana 0:23d1f73bf130 1822 /**
vladvana 0:23d1f73bf130 1823 * @brief Instance structure for the Q15 PID Control.
vladvana 0:23d1f73bf130 1824 */
vladvana 0:23d1f73bf130 1825 typedef struct
vladvana 0:23d1f73bf130 1826 {
vladvana 0:23d1f73bf130 1827 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
vladvana 0:23d1f73bf130 1828 #ifdef ARM_MATH_CM0_FAMILY
vladvana 0:23d1f73bf130 1829 q15_t A1;
vladvana 0:23d1f73bf130 1830 q15_t A2;
vladvana 0:23d1f73bf130 1831 #else
vladvana 0:23d1f73bf130 1832 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
vladvana 0:23d1f73bf130 1833 #endif
vladvana 0:23d1f73bf130 1834 q15_t state[3]; /**< The state array of length 3. */
vladvana 0:23d1f73bf130 1835 q15_t Kp; /**< The proportional gain. */
vladvana 0:23d1f73bf130 1836 q15_t Ki; /**< The integral gain. */
vladvana 0:23d1f73bf130 1837 q15_t Kd; /**< The derivative gain. */
vladvana 0:23d1f73bf130 1838 } arm_pid_instance_q15;
vladvana 0:23d1f73bf130 1839
vladvana 0:23d1f73bf130 1840 /**
vladvana 0:23d1f73bf130 1841 * @brief Instance structure for the Q31 PID Control.
vladvana 0:23d1f73bf130 1842 */
vladvana 0:23d1f73bf130 1843 typedef struct
vladvana 0:23d1f73bf130 1844 {
vladvana 0:23d1f73bf130 1845 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
vladvana 0:23d1f73bf130 1846 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
vladvana 0:23d1f73bf130 1847 q31_t A2; /**< The derived gain, A2 = Kd . */
vladvana 0:23d1f73bf130 1848 q31_t state[3]; /**< The state array of length 3. */
vladvana 0:23d1f73bf130 1849 q31_t Kp; /**< The proportional gain. */
vladvana 0:23d1f73bf130 1850 q31_t Ki; /**< The integral gain. */
vladvana 0:23d1f73bf130 1851 q31_t Kd; /**< The derivative gain. */
vladvana 0:23d1f73bf130 1852
vladvana 0:23d1f73bf130 1853 } arm_pid_instance_q31;
vladvana 0:23d1f73bf130 1854
vladvana 0:23d1f73bf130 1855 /**
vladvana 0:23d1f73bf130 1856 * @brief Instance structure for the floating-point PID Control.
vladvana 0:23d1f73bf130 1857 */
vladvana 0:23d1f73bf130 1858 typedef struct
vladvana 0:23d1f73bf130 1859 {
vladvana 0:23d1f73bf130 1860 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
vladvana 0:23d1f73bf130 1861 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
vladvana 0:23d1f73bf130 1862 float32_t A2; /**< The derived gain, A2 = Kd . */
vladvana 0:23d1f73bf130 1863 float32_t state[3]; /**< The state array of length 3. */
vladvana 0:23d1f73bf130 1864 float32_t Kp; /**< The proportional gain. */
vladvana 0:23d1f73bf130 1865 float32_t Ki; /**< The integral gain. */
vladvana 0:23d1f73bf130 1866 float32_t Kd; /**< The derivative gain. */
vladvana 0:23d1f73bf130 1867 } arm_pid_instance_f32;
vladvana 0:23d1f73bf130 1868
vladvana 0:23d1f73bf130 1869
vladvana 0:23d1f73bf130 1870
vladvana 0:23d1f73bf130 1871 /**
vladvana 0:23d1f73bf130 1872 * @brief Initialization function for the floating-point PID Control.
vladvana 0:23d1f73bf130 1873 * @param[in,out] *S points to an instance of the PID structure.
vladvana 0:23d1f73bf130 1874 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
vladvana 0:23d1f73bf130 1875 * @return none.
vladvana 0:23d1f73bf130 1876 */
vladvana 0:23d1f73bf130 1877 void arm_pid_init_f32(
vladvana 0:23d1f73bf130 1878 arm_pid_instance_f32 * S,
vladvana 0:23d1f73bf130 1879 int32_t resetStateFlag);
vladvana 0:23d1f73bf130 1880
vladvana 0:23d1f73bf130 1881 /**
vladvana 0:23d1f73bf130 1882 * @brief Reset function for the floating-point PID Control.
vladvana 0:23d1f73bf130 1883 * @param[in,out] *S is an instance of the floating-point PID Control structure
vladvana 0:23d1f73bf130 1884 * @return none
vladvana 0:23d1f73bf130 1885 */
vladvana 0:23d1f73bf130 1886 void arm_pid_reset_f32(
vladvana 0:23d1f73bf130 1887 arm_pid_instance_f32 * S);
vladvana 0:23d1f73bf130 1888
vladvana 0:23d1f73bf130 1889
vladvana 0:23d1f73bf130 1890 /**
vladvana 0:23d1f73bf130 1891 * @brief Initialization function for the Q31 PID Control.
vladvana 0:23d1f73bf130 1892 * @param[in,out] *S points to an instance of the Q15 PID structure.
vladvana 0:23d1f73bf130 1893 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
vladvana 0:23d1f73bf130 1894 * @return none.
vladvana 0:23d1f73bf130 1895 */
vladvana 0:23d1f73bf130 1896 void arm_pid_init_q31(
vladvana 0:23d1f73bf130 1897 arm_pid_instance_q31 * S,
vladvana 0:23d1f73bf130 1898 int32_t resetStateFlag);
vladvana 0:23d1f73bf130 1899
vladvana 0:23d1f73bf130 1900
vladvana 0:23d1f73bf130 1901 /**
vladvana 0:23d1f73bf130 1902 * @brief Reset function for the Q31 PID Control.
vladvana 0:23d1f73bf130 1903 * @param[in,out] *S points to an instance of the Q31 PID Control structure
vladvana 0:23d1f73bf130 1904 * @return none
vladvana 0:23d1f73bf130 1905 */
vladvana 0:23d1f73bf130 1906
vladvana 0:23d1f73bf130 1907 void arm_pid_reset_q31(
vladvana 0:23d1f73bf130 1908 arm_pid_instance_q31 * S);
vladvana 0:23d1f73bf130 1909
vladvana 0:23d1f73bf130 1910 /**
vladvana 0:23d1f73bf130 1911 * @brief Initialization function for the Q15 PID Control.
vladvana 0:23d1f73bf130 1912 * @param[in,out] *S points to an instance of the Q15 PID structure.
vladvana 0:23d1f73bf130 1913 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
vladvana 0:23d1f73bf130 1914 * @return none.
vladvana 0:23d1f73bf130 1915 */
vladvana 0:23d1f73bf130 1916 void arm_pid_init_q15(
vladvana 0:23d1f73bf130 1917 arm_pid_instance_q15 * S,
vladvana 0:23d1f73bf130 1918 int32_t resetStateFlag);
vladvana 0:23d1f73bf130 1919
vladvana 0:23d1f73bf130 1920 /**
vladvana 0:23d1f73bf130 1921 * @brief Reset function for the Q15 PID Control.
vladvana 0:23d1f73bf130 1922 * @param[in,out] *S points to an instance of the q15 PID Control structure
vladvana 0:23d1f73bf130 1923 * @return none
vladvana 0:23d1f73bf130 1924 */
vladvana 0:23d1f73bf130 1925 void arm_pid_reset_q15(
vladvana 0:23d1f73bf130 1926 arm_pid_instance_q15 * S);
vladvana 0:23d1f73bf130 1927
vladvana 0:23d1f73bf130 1928
vladvana 0:23d1f73bf130 1929 /**
vladvana 0:23d1f73bf130 1930 * @brief Instance structure for the floating-point Linear Interpolate function.
vladvana 0:23d1f73bf130 1931 */
vladvana 0:23d1f73bf130 1932 typedef struct
vladvana 0:23d1f73bf130 1933 {
vladvana 0:23d1f73bf130 1934 uint32_t nValues; /**< nValues */
vladvana 0:23d1f73bf130 1935 float32_t x1; /**< x1 */
vladvana 0:23d1f73bf130 1936 float32_t xSpacing; /**< xSpacing */
vladvana 0:23d1f73bf130 1937 float32_t *pYData; /**< pointer to the table of Y values */
vladvana 0:23d1f73bf130 1938 } arm_linear_interp_instance_f32;
vladvana 0:23d1f73bf130 1939
vladvana 0:23d1f73bf130 1940 /**
vladvana 0:23d1f73bf130 1941 * @brief Instance structure for the floating-point bilinear interpolation function.
vladvana 0:23d1f73bf130 1942 */
vladvana 0:23d1f73bf130 1943
vladvana 0:23d1f73bf130 1944 typedef struct
vladvana 0:23d1f73bf130 1945 {
vladvana 0:23d1f73bf130 1946 uint16_t numRows; /**< number of rows in the data table. */
vladvana 0:23d1f73bf130 1947 uint16_t numCols; /**< number of columns in the data table. */
vladvana 0:23d1f73bf130 1948 float32_t *pData; /**< points to the data table. */
vladvana 0:23d1f73bf130 1949 } arm_bilinear_interp_instance_f32;
vladvana 0:23d1f73bf130 1950
vladvana 0:23d1f73bf130 1951 /**
vladvana 0:23d1f73bf130 1952 * @brief Instance structure for the Q31 bilinear interpolation function.
vladvana 0:23d1f73bf130 1953 */
vladvana 0:23d1f73bf130 1954
vladvana 0:23d1f73bf130 1955 typedef struct
vladvana 0:23d1f73bf130 1956 {
vladvana 0:23d1f73bf130 1957 uint16_t numRows; /**< number of rows in the data table. */
vladvana 0:23d1f73bf130 1958 uint16_t numCols; /**< number of columns in the data table. */
vladvana 0:23d1f73bf130 1959 q31_t *pData; /**< points to the data table. */
vladvana 0:23d1f73bf130 1960 } arm_bilinear_interp_instance_q31;
vladvana 0:23d1f73bf130 1961
vladvana 0:23d1f73bf130 1962 /**
vladvana 0:23d1f73bf130 1963 * @brief Instance structure for the Q15 bilinear interpolation function.
vladvana 0:23d1f73bf130 1964 */
vladvana 0:23d1f73bf130 1965
vladvana 0:23d1f73bf130 1966 typedef struct
vladvana 0:23d1f73bf130 1967 {
vladvana 0:23d1f73bf130 1968 uint16_t numRows; /**< number of rows in the data table. */
vladvana 0:23d1f73bf130 1969 uint16_t numCols; /**< number of columns in the data table. */
vladvana 0:23d1f73bf130 1970 q15_t *pData; /**< points to the data table. */
vladvana 0:23d1f73bf130 1971 } arm_bilinear_interp_instance_q15;
vladvana 0:23d1f73bf130 1972
vladvana 0:23d1f73bf130 1973 /**
vladvana 0:23d1f73bf130 1974 * @brief Instance structure for the Q15 bilinear interpolation function.
vladvana 0:23d1f73bf130 1975 */
vladvana 0:23d1f73bf130 1976
vladvana 0:23d1f73bf130 1977 typedef struct
vladvana 0:23d1f73bf130 1978 {
vladvana 0:23d1f73bf130 1979 uint16_t numRows; /**< number of rows in the data table. */
vladvana 0:23d1f73bf130 1980 uint16_t numCols; /**< number of columns in the data table. */
vladvana 0:23d1f73bf130 1981 q7_t *pData; /**< points to the data table. */
vladvana 0:23d1f73bf130 1982 } arm_bilinear_interp_instance_q7;
vladvana 0:23d1f73bf130 1983
vladvana 0:23d1f73bf130 1984
vladvana 0:23d1f73bf130 1985 /**
vladvana 0:23d1f73bf130 1986 * @brief Q7 vector multiplication.
vladvana 0:23d1f73bf130 1987 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 1988 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 1989 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 1990 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 1991 * @return none.
vladvana 0:23d1f73bf130 1992 */
vladvana 0:23d1f73bf130 1993
vladvana 0:23d1f73bf130 1994 void arm_mult_q7(
vladvana 0:23d1f73bf130 1995 q7_t * pSrcA,
vladvana 0:23d1f73bf130 1996 q7_t * pSrcB,
vladvana 0:23d1f73bf130 1997 q7_t * pDst,
vladvana 0:23d1f73bf130 1998 uint32_t blockSize);
vladvana 0:23d1f73bf130 1999
vladvana 0:23d1f73bf130 2000 /**
vladvana 0:23d1f73bf130 2001 * @brief Q15 vector multiplication.
vladvana 0:23d1f73bf130 2002 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2003 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2004 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2005 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2006 * @return none.
vladvana 0:23d1f73bf130 2007 */
vladvana 0:23d1f73bf130 2008
vladvana 0:23d1f73bf130 2009 void arm_mult_q15(
vladvana 0:23d1f73bf130 2010 q15_t * pSrcA,
vladvana 0:23d1f73bf130 2011 q15_t * pSrcB,
vladvana 0:23d1f73bf130 2012 q15_t * pDst,
vladvana 0:23d1f73bf130 2013 uint32_t blockSize);
vladvana 0:23d1f73bf130 2014
vladvana 0:23d1f73bf130 2015 /**
vladvana 0:23d1f73bf130 2016 * @brief Q31 vector multiplication.
vladvana 0:23d1f73bf130 2017 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2018 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2019 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2020 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2021 * @return none.
vladvana 0:23d1f73bf130 2022 */
vladvana 0:23d1f73bf130 2023
vladvana 0:23d1f73bf130 2024 void arm_mult_q31(
vladvana 0:23d1f73bf130 2025 q31_t * pSrcA,
vladvana 0:23d1f73bf130 2026 q31_t * pSrcB,
vladvana 0:23d1f73bf130 2027 q31_t * pDst,
vladvana 0:23d1f73bf130 2028 uint32_t blockSize);
vladvana 0:23d1f73bf130 2029
vladvana 0:23d1f73bf130 2030 /**
vladvana 0:23d1f73bf130 2031 * @brief Floating-point vector multiplication.
vladvana 0:23d1f73bf130 2032 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2033 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2034 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2035 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2036 * @return none.
vladvana 0:23d1f73bf130 2037 */
vladvana 0:23d1f73bf130 2038
vladvana 0:23d1f73bf130 2039 void arm_mult_f32(
vladvana 0:23d1f73bf130 2040 float32_t * pSrcA,
vladvana 0:23d1f73bf130 2041 float32_t * pSrcB,
vladvana 0:23d1f73bf130 2042 float32_t * pDst,
vladvana 0:23d1f73bf130 2043 uint32_t blockSize);
vladvana 0:23d1f73bf130 2044
vladvana 0:23d1f73bf130 2045
vladvana 0:23d1f73bf130 2046
vladvana 0:23d1f73bf130 2047
vladvana 0:23d1f73bf130 2048
vladvana 0:23d1f73bf130 2049
vladvana 0:23d1f73bf130 2050 /**
vladvana 0:23d1f73bf130 2051 * @brief Instance structure for the Q15 CFFT/CIFFT function.
vladvana 0:23d1f73bf130 2052 */
vladvana 0:23d1f73bf130 2053
vladvana 0:23d1f73bf130 2054 typedef struct
vladvana 0:23d1f73bf130 2055 {
vladvana 0:23d1f73bf130 2056 uint16_t fftLen; /**< length of the FFT. */
vladvana 0:23d1f73bf130 2057 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
vladvana 0:23d1f73bf130 2058 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
vladvana 0:23d1f73bf130 2059 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
vladvana 0:23d1f73bf130 2060 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
vladvana 0:23d1f73bf130 2061 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
vladvana 0:23d1f73bf130 2062 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
vladvana 0:23d1f73bf130 2063 } arm_cfft_radix2_instance_q15;
vladvana 0:23d1f73bf130 2064
vladvana 0:23d1f73bf130 2065 /* Deprecated */
vladvana 0:23d1f73bf130 2066 arm_status arm_cfft_radix2_init_q15(
vladvana 0:23d1f73bf130 2067 arm_cfft_radix2_instance_q15 * S,
vladvana 0:23d1f73bf130 2068 uint16_t fftLen,
vladvana 0:23d1f73bf130 2069 uint8_t ifftFlag,
vladvana 0:23d1f73bf130 2070 uint8_t bitReverseFlag);
vladvana 0:23d1f73bf130 2071
vladvana 0:23d1f73bf130 2072 /* Deprecated */
vladvana 0:23d1f73bf130 2073 void arm_cfft_radix2_q15(
vladvana 0:23d1f73bf130 2074 const arm_cfft_radix2_instance_q15 * S,
vladvana 0:23d1f73bf130 2075 q15_t * pSrc);
vladvana 0:23d1f73bf130 2076
vladvana 0:23d1f73bf130 2077
vladvana 0:23d1f73bf130 2078
vladvana 0:23d1f73bf130 2079 /**
vladvana 0:23d1f73bf130 2080 * @brief Instance structure for the Q15 CFFT/CIFFT function.
vladvana 0:23d1f73bf130 2081 */
vladvana 0:23d1f73bf130 2082
vladvana 0:23d1f73bf130 2083 typedef struct
vladvana 0:23d1f73bf130 2084 {
vladvana 0:23d1f73bf130 2085 uint16_t fftLen; /**< length of the FFT. */
vladvana 0:23d1f73bf130 2086 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
vladvana 0:23d1f73bf130 2087 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
vladvana 0:23d1f73bf130 2088 q15_t *pTwiddle; /**< points to the twiddle factor table. */
vladvana 0:23d1f73bf130 2089 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
vladvana 0:23d1f73bf130 2090 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
vladvana 0:23d1f73bf130 2091 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
vladvana 0:23d1f73bf130 2092 } arm_cfft_radix4_instance_q15;
vladvana 0:23d1f73bf130 2093
vladvana 0:23d1f73bf130 2094 /* Deprecated */
vladvana 0:23d1f73bf130 2095 arm_status arm_cfft_radix4_init_q15(
vladvana 0:23d1f73bf130 2096 arm_cfft_radix4_instance_q15 * S,
vladvana 0:23d1f73bf130 2097 uint16_t fftLen,
vladvana 0:23d1f73bf130 2098 uint8_t ifftFlag,
vladvana 0:23d1f73bf130 2099 uint8_t bitReverseFlag);
vladvana 0:23d1f73bf130 2100
vladvana 0:23d1f73bf130 2101 /* Deprecated */
vladvana 0:23d1f73bf130 2102 void arm_cfft_radix4_q15(
vladvana 0:23d1f73bf130 2103 const arm_cfft_radix4_instance_q15 * S,
vladvana 0:23d1f73bf130 2104 q15_t * pSrc);
vladvana 0:23d1f73bf130 2105
vladvana 0:23d1f73bf130 2106 /**
vladvana 0:23d1f73bf130 2107 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
vladvana 0:23d1f73bf130 2108 */
vladvana 0:23d1f73bf130 2109
vladvana 0:23d1f73bf130 2110 typedef struct
vladvana 0:23d1f73bf130 2111 {
vladvana 0:23d1f73bf130 2112 uint16_t fftLen; /**< length of the FFT. */
vladvana 0:23d1f73bf130 2113 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
vladvana 0:23d1f73bf130 2114 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
vladvana 0:23d1f73bf130 2115 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
vladvana 0:23d1f73bf130 2116 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
vladvana 0:23d1f73bf130 2117 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
vladvana 0:23d1f73bf130 2118 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
vladvana 0:23d1f73bf130 2119 } arm_cfft_radix2_instance_q31;
vladvana 0:23d1f73bf130 2120
vladvana 0:23d1f73bf130 2121 /* Deprecated */
vladvana 0:23d1f73bf130 2122 arm_status arm_cfft_radix2_init_q31(
vladvana 0:23d1f73bf130 2123 arm_cfft_radix2_instance_q31 * S,
vladvana 0:23d1f73bf130 2124 uint16_t fftLen,
vladvana 0:23d1f73bf130 2125 uint8_t ifftFlag,
vladvana 0:23d1f73bf130 2126 uint8_t bitReverseFlag);
vladvana 0:23d1f73bf130 2127
vladvana 0:23d1f73bf130 2128 /* Deprecated */
vladvana 0:23d1f73bf130 2129 void arm_cfft_radix2_q31(
vladvana 0:23d1f73bf130 2130 const arm_cfft_radix2_instance_q31 * S,
vladvana 0:23d1f73bf130 2131 q31_t * pSrc);
vladvana 0:23d1f73bf130 2132
vladvana 0:23d1f73bf130 2133 /**
vladvana 0:23d1f73bf130 2134 * @brief Instance structure for the Q31 CFFT/CIFFT function.
vladvana 0:23d1f73bf130 2135 */
vladvana 0:23d1f73bf130 2136
vladvana 0:23d1f73bf130 2137 typedef struct
vladvana 0:23d1f73bf130 2138 {
vladvana 0:23d1f73bf130 2139 uint16_t fftLen; /**< length of the FFT. */
vladvana 0:23d1f73bf130 2140 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
vladvana 0:23d1f73bf130 2141 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
vladvana 0:23d1f73bf130 2142 q31_t *pTwiddle; /**< points to the twiddle factor table. */
vladvana 0:23d1f73bf130 2143 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
vladvana 0:23d1f73bf130 2144 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
vladvana 0:23d1f73bf130 2145 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
vladvana 0:23d1f73bf130 2146 } arm_cfft_radix4_instance_q31;
vladvana 0:23d1f73bf130 2147
vladvana 0:23d1f73bf130 2148 /* Deprecated */
vladvana 0:23d1f73bf130 2149 void arm_cfft_radix4_q31(
vladvana 0:23d1f73bf130 2150 const arm_cfft_radix4_instance_q31 * S,
vladvana 0:23d1f73bf130 2151 q31_t * pSrc);
vladvana 0:23d1f73bf130 2152
vladvana 0:23d1f73bf130 2153 /* Deprecated */
vladvana 0:23d1f73bf130 2154 arm_status arm_cfft_radix4_init_q31(
vladvana 0:23d1f73bf130 2155 arm_cfft_radix4_instance_q31 * S,
vladvana 0:23d1f73bf130 2156 uint16_t fftLen,
vladvana 0:23d1f73bf130 2157 uint8_t ifftFlag,
vladvana 0:23d1f73bf130 2158 uint8_t bitReverseFlag);
vladvana 0:23d1f73bf130 2159
vladvana 0:23d1f73bf130 2160 /**
vladvana 0:23d1f73bf130 2161 * @brief Instance structure for the floating-point CFFT/CIFFT function.
vladvana 0:23d1f73bf130 2162 */
vladvana 0:23d1f73bf130 2163
vladvana 0:23d1f73bf130 2164 typedef struct
vladvana 0:23d1f73bf130 2165 {
vladvana 0:23d1f73bf130 2166 uint16_t fftLen; /**< length of the FFT. */
vladvana 0:23d1f73bf130 2167 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
vladvana 0:23d1f73bf130 2168 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
vladvana 0:23d1f73bf130 2169 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
vladvana 0:23d1f73bf130 2170 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
vladvana 0:23d1f73bf130 2171 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
vladvana 0:23d1f73bf130 2172 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
vladvana 0:23d1f73bf130 2173 float32_t onebyfftLen; /**< value of 1/fftLen. */
vladvana 0:23d1f73bf130 2174 } arm_cfft_radix2_instance_f32;
vladvana 0:23d1f73bf130 2175
vladvana 0:23d1f73bf130 2176 /* Deprecated */
vladvana 0:23d1f73bf130 2177 arm_status arm_cfft_radix2_init_f32(
vladvana 0:23d1f73bf130 2178 arm_cfft_radix2_instance_f32 * S,
vladvana 0:23d1f73bf130 2179 uint16_t fftLen,
vladvana 0:23d1f73bf130 2180 uint8_t ifftFlag,
vladvana 0:23d1f73bf130 2181 uint8_t bitReverseFlag);
vladvana 0:23d1f73bf130 2182
vladvana 0:23d1f73bf130 2183 /* Deprecated */
vladvana 0:23d1f73bf130 2184 void arm_cfft_radix2_f32(
vladvana 0:23d1f73bf130 2185 const arm_cfft_radix2_instance_f32 * S,
vladvana 0:23d1f73bf130 2186 float32_t * pSrc);
vladvana 0:23d1f73bf130 2187
vladvana 0:23d1f73bf130 2188 /**
vladvana 0:23d1f73bf130 2189 * @brief Instance structure for the floating-point CFFT/CIFFT function.
vladvana 0:23d1f73bf130 2190 */
vladvana 0:23d1f73bf130 2191
vladvana 0:23d1f73bf130 2192 typedef struct
vladvana 0:23d1f73bf130 2193 {
vladvana 0:23d1f73bf130 2194 uint16_t fftLen; /**< length of the FFT. */
vladvana 0:23d1f73bf130 2195 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
vladvana 0:23d1f73bf130 2196 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
vladvana 0:23d1f73bf130 2197 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
vladvana 0:23d1f73bf130 2198 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
vladvana 0:23d1f73bf130 2199 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
vladvana 0:23d1f73bf130 2200 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
vladvana 0:23d1f73bf130 2201 float32_t onebyfftLen; /**< value of 1/fftLen. */
vladvana 0:23d1f73bf130 2202 } arm_cfft_radix4_instance_f32;
vladvana 0:23d1f73bf130 2203
vladvana 0:23d1f73bf130 2204 /* Deprecated */
vladvana 0:23d1f73bf130 2205 arm_status arm_cfft_radix4_init_f32(
vladvana 0:23d1f73bf130 2206 arm_cfft_radix4_instance_f32 * S,
vladvana 0:23d1f73bf130 2207 uint16_t fftLen,
vladvana 0:23d1f73bf130 2208 uint8_t ifftFlag,
vladvana 0:23d1f73bf130 2209 uint8_t bitReverseFlag);
vladvana 0:23d1f73bf130 2210
vladvana 0:23d1f73bf130 2211 /* Deprecated */
vladvana 0:23d1f73bf130 2212 void arm_cfft_radix4_f32(
vladvana 0:23d1f73bf130 2213 const arm_cfft_radix4_instance_f32 * S,
vladvana 0:23d1f73bf130 2214 float32_t * pSrc);
vladvana 0:23d1f73bf130 2215
vladvana 0:23d1f73bf130 2216 /**
vladvana 0:23d1f73bf130 2217 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
vladvana 0:23d1f73bf130 2218 */
vladvana 0:23d1f73bf130 2219
vladvana 0:23d1f73bf130 2220 typedef struct
vladvana 0:23d1f73bf130 2221 {
vladvana 0:23d1f73bf130 2222 uint16_t fftLen; /**< length of the FFT. */
vladvana 0:23d1f73bf130 2223 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
vladvana 0:23d1f73bf130 2224 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
vladvana 0:23d1f73bf130 2225 uint16_t bitRevLength; /**< bit reversal table length. */
vladvana 0:23d1f73bf130 2226 } arm_cfft_instance_q15;
vladvana 0:23d1f73bf130 2227
vladvana 0:23d1f73bf130 2228 void arm_cfft_q15(
vladvana 0:23d1f73bf130 2229 const arm_cfft_instance_q15 * S,
vladvana 0:23d1f73bf130 2230 q15_t * p1,
vladvana 0:23d1f73bf130 2231 uint8_t ifftFlag,
vladvana 0:23d1f73bf130 2232 uint8_t bitReverseFlag);
vladvana 0:23d1f73bf130 2233
vladvana 0:23d1f73bf130 2234 /**
vladvana 0:23d1f73bf130 2235 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
vladvana 0:23d1f73bf130 2236 */
vladvana 0:23d1f73bf130 2237
vladvana 0:23d1f73bf130 2238 typedef struct
vladvana 0:23d1f73bf130 2239 {
vladvana 0:23d1f73bf130 2240 uint16_t fftLen; /**< length of the FFT. */
vladvana 0:23d1f73bf130 2241 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
vladvana 0:23d1f73bf130 2242 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
vladvana 0:23d1f73bf130 2243 uint16_t bitRevLength; /**< bit reversal table length. */
vladvana 0:23d1f73bf130 2244 } arm_cfft_instance_q31;
vladvana 0:23d1f73bf130 2245
vladvana 0:23d1f73bf130 2246 void arm_cfft_q31(
vladvana 0:23d1f73bf130 2247 const arm_cfft_instance_q31 * S,
vladvana 0:23d1f73bf130 2248 q31_t * p1,
vladvana 0:23d1f73bf130 2249 uint8_t ifftFlag,
vladvana 0:23d1f73bf130 2250 uint8_t bitReverseFlag);
vladvana 0:23d1f73bf130 2251
vladvana 0:23d1f73bf130 2252 /**
vladvana 0:23d1f73bf130 2253 * @brief Instance structure for the floating-point CFFT/CIFFT function.
vladvana 0:23d1f73bf130 2254 */
vladvana 0:23d1f73bf130 2255
vladvana 0:23d1f73bf130 2256 typedef struct
vladvana 0:23d1f73bf130 2257 {
vladvana 0:23d1f73bf130 2258 uint16_t fftLen; /**< length of the FFT. */
vladvana 0:23d1f73bf130 2259 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
vladvana 0:23d1f73bf130 2260 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
vladvana 0:23d1f73bf130 2261 uint16_t bitRevLength; /**< bit reversal table length. */
vladvana 0:23d1f73bf130 2262 } arm_cfft_instance_f32;
vladvana 0:23d1f73bf130 2263
vladvana 0:23d1f73bf130 2264 void arm_cfft_f32(
vladvana 0:23d1f73bf130 2265 const arm_cfft_instance_f32 * S,
vladvana 0:23d1f73bf130 2266 float32_t * p1,
vladvana 0:23d1f73bf130 2267 uint8_t ifftFlag,
vladvana 0:23d1f73bf130 2268 uint8_t bitReverseFlag);
vladvana 0:23d1f73bf130 2269
vladvana 0:23d1f73bf130 2270 /**
vladvana 0:23d1f73bf130 2271 * @brief Instance structure for the Q15 RFFT/RIFFT function.
vladvana 0:23d1f73bf130 2272 */
vladvana 0:23d1f73bf130 2273
vladvana 0:23d1f73bf130 2274 typedef struct
vladvana 0:23d1f73bf130 2275 {
vladvana 0:23d1f73bf130 2276 uint32_t fftLenReal; /**< length of the real FFT. */
vladvana 0:23d1f73bf130 2277 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
vladvana 0:23d1f73bf130 2278 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
vladvana 0:23d1f73bf130 2279 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
vladvana 0:23d1f73bf130 2280 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
vladvana 0:23d1f73bf130 2281 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
vladvana 0:23d1f73bf130 2282 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
vladvana 0:23d1f73bf130 2283 } arm_rfft_instance_q15;
vladvana 0:23d1f73bf130 2284
vladvana 0:23d1f73bf130 2285 arm_status arm_rfft_init_q15(
vladvana 0:23d1f73bf130 2286 arm_rfft_instance_q15 * S,
vladvana 0:23d1f73bf130 2287 uint32_t fftLenReal,
vladvana 0:23d1f73bf130 2288 uint32_t ifftFlagR,
vladvana 0:23d1f73bf130 2289 uint32_t bitReverseFlag);
vladvana 0:23d1f73bf130 2290
vladvana 0:23d1f73bf130 2291 void arm_rfft_q15(
vladvana 0:23d1f73bf130 2292 const arm_rfft_instance_q15 * S,
vladvana 0:23d1f73bf130 2293 q15_t * pSrc,
vladvana 0:23d1f73bf130 2294 q15_t * pDst);
vladvana 0:23d1f73bf130 2295
vladvana 0:23d1f73bf130 2296 /**
vladvana 0:23d1f73bf130 2297 * @brief Instance structure for the Q31 RFFT/RIFFT function.
vladvana 0:23d1f73bf130 2298 */
vladvana 0:23d1f73bf130 2299
vladvana 0:23d1f73bf130 2300 typedef struct
vladvana 0:23d1f73bf130 2301 {
vladvana 0:23d1f73bf130 2302 uint32_t fftLenReal; /**< length of the real FFT. */
vladvana 0:23d1f73bf130 2303 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
vladvana 0:23d1f73bf130 2304 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
vladvana 0:23d1f73bf130 2305 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
vladvana 0:23d1f73bf130 2306 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
vladvana 0:23d1f73bf130 2307 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
vladvana 0:23d1f73bf130 2308 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
vladvana 0:23d1f73bf130 2309 } arm_rfft_instance_q31;
vladvana 0:23d1f73bf130 2310
vladvana 0:23d1f73bf130 2311 arm_status arm_rfft_init_q31(
vladvana 0:23d1f73bf130 2312 arm_rfft_instance_q31 * S,
vladvana 0:23d1f73bf130 2313 uint32_t fftLenReal,
vladvana 0:23d1f73bf130 2314 uint32_t ifftFlagR,
vladvana 0:23d1f73bf130 2315 uint32_t bitReverseFlag);
vladvana 0:23d1f73bf130 2316
vladvana 0:23d1f73bf130 2317 void arm_rfft_q31(
vladvana 0:23d1f73bf130 2318 const arm_rfft_instance_q31 * S,
vladvana 0:23d1f73bf130 2319 q31_t * pSrc,
vladvana 0:23d1f73bf130 2320 q31_t * pDst);
vladvana 0:23d1f73bf130 2321
vladvana 0:23d1f73bf130 2322 /**
vladvana 0:23d1f73bf130 2323 * @brief Instance structure for the floating-point RFFT/RIFFT function.
vladvana 0:23d1f73bf130 2324 */
vladvana 0:23d1f73bf130 2325
vladvana 0:23d1f73bf130 2326 typedef struct
vladvana 0:23d1f73bf130 2327 {
vladvana 0:23d1f73bf130 2328 uint32_t fftLenReal; /**< length of the real FFT. */
vladvana 0:23d1f73bf130 2329 uint16_t fftLenBy2; /**< length of the complex FFT. */
vladvana 0:23d1f73bf130 2330 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
vladvana 0:23d1f73bf130 2331 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
vladvana 0:23d1f73bf130 2332 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
vladvana 0:23d1f73bf130 2333 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
vladvana 0:23d1f73bf130 2334 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
vladvana 0:23d1f73bf130 2335 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
vladvana 0:23d1f73bf130 2336 } arm_rfft_instance_f32;
vladvana 0:23d1f73bf130 2337
vladvana 0:23d1f73bf130 2338 arm_status arm_rfft_init_f32(
vladvana 0:23d1f73bf130 2339 arm_rfft_instance_f32 * S,
vladvana 0:23d1f73bf130 2340 arm_cfft_radix4_instance_f32 * S_CFFT,
vladvana 0:23d1f73bf130 2341 uint32_t fftLenReal,
vladvana 0:23d1f73bf130 2342 uint32_t ifftFlagR,
vladvana 0:23d1f73bf130 2343 uint32_t bitReverseFlag);
vladvana 0:23d1f73bf130 2344
vladvana 0:23d1f73bf130 2345 void arm_rfft_f32(
vladvana 0:23d1f73bf130 2346 const arm_rfft_instance_f32 * S,
vladvana 0:23d1f73bf130 2347 float32_t * pSrc,
vladvana 0:23d1f73bf130 2348 float32_t * pDst);
vladvana 0:23d1f73bf130 2349
vladvana 0:23d1f73bf130 2350 /**
vladvana 0:23d1f73bf130 2351 * @brief Instance structure for the floating-point RFFT/RIFFT function.
vladvana 0:23d1f73bf130 2352 */
vladvana 0:23d1f73bf130 2353
vladvana 0:23d1f73bf130 2354 typedef struct
vladvana 0:23d1f73bf130 2355 {
vladvana 0:23d1f73bf130 2356 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
vladvana 0:23d1f73bf130 2357 uint16_t fftLenRFFT; /**< length of the real sequence */
vladvana 0:23d1f73bf130 2358 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
vladvana 0:23d1f73bf130 2359 } arm_rfft_fast_instance_f32 ;
vladvana 0:23d1f73bf130 2360
vladvana 0:23d1f73bf130 2361 arm_status arm_rfft_fast_init_f32 (
vladvana 0:23d1f73bf130 2362 arm_rfft_fast_instance_f32 * S,
vladvana 0:23d1f73bf130 2363 uint16_t fftLen);
vladvana 0:23d1f73bf130 2364
vladvana 0:23d1f73bf130 2365 void arm_rfft_fast_f32(
vladvana 0:23d1f73bf130 2366 arm_rfft_fast_instance_f32 * S,
vladvana 0:23d1f73bf130 2367 float32_t * p, float32_t * pOut,
vladvana 0:23d1f73bf130 2368 uint8_t ifftFlag);
vladvana 0:23d1f73bf130 2369
vladvana 0:23d1f73bf130 2370 /**
vladvana 0:23d1f73bf130 2371 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
vladvana 0:23d1f73bf130 2372 */
vladvana 0:23d1f73bf130 2373
vladvana 0:23d1f73bf130 2374 typedef struct
vladvana 0:23d1f73bf130 2375 {
vladvana 0:23d1f73bf130 2376 uint16_t N; /**< length of the DCT4. */
vladvana 0:23d1f73bf130 2377 uint16_t Nby2; /**< half of the length of the DCT4. */
vladvana 0:23d1f73bf130 2378 float32_t normalize; /**< normalizing factor. */
vladvana 0:23d1f73bf130 2379 float32_t *pTwiddle; /**< points to the twiddle factor table. */
vladvana 0:23d1f73bf130 2380 float32_t *pCosFactor; /**< points to the cosFactor table. */
vladvana 0:23d1f73bf130 2381 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
vladvana 0:23d1f73bf130 2382 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
vladvana 0:23d1f73bf130 2383 } arm_dct4_instance_f32;
vladvana 0:23d1f73bf130 2384
vladvana 0:23d1f73bf130 2385 /**
vladvana 0:23d1f73bf130 2386 * @brief Initialization function for the floating-point DCT4/IDCT4.
vladvana 0:23d1f73bf130 2387 * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
vladvana 0:23d1f73bf130 2388 * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
vladvana 0:23d1f73bf130 2389 * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
vladvana 0:23d1f73bf130 2390 * @param[in] N length of the DCT4.
vladvana 0:23d1f73bf130 2391 * @param[in] Nby2 half of the length of the DCT4.
vladvana 0:23d1f73bf130 2392 * @param[in] normalize normalizing factor.
vladvana 0:23d1f73bf130 2393 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
vladvana 0:23d1f73bf130 2394 */
vladvana 0:23d1f73bf130 2395
vladvana 0:23d1f73bf130 2396 arm_status arm_dct4_init_f32(
vladvana 0:23d1f73bf130 2397 arm_dct4_instance_f32 * S,
vladvana 0:23d1f73bf130 2398 arm_rfft_instance_f32 * S_RFFT,
vladvana 0:23d1f73bf130 2399 arm_cfft_radix4_instance_f32 * S_CFFT,
vladvana 0:23d1f73bf130 2400 uint16_t N,
vladvana 0:23d1f73bf130 2401 uint16_t Nby2,
vladvana 0:23d1f73bf130 2402 float32_t normalize);
vladvana 0:23d1f73bf130 2403
vladvana 0:23d1f73bf130 2404 /**
vladvana 0:23d1f73bf130 2405 * @brief Processing function for the floating-point DCT4/IDCT4.
vladvana 0:23d1f73bf130 2406 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
vladvana 0:23d1f73bf130 2407 * @param[in] *pState points to state buffer.
vladvana 0:23d1f73bf130 2408 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
vladvana 0:23d1f73bf130 2409 * @return none.
vladvana 0:23d1f73bf130 2410 */
vladvana 0:23d1f73bf130 2411
vladvana 0:23d1f73bf130 2412 void arm_dct4_f32(
vladvana 0:23d1f73bf130 2413 const arm_dct4_instance_f32 * S,
vladvana 0:23d1f73bf130 2414 float32_t * pState,
vladvana 0:23d1f73bf130 2415 float32_t * pInlineBuffer);
vladvana 0:23d1f73bf130 2416
vladvana 0:23d1f73bf130 2417 /**
vladvana 0:23d1f73bf130 2418 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
vladvana 0:23d1f73bf130 2419 */
vladvana 0:23d1f73bf130 2420
vladvana 0:23d1f73bf130 2421 typedef struct
vladvana 0:23d1f73bf130 2422 {
vladvana 0:23d1f73bf130 2423 uint16_t N; /**< length of the DCT4. */
vladvana 0:23d1f73bf130 2424 uint16_t Nby2; /**< half of the length of the DCT4. */
vladvana 0:23d1f73bf130 2425 q31_t normalize; /**< normalizing factor. */
vladvana 0:23d1f73bf130 2426 q31_t *pTwiddle; /**< points to the twiddle factor table. */
vladvana 0:23d1f73bf130 2427 q31_t *pCosFactor; /**< points to the cosFactor table. */
vladvana 0:23d1f73bf130 2428 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
vladvana 0:23d1f73bf130 2429 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
vladvana 0:23d1f73bf130 2430 } arm_dct4_instance_q31;
vladvana 0:23d1f73bf130 2431
vladvana 0:23d1f73bf130 2432 /**
vladvana 0:23d1f73bf130 2433 * @brief Initialization function for the Q31 DCT4/IDCT4.
vladvana 0:23d1f73bf130 2434 * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
vladvana 0:23d1f73bf130 2435 * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
vladvana 0:23d1f73bf130 2436 * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
vladvana 0:23d1f73bf130 2437 * @param[in] N length of the DCT4.
vladvana 0:23d1f73bf130 2438 * @param[in] Nby2 half of the length of the DCT4.
vladvana 0:23d1f73bf130 2439 * @param[in] normalize normalizing factor.
vladvana 0:23d1f73bf130 2440 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
vladvana 0:23d1f73bf130 2441 */
vladvana 0:23d1f73bf130 2442
vladvana 0:23d1f73bf130 2443 arm_status arm_dct4_init_q31(
vladvana 0:23d1f73bf130 2444 arm_dct4_instance_q31 * S,
vladvana 0:23d1f73bf130 2445 arm_rfft_instance_q31 * S_RFFT,
vladvana 0:23d1f73bf130 2446 arm_cfft_radix4_instance_q31 * S_CFFT,
vladvana 0:23d1f73bf130 2447 uint16_t N,
vladvana 0:23d1f73bf130 2448 uint16_t Nby2,
vladvana 0:23d1f73bf130 2449 q31_t normalize);
vladvana 0:23d1f73bf130 2450
vladvana 0:23d1f73bf130 2451 /**
vladvana 0:23d1f73bf130 2452 * @brief Processing function for the Q31 DCT4/IDCT4.
vladvana 0:23d1f73bf130 2453 * @param[in] *S points to an instance of the Q31 DCT4 structure.
vladvana 0:23d1f73bf130 2454 * @param[in] *pState points to state buffer.
vladvana 0:23d1f73bf130 2455 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
vladvana 0:23d1f73bf130 2456 * @return none.
vladvana 0:23d1f73bf130 2457 */
vladvana 0:23d1f73bf130 2458
vladvana 0:23d1f73bf130 2459 void arm_dct4_q31(
vladvana 0:23d1f73bf130 2460 const arm_dct4_instance_q31 * S,
vladvana 0:23d1f73bf130 2461 q31_t * pState,
vladvana 0:23d1f73bf130 2462 q31_t * pInlineBuffer);
vladvana 0:23d1f73bf130 2463
vladvana 0:23d1f73bf130 2464 /**
vladvana 0:23d1f73bf130 2465 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
vladvana 0:23d1f73bf130 2466 */
vladvana 0:23d1f73bf130 2467
vladvana 0:23d1f73bf130 2468 typedef struct
vladvana 0:23d1f73bf130 2469 {
vladvana 0:23d1f73bf130 2470 uint16_t N; /**< length of the DCT4. */
vladvana 0:23d1f73bf130 2471 uint16_t Nby2; /**< half of the length of the DCT4. */
vladvana 0:23d1f73bf130 2472 q15_t normalize; /**< normalizing factor. */
vladvana 0:23d1f73bf130 2473 q15_t *pTwiddle; /**< points to the twiddle factor table. */
vladvana 0:23d1f73bf130 2474 q15_t *pCosFactor; /**< points to the cosFactor table. */
vladvana 0:23d1f73bf130 2475 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
vladvana 0:23d1f73bf130 2476 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
vladvana 0:23d1f73bf130 2477 } arm_dct4_instance_q15;
vladvana 0:23d1f73bf130 2478
vladvana 0:23d1f73bf130 2479 /**
vladvana 0:23d1f73bf130 2480 * @brief Initialization function for the Q15 DCT4/IDCT4.
vladvana 0:23d1f73bf130 2481 * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
vladvana 0:23d1f73bf130 2482 * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
vladvana 0:23d1f73bf130 2483 * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
vladvana 0:23d1f73bf130 2484 * @param[in] N length of the DCT4.
vladvana 0:23d1f73bf130 2485 * @param[in] Nby2 half of the length of the DCT4.
vladvana 0:23d1f73bf130 2486 * @param[in] normalize normalizing factor.
vladvana 0:23d1f73bf130 2487 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
vladvana 0:23d1f73bf130 2488 */
vladvana 0:23d1f73bf130 2489
vladvana 0:23d1f73bf130 2490 arm_status arm_dct4_init_q15(
vladvana 0:23d1f73bf130 2491 arm_dct4_instance_q15 * S,
vladvana 0:23d1f73bf130 2492 arm_rfft_instance_q15 * S_RFFT,
vladvana 0:23d1f73bf130 2493 arm_cfft_radix4_instance_q15 * S_CFFT,
vladvana 0:23d1f73bf130 2494 uint16_t N,
vladvana 0:23d1f73bf130 2495 uint16_t Nby2,
vladvana 0:23d1f73bf130 2496 q15_t normalize);
vladvana 0:23d1f73bf130 2497
vladvana 0:23d1f73bf130 2498 /**
vladvana 0:23d1f73bf130 2499 * @brief Processing function for the Q15 DCT4/IDCT4.
vladvana 0:23d1f73bf130 2500 * @param[in] *S points to an instance of the Q15 DCT4 structure.
vladvana 0:23d1f73bf130 2501 * @param[in] *pState points to state buffer.
vladvana 0:23d1f73bf130 2502 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
vladvana 0:23d1f73bf130 2503 * @return none.
vladvana 0:23d1f73bf130 2504 */
vladvana 0:23d1f73bf130 2505
vladvana 0:23d1f73bf130 2506 void arm_dct4_q15(
vladvana 0:23d1f73bf130 2507 const arm_dct4_instance_q15 * S,
vladvana 0:23d1f73bf130 2508 q15_t * pState,
vladvana 0:23d1f73bf130 2509 q15_t * pInlineBuffer);
vladvana 0:23d1f73bf130 2510
vladvana 0:23d1f73bf130 2511 /**
vladvana 0:23d1f73bf130 2512 * @brief Floating-point vector addition.
vladvana 0:23d1f73bf130 2513 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2514 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2515 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2516 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2517 * @return none.
vladvana 0:23d1f73bf130 2518 */
vladvana 0:23d1f73bf130 2519
vladvana 0:23d1f73bf130 2520 void arm_add_f32(
vladvana 0:23d1f73bf130 2521 float32_t * pSrcA,
vladvana 0:23d1f73bf130 2522 float32_t * pSrcB,
vladvana 0:23d1f73bf130 2523 float32_t * pDst,
vladvana 0:23d1f73bf130 2524 uint32_t blockSize);
vladvana 0:23d1f73bf130 2525
vladvana 0:23d1f73bf130 2526 /**
vladvana 0:23d1f73bf130 2527 * @brief Q7 vector addition.
vladvana 0:23d1f73bf130 2528 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2529 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2530 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2531 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2532 * @return none.
vladvana 0:23d1f73bf130 2533 */
vladvana 0:23d1f73bf130 2534
vladvana 0:23d1f73bf130 2535 void arm_add_q7(
vladvana 0:23d1f73bf130 2536 q7_t * pSrcA,
vladvana 0:23d1f73bf130 2537 q7_t * pSrcB,
vladvana 0:23d1f73bf130 2538 q7_t * pDst,
vladvana 0:23d1f73bf130 2539 uint32_t blockSize);
vladvana 0:23d1f73bf130 2540
vladvana 0:23d1f73bf130 2541 /**
vladvana 0:23d1f73bf130 2542 * @brief Q15 vector addition.
vladvana 0:23d1f73bf130 2543 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2544 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2545 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2546 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2547 * @return none.
vladvana 0:23d1f73bf130 2548 */
vladvana 0:23d1f73bf130 2549
vladvana 0:23d1f73bf130 2550 void arm_add_q15(
vladvana 0:23d1f73bf130 2551 q15_t * pSrcA,
vladvana 0:23d1f73bf130 2552 q15_t * pSrcB,
vladvana 0:23d1f73bf130 2553 q15_t * pDst,
vladvana 0:23d1f73bf130 2554 uint32_t blockSize);
vladvana 0:23d1f73bf130 2555
vladvana 0:23d1f73bf130 2556 /**
vladvana 0:23d1f73bf130 2557 * @brief Q31 vector addition.
vladvana 0:23d1f73bf130 2558 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2559 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2560 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2561 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2562 * @return none.
vladvana 0:23d1f73bf130 2563 */
vladvana 0:23d1f73bf130 2564
vladvana 0:23d1f73bf130 2565 void arm_add_q31(
vladvana 0:23d1f73bf130 2566 q31_t * pSrcA,
vladvana 0:23d1f73bf130 2567 q31_t * pSrcB,
vladvana 0:23d1f73bf130 2568 q31_t * pDst,
vladvana 0:23d1f73bf130 2569 uint32_t blockSize);
vladvana 0:23d1f73bf130 2570
vladvana 0:23d1f73bf130 2571 /**
vladvana 0:23d1f73bf130 2572 * @brief Floating-point vector subtraction.
vladvana 0:23d1f73bf130 2573 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2574 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2575 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2576 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2577 * @return none.
vladvana 0:23d1f73bf130 2578 */
vladvana 0:23d1f73bf130 2579
vladvana 0:23d1f73bf130 2580 void arm_sub_f32(
vladvana 0:23d1f73bf130 2581 float32_t * pSrcA,
vladvana 0:23d1f73bf130 2582 float32_t * pSrcB,
vladvana 0:23d1f73bf130 2583 float32_t * pDst,
vladvana 0:23d1f73bf130 2584 uint32_t blockSize);
vladvana 0:23d1f73bf130 2585
vladvana 0:23d1f73bf130 2586 /**
vladvana 0:23d1f73bf130 2587 * @brief Q7 vector subtraction.
vladvana 0:23d1f73bf130 2588 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2589 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2590 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2591 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2592 * @return none.
vladvana 0:23d1f73bf130 2593 */
vladvana 0:23d1f73bf130 2594
vladvana 0:23d1f73bf130 2595 void arm_sub_q7(
vladvana 0:23d1f73bf130 2596 q7_t * pSrcA,
vladvana 0:23d1f73bf130 2597 q7_t * pSrcB,
vladvana 0:23d1f73bf130 2598 q7_t * pDst,
vladvana 0:23d1f73bf130 2599 uint32_t blockSize);
vladvana 0:23d1f73bf130 2600
vladvana 0:23d1f73bf130 2601 /**
vladvana 0:23d1f73bf130 2602 * @brief Q15 vector subtraction.
vladvana 0:23d1f73bf130 2603 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2604 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2605 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2606 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2607 * @return none.
vladvana 0:23d1f73bf130 2608 */
vladvana 0:23d1f73bf130 2609
vladvana 0:23d1f73bf130 2610 void arm_sub_q15(
vladvana 0:23d1f73bf130 2611 q15_t * pSrcA,
vladvana 0:23d1f73bf130 2612 q15_t * pSrcB,
vladvana 0:23d1f73bf130 2613 q15_t * pDst,
vladvana 0:23d1f73bf130 2614 uint32_t blockSize);
vladvana 0:23d1f73bf130 2615
vladvana 0:23d1f73bf130 2616 /**
vladvana 0:23d1f73bf130 2617 * @brief Q31 vector subtraction.
vladvana 0:23d1f73bf130 2618 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2619 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2620 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2621 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2622 * @return none.
vladvana 0:23d1f73bf130 2623 */
vladvana 0:23d1f73bf130 2624
vladvana 0:23d1f73bf130 2625 void arm_sub_q31(
vladvana 0:23d1f73bf130 2626 q31_t * pSrcA,
vladvana 0:23d1f73bf130 2627 q31_t * pSrcB,
vladvana 0:23d1f73bf130 2628 q31_t * pDst,
vladvana 0:23d1f73bf130 2629 uint32_t blockSize);
vladvana 0:23d1f73bf130 2630
vladvana 0:23d1f73bf130 2631 /**
vladvana 0:23d1f73bf130 2632 * @brief Multiplies a floating-point vector by a scalar.
vladvana 0:23d1f73bf130 2633 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2634 * @param[in] scale scale factor to be applied
vladvana 0:23d1f73bf130 2635 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2636 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2637 * @return none.
vladvana 0:23d1f73bf130 2638 */
vladvana 0:23d1f73bf130 2639
vladvana 0:23d1f73bf130 2640 void arm_scale_f32(
vladvana 0:23d1f73bf130 2641 float32_t * pSrc,
vladvana 0:23d1f73bf130 2642 float32_t scale,
vladvana 0:23d1f73bf130 2643 float32_t * pDst,
vladvana 0:23d1f73bf130 2644 uint32_t blockSize);
vladvana 0:23d1f73bf130 2645
vladvana 0:23d1f73bf130 2646 /**
vladvana 0:23d1f73bf130 2647 * @brief Multiplies a Q7 vector by a scalar.
vladvana 0:23d1f73bf130 2648 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2649 * @param[in] scaleFract fractional portion of the scale value
vladvana 0:23d1f73bf130 2650 * @param[in] shift number of bits to shift the result by
vladvana 0:23d1f73bf130 2651 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2652 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2653 * @return none.
vladvana 0:23d1f73bf130 2654 */
vladvana 0:23d1f73bf130 2655
vladvana 0:23d1f73bf130 2656 void arm_scale_q7(
vladvana 0:23d1f73bf130 2657 q7_t * pSrc,
vladvana 0:23d1f73bf130 2658 q7_t scaleFract,
vladvana 0:23d1f73bf130 2659 int8_t shift,
vladvana 0:23d1f73bf130 2660 q7_t * pDst,
vladvana 0:23d1f73bf130 2661 uint32_t blockSize);
vladvana 0:23d1f73bf130 2662
vladvana 0:23d1f73bf130 2663 /**
vladvana 0:23d1f73bf130 2664 * @brief Multiplies a Q15 vector by a scalar.
vladvana 0:23d1f73bf130 2665 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2666 * @param[in] scaleFract fractional portion of the scale value
vladvana 0:23d1f73bf130 2667 * @param[in] shift number of bits to shift the result by
vladvana 0:23d1f73bf130 2668 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2669 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2670 * @return none.
vladvana 0:23d1f73bf130 2671 */
vladvana 0:23d1f73bf130 2672
vladvana 0:23d1f73bf130 2673 void arm_scale_q15(
vladvana 0:23d1f73bf130 2674 q15_t * pSrc,
vladvana 0:23d1f73bf130 2675 q15_t scaleFract,
vladvana 0:23d1f73bf130 2676 int8_t shift,
vladvana 0:23d1f73bf130 2677 q15_t * pDst,
vladvana 0:23d1f73bf130 2678 uint32_t blockSize);
vladvana 0:23d1f73bf130 2679
vladvana 0:23d1f73bf130 2680 /**
vladvana 0:23d1f73bf130 2681 * @brief Multiplies a Q31 vector by a scalar.
vladvana 0:23d1f73bf130 2682 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2683 * @param[in] scaleFract fractional portion of the scale value
vladvana 0:23d1f73bf130 2684 * @param[in] shift number of bits to shift the result by
vladvana 0:23d1f73bf130 2685 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2686 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2687 * @return none.
vladvana 0:23d1f73bf130 2688 */
vladvana 0:23d1f73bf130 2689
vladvana 0:23d1f73bf130 2690 void arm_scale_q31(
vladvana 0:23d1f73bf130 2691 q31_t * pSrc,
vladvana 0:23d1f73bf130 2692 q31_t scaleFract,
vladvana 0:23d1f73bf130 2693 int8_t shift,
vladvana 0:23d1f73bf130 2694 q31_t * pDst,
vladvana 0:23d1f73bf130 2695 uint32_t blockSize);
vladvana 0:23d1f73bf130 2696
vladvana 0:23d1f73bf130 2697 /**
vladvana 0:23d1f73bf130 2698 * @brief Q7 vector absolute value.
vladvana 0:23d1f73bf130 2699 * @param[in] *pSrc points to the input buffer
vladvana 0:23d1f73bf130 2700 * @param[out] *pDst points to the output buffer
vladvana 0:23d1f73bf130 2701 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2702 * @return none.
vladvana 0:23d1f73bf130 2703 */
vladvana 0:23d1f73bf130 2704
vladvana 0:23d1f73bf130 2705 void arm_abs_q7(
vladvana 0:23d1f73bf130 2706 q7_t * pSrc,
vladvana 0:23d1f73bf130 2707 q7_t * pDst,
vladvana 0:23d1f73bf130 2708 uint32_t blockSize);
vladvana 0:23d1f73bf130 2709
vladvana 0:23d1f73bf130 2710 /**
vladvana 0:23d1f73bf130 2711 * @brief Floating-point vector absolute value.
vladvana 0:23d1f73bf130 2712 * @param[in] *pSrc points to the input buffer
vladvana 0:23d1f73bf130 2713 * @param[out] *pDst points to the output buffer
vladvana 0:23d1f73bf130 2714 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2715 * @return none.
vladvana 0:23d1f73bf130 2716 */
vladvana 0:23d1f73bf130 2717
vladvana 0:23d1f73bf130 2718 void arm_abs_f32(
vladvana 0:23d1f73bf130 2719 float32_t * pSrc,
vladvana 0:23d1f73bf130 2720 float32_t * pDst,
vladvana 0:23d1f73bf130 2721 uint32_t blockSize);
vladvana 0:23d1f73bf130 2722
vladvana 0:23d1f73bf130 2723 /**
vladvana 0:23d1f73bf130 2724 * @brief Q15 vector absolute value.
vladvana 0:23d1f73bf130 2725 * @param[in] *pSrc points to the input buffer
vladvana 0:23d1f73bf130 2726 * @param[out] *pDst points to the output buffer
vladvana 0:23d1f73bf130 2727 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2728 * @return none.
vladvana 0:23d1f73bf130 2729 */
vladvana 0:23d1f73bf130 2730
vladvana 0:23d1f73bf130 2731 void arm_abs_q15(
vladvana 0:23d1f73bf130 2732 q15_t * pSrc,
vladvana 0:23d1f73bf130 2733 q15_t * pDst,
vladvana 0:23d1f73bf130 2734 uint32_t blockSize);
vladvana 0:23d1f73bf130 2735
vladvana 0:23d1f73bf130 2736 /**
vladvana 0:23d1f73bf130 2737 * @brief Q31 vector absolute value.
vladvana 0:23d1f73bf130 2738 * @param[in] *pSrc points to the input buffer
vladvana 0:23d1f73bf130 2739 * @param[out] *pDst points to the output buffer
vladvana 0:23d1f73bf130 2740 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2741 * @return none.
vladvana 0:23d1f73bf130 2742 */
vladvana 0:23d1f73bf130 2743
vladvana 0:23d1f73bf130 2744 void arm_abs_q31(
vladvana 0:23d1f73bf130 2745 q31_t * pSrc,
vladvana 0:23d1f73bf130 2746 q31_t * pDst,
vladvana 0:23d1f73bf130 2747 uint32_t blockSize);
vladvana 0:23d1f73bf130 2748
vladvana 0:23d1f73bf130 2749 /**
vladvana 0:23d1f73bf130 2750 * @brief Dot product of floating-point vectors.
vladvana 0:23d1f73bf130 2751 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2752 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2753 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2754 * @param[out] *result output result returned here
vladvana 0:23d1f73bf130 2755 * @return none.
vladvana 0:23d1f73bf130 2756 */
vladvana 0:23d1f73bf130 2757
vladvana 0:23d1f73bf130 2758 void arm_dot_prod_f32(
vladvana 0:23d1f73bf130 2759 float32_t * pSrcA,
vladvana 0:23d1f73bf130 2760 float32_t * pSrcB,
vladvana 0:23d1f73bf130 2761 uint32_t blockSize,
vladvana 0:23d1f73bf130 2762 float32_t * result);
vladvana 0:23d1f73bf130 2763
vladvana 0:23d1f73bf130 2764 /**
vladvana 0:23d1f73bf130 2765 * @brief Dot product of Q7 vectors.
vladvana 0:23d1f73bf130 2766 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2767 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2768 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2769 * @param[out] *result output result returned here
vladvana 0:23d1f73bf130 2770 * @return none.
vladvana 0:23d1f73bf130 2771 */
vladvana 0:23d1f73bf130 2772
vladvana 0:23d1f73bf130 2773 void arm_dot_prod_q7(
vladvana 0:23d1f73bf130 2774 q7_t * pSrcA,
vladvana 0:23d1f73bf130 2775 q7_t * pSrcB,
vladvana 0:23d1f73bf130 2776 uint32_t blockSize,
vladvana 0:23d1f73bf130 2777 q31_t * result);
vladvana 0:23d1f73bf130 2778
vladvana 0:23d1f73bf130 2779 /**
vladvana 0:23d1f73bf130 2780 * @brief Dot product of Q15 vectors.
vladvana 0:23d1f73bf130 2781 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2782 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2783 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2784 * @param[out] *result output result returned here
vladvana 0:23d1f73bf130 2785 * @return none.
vladvana 0:23d1f73bf130 2786 */
vladvana 0:23d1f73bf130 2787
vladvana 0:23d1f73bf130 2788 void arm_dot_prod_q15(
vladvana 0:23d1f73bf130 2789 q15_t * pSrcA,
vladvana 0:23d1f73bf130 2790 q15_t * pSrcB,
vladvana 0:23d1f73bf130 2791 uint32_t blockSize,
vladvana 0:23d1f73bf130 2792 q63_t * result);
vladvana 0:23d1f73bf130 2793
vladvana 0:23d1f73bf130 2794 /**
vladvana 0:23d1f73bf130 2795 * @brief Dot product of Q31 vectors.
vladvana 0:23d1f73bf130 2796 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 2797 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 2798 * @param[in] blockSize number of samples in each vector
vladvana 0:23d1f73bf130 2799 * @param[out] *result output result returned here
vladvana 0:23d1f73bf130 2800 * @return none.
vladvana 0:23d1f73bf130 2801 */
vladvana 0:23d1f73bf130 2802
vladvana 0:23d1f73bf130 2803 void arm_dot_prod_q31(
vladvana 0:23d1f73bf130 2804 q31_t * pSrcA,
vladvana 0:23d1f73bf130 2805 q31_t * pSrcB,
vladvana 0:23d1f73bf130 2806 uint32_t blockSize,
vladvana 0:23d1f73bf130 2807 q63_t * result);
vladvana 0:23d1f73bf130 2808
vladvana 0:23d1f73bf130 2809 /**
vladvana 0:23d1f73bf130 2810 * @brief Shifts the elements of a Q7 vector a specified number of bits.
vladvana 0:23d1f73bf130 2811 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2812 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
vladvana 0:23d1f73bf130 2813 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2814 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2815 * @return none.
vladvana 0:23d1f73bf130 2816 */
vladvana 0:23d1f73bf130 2817
vladvana 0:23d1f73bf130 2818 void arm_shift_q7(
vladvana 0:23d1f73bf130 2819 q7_t * pSrc,
vladvana 0:23d1f73bf130 2820 int8_t shiftBits,
vladvana 0:23d1f73bf130 2821 q7_t * pDst,
vladvana 0:23d1f73bf130 2822 uint32_t blockSize);
vladvana 0:23d1f73bf130 2823
vladvana 0:23d1f73bf130 2824 /**
vladvana 0:23d1f73bf130 2825 * @brief Shifts the elements of a Q15 vector a specified number of bits.
vladvana 0:23d1f73bf130 2826 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2827 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
vladvana 0:23d1f73bf130 2828 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2829 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2830 * @return none.
vladvana 0:23d1f73bf130 2831 */
vladvana 0:23d1f73bf130 2832
vladvana 0:23d1f73bf130 2833 void arm_shift_q15(
vladvana 0:23d1f73bf130 2834 q15_t * pSrc,
vladvana 0:23d1f73bf130 2835 int8_t shiftBits,
vladvana 0:23d1f73bf130 2836 q15_t * pDst,
vladvana 0:23d1f73bf130 2837 uint32_t blockSize);
vladvana 0:23d1f73bf130 2838
vladvana 0:23d1f73bf130 2839 /**
vladvana 0:23d1f73bf130 2840 * @brief Shifts the elements of a Q31 vector a specified number of bits.
vladvana 0:23d1f73bf130 2841 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2842 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
vladvana 0:23d1f73bf130 2843 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2844 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2845 * @return none.
vladvana 0:23d1f73bf130 2846 */
vladvana 0:23d1f73bf130 2847
vladvana 0:23d1f73bf130 2848 void arm_shift_q31(
vladvana 0:23d1f73bf130 2849 q31_t * pSrc,
vladvana 0:23d1f73bf130 2850 int8_t shiftBits,
vladvana 0:23d1f73bf130 2851 q31_t * pDst,
vladvana 0:23d1f73bf130 2852 uint32_t blockSize);
vladvana 0:23d1f73bf130 2853
vladvana 0:23d1f73bf130 2854 /**
vladvana 0:23d1f73bf130 2855 * @brief Adds a constant offset to a floating-point vector.
vladvana 0:23d1f73bf130 2856 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2857 * @param[in] offset is the offset to be added
vladvana 0:23d1f73bf130 2858 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2859 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2860 * @return none.
vladvana 0:23d1f73bf130 2861 */
vladvana 0:23d1f73bf130 2862
vladvana 0:23d1f73bf130 2863 void arm_offset_f32(
vladvana 0:23d1f73bf130 2864 float32_t * pSrc,
vladvana 0:23d1f73bf130 2865 float32_t offset,
vladvana 0:23d1f73bf130 2866 float32_t * pDst,
vladvana 0:23d1f73bf130 2867 uint32_t blockSize);
vladvana 0:23d1f73bf130 2868
vladvana 0:23d1f73bf130 2869 /**
vladvana 0:23d1f73bf130 2870 * @brief Adds a constant offset to a Q7 vector.
vladvana 0:23d1f73bf130 2871 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2872 * @param[in] offset is the offset to be added
vladvana 0:23d1f73bf130 2873 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2874 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2875 * @return none.
vladvana 0:23d1f73bf130 2876 */
vladvana 0:23d1f73bf130 2877
vladvana 0:23d1f73bf130 2878 void arm_offset_q7(
vladvana 0:23d1f73bf130 2879 q7_t * pSrc,
vladvana 0:23d1f73bf130 2880 q7_t offset,
vladvana 0:23d1f73bf130 2881 q7_t * pDst,
vladvana 0:23d1f73bf130 2882 uint32_t blockSize);
vladvana 0:23d1f73bf130 2883
vladvana 0:23d1f73bf130 2884 /**
vladvana 0:23d1f73bf130 2885 * @brief Adds a constant offset to a Q15 vector.
vladvana 0:23d1f73bf130 2886 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2887 * @param[in] offset is the offset to be added
vladvana 0:23d1f73bf130 2888 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2889 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2890 * @return none.
vladvana 0:23d1f73bf130 2891 */
vladvana 0:23d1f73bf130 2892
vladvana 0:23d1f73bf130 2893 void arm_offset_q15(
vladvana 0:23d1f73bf130 2894 q15_t * pSrc,
vladvana 0:23d1f73bf130 2895 q15_t offset,
vladvana 0:23d1f73bf130 2896 q15_t * pDst,
vladvana 0:23d1f73bf130 2897 uint32_t blockSize);
vladvana 0:23d1f73bf130 2898
vladvana 0:23d1f73bf130 2899 /**
vladvana 0:23d1f73bf130 2900 * @brief Adds a constant offset to a Q31 vector.
vladvana 0:23d1f73bf130 2901 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2902 * @param[in] offset is the offset to be added
vladvana 0:23d1f73bf130 2903 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2904 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2905 * @return none.
vladvana 0:23d1f73bf130 2906 */
vladvana 0:23d1f73bf130 2907
vladvana 0:23d1f73bf130 2908 void arm_offset_q31(
vladvana 0:23d1f73bf130 2909 q31_t * pSrc,
vladvana 0:23d1f73bf130 2910 q31_t offset,
vladvana 0:23d1f73bf130 2911 q31_t * pDst,
vladvana 0:23d1f73bf130 2912 uint32_t blockSize);
vladvana 0:23d1f73bf130 2913
vladvana 0:23d1f73bf130 2914 /**
vladvana 0:23d1f73bf130 2915 * @brief Negates the elements of a floating-point vector.
vladvana 0:23d1f73bf130 2916 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2917 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2918 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2919 * @return none.
vladvana 0:23d1f73bf130 2920 */
vladvana 0:23d1f73bf130 2921
vladvana 0:23d1f73bf130 2922 void arm_negate_f32(
vladvana 0:23d1f73bf130 2923 float32_t * pSrc,
vladvana 0:23d1f73bf130 2924 float32_t * pDst,
vladvana 0:23d1f73bf130 2925 uint32_t blockSize);
vladvana 0:23d1f73bf130 2926
vladvana 0:23d1f73bf130 2927 /**
vladvana 0:23d1f73bf130 2928 * @brief Negates the elements of a Q7 vector.
vladvana 0:23d1f73bf130 2929 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2930 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2931 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2932 * @return none.
vladvana 0:23d1f73bf130 2933 */
vladvana 0:23d1f73bf130 2934
vladvana 0:23d1f73bf130 2935 void arm_negate_q7(
vladvana 0:23d1f73bf130 2936 q7_t * pSrc,
vladvana 0:23d1f73bf130 2937 q7_t * pDst,
vladvana 0:23d1f73bf130 2938 uint32_t blockSize);
vladvana 0:23d1f73bf130 2939
vladvana 0:23d1f73bf130 2940 /**
vladvana 0:23d1f73bf130 2941 * @brief Negates the elements of a Q15 vector.
vladvana 0:23d1f73bf130 2942 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2943 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2944 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2945 * @return none.
vladvana 0:23d1f73bf130 2946 */
vladvana 0:23d1f73bf130 2947
vladvana 0:23d1f73bf130 2948 void arm_negate_q15(
vladvana 0:23d1f73bf130 2949 q15_t * pSrc,
vladvana 0:23d1f73bf130 2950 q15_t * pDst,
vladvana 0:23d1f73bf130 2951 uint32_t blockSize);
vladvana 0:23d1f73bf130 2952
vladvana 0:23d1f73bf130 2953 /**
vladvana 0:23d1f73bf130 2954 * @brief Negates the elements of a Q31 vector.
vladvana 0:23d1f73bf130 2955 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 2956 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 2957 * @param[in] blockSize number of samples in the vector
vladvana 0:23d1f73bf130 2958 * @return none.
vladvana 0:23d1f73bf130 2959 */
vladvana 0:23d1f73bf130 2960
vladvana 0:23d1f73bf130 2961 void arm_negate_q31(
vladvana 0:23d1f73bf130 2962 q31_t * pSrc,
vladvana 0:23d1f73bf130 2963 q31_t * pDst,
vladvana 0:23d1f73bf130 2964 uint32_t blockSize);
vladvana 0:23d1f73bf130 2965 /**
vladvana 0:23d1f73bf130 2966 * @brief Copies the elements of a floating-point vector.
vladvana 0:23d1f73bf130 2967 * @param[in] *pSrc input pointer
vladvana 0:23d1f73bf130 2968 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 2969 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 2970 * @return none.
vladvana 0:23d1f73bf130 2971 */
vladvana 0:23d1f73bf130 2972 void arm_copy_f32(
vladvana 0:23d1f73bf130 2973 float32_t * pSrc,
vladvana 0:23d1f73bf130 2974 float32_t * pDst,
vladvana 0:23d1f73bf130 2975 uint32_t blockSize);
vladvana 0:23d1f73bf130 2976
vladvana 0:23d1f73bf130 2977 /**
vladvana 0:23d1f73bf130 2978 * @brief Copies the elements of a Q7 vector.
vladvana 0:23d1f73bf130 2979 * @param[in] *pSrc input pointer
vladvana 0:23d1f73bf130 2980 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 2981 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 2982 * @return none.
vladvana 0:23d1f73bf130 2983 */
vladvana 0:23d1f73bf130 2984 void arm_copy_q7(
vladvana 0:23d1f73bf130 2985 q7_t * pSrc,
vladvana 0:23d1f73bf130 2986 q7_t * pDst,
vladvana 0:23d1f73bf130 2987 uint32_t blockSize);
vladvana 0:23d1f73bf130 2988
vladvana 0:23d1f73bf130 2989 /**
vladvana 0:23d1f73bf130 2990 * @brief Copies the elements of a Q15 vector.
vladvana 0:23d1f73bf130 2991 * @param[in] *pSrc input pointer
vladvana 0:23d1f73bf130 2992 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 2993 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 2994 * @return none.
vladvana 0:23d1f73bf130 2995 */
vladvana 0:23d1f73bf130 2996 void arm_copy_q15(
vladvana 0:23d1f73bf130 2997 q15_t * pSrc,
vladvana 0:23d1f73bf130 2998 q15_t * pDst,
vladvana 0:23d1f73bf130 2999 uint32_t blockSize);
vladvana 0:23d1f73bf130 3000
vladvana 0:23d1f73bf130 3001 /**
vladvana 0:23d1f73bf130 3002 * @brief Copies the elements of a Q31 vector.
vladvana 0:23d1f73bf130 3003 * @param[in] *pSrc input pointer
vladvana 0:23d1f73bf130 3004 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 3005 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 3006 * @return none.
vladvana 0:23d1f73bf130 3007 */
vladvana 0:23d1f73bf130 3008 void arm_copy_q31(
vladvana 0:23d1f73bf130 3009 q31_t * pSrc,
vladvana 0:23d1f73bf130 3010 q31_t * pDst,
vladvana 0:23d1f73bf130 3011 uint32_t blockSize);
vladvana 0:23d1f73bf130 3012 /**
vladvana 0:23d1f73bf130 3013 * @brief Fills a constant value into a floating-point vector.
vladvana 0:23d1f73bf130 3014 * @param[in] value input value to be filled
vladvana 0:23d1f73bf130 3015 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 3016 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 3017 * @return none.
vladvana 0:23d1f73bf130 3018 */
vladvana 0:23d1f73bf130 3019 void arm_fill_f32(
vladvana 0:23d1f73bf130 3020 float32_t value,
vladvana 0:23d1f73bf130 3021 float32_t * pDst,
vladvana 0:23d1f73bf130 3022 uint32_t blockSize);
vladvana 0:23d1f73bf130 3023
vladvana 0:23d1f73bf130 3024 /**
vladvana 0:23d1f73bf130 3025 * @brief Fills a constant value into a Q7 vector.
vladvana 0:23d1f73bf130 3026 * @param[in] value input value to be filled
vladvana 0:23d1f73bf130 3027 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 3028 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 3029 * @return none.
vladvana 0:23d1f73bf130 3030 */
vladvana 0:23d1f73bf130 3031 void arm_fill_q7(
vladvana 0:23d1f73bf130 3032 q7_t value,
vladvana 0:23d1f73bf130 3033 q7_t * pDst,
vladvana 0:23d1f73bf130 3034 uint32_t blockSize);
vladvana 0:23d1f73bf130 3035
vladvana 0:23d1f73bf130 3036 /**
vladvana 0:23d1f73bf130 3037 * @brief Fills a constant value into a Q15 vector.
vladvana 0:23d1f73bf130 3038 * @param[in] value input value to be filled
vladvana 0:23d1f73bf130 3039 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 3040 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 3041 * @return none.
vladvana 0:23d1f73bf130 3042 */
vladvana 0:23d1f73bf130 3043 void arm_fill_q15(
vladvana 0:23d1f73bf130 3044 q15_t value,
vladvana 0:23d1f73bf130 3045 q15_t * pDst,
vladvana 0:23d1f73bf130 3046 uint32_t blockSize);
vladvana 0:23d1f73bf130 3047
vladvana 0:23d1f73bf130 3048 /**
vladvana 0:23d1f73bf130 3049 * @brief Fills a constant value into a Q31 vector.
vladvana 0:23d1f73bf130 3050 * @param[in] value input value to be filled
vladvana 0:23d1f73bf130 3051 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 3052 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 3053 * @return none.
vladvana 0:23d1f73bf130 3054 */
vladvana 0:23d1f73bf130 3055 void arm_fill_q31(
vladvana 0:23d1f73bf130 3056 q31_t value,
vladvana 0:23d1f73bf130 3057 q31_t * pDst,
vladvana 0:23d1f73bf130 3058 uint32_t blockSize);
vladvana 0:23d1f73bf130 3059
vladvana 0:23d1f73bf130 3060 /**
vladvana 0:23d1f73bf130 3061 * @brief Convolution of floating-point sequences.
vladvana 0:23d1f73bf130 3062 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3063 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3064 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3065 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3066 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
vladvana 0:23d1f73bf130 3067 * @return none.
vladvana 0:23d1f73bf130 3068 */
vladvana 0:23d1f73bf130 3069
vladvana 0:23d1f73bf130 3070 void arm_conv_f32(
vladvana 0:23d1f73bf130 3071 float32_t * pSrcA,
vladvana 0:23d1f73bf130 3072 uint32_t srcALen,
vladvana 0:23d1f73bf130 3073 float32_t * pSrcB,
vladvana 0:23d1f73bf130 3074 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3075 float32_t * pDst);
vladvana 0:23d1f73bf130 3076
vladvana 0:23d1f73bf130 3077
vladvana 0:23d1f73bf130 3078 /**
vladvana 0:23d1f73bf130 3079 * @brief Convolution of Q15 sequences.
vladvana 0:23d1f73bf130 3080 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3081 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3082 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3083 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3084 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
vladvana 0:23d1f73bf130 3085 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
vladvana 0:23d1f73bf130 3086 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
vladvana 0:23d1f73bf130 3087 * @return none.
vladvana 0:23d1f73bf130 3088 */
vladvana 0:23d1f73bf130 3089
vladvana 0:23d1f73bf130 3090
vladvana 0:23d1f73bf130 3091 void arm_conv_opt_q15(
vladvana 0:23d1f73bf130 3092 q15_t * pSrcA,
vladvana 0:23d1f73bf130 3093 uint32_t srcALen,
vladvana 0:23d1f73bf130 3094 q15_t * pSrcB,
vladvana 0:23d1f73bf130 3095 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3096 q15_t * pDst,
vladvana 0:23d1f73bf130 3097 q15_t * pScratch1,
vladvana 0:23d1f73bf130 3098 q15_t * pScratch2);
vladvana 0:23d1f73bf130 3099
vladvana 0:23d1f73bf130 3100
vladvana 0:23d1f73bf130 3101 /**
vladvana 0:23d1f73bf130 3102 * @brief Convolution of Q15 sequences.
vladvana 0:23d1f73bf130 3103 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3104 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3105 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3106 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3107 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
vladvana 0:23d1f73bf130 3108 * @return none.
vladvana 0:23d1f73bf130 3109 */
vladvana 0:23d1f73bf130 3110
vladvana 0:23d1f73bf130 3111 void arm_conv_q15(
vladvana 0:23d1f73bf130 3112 q15_t * pSrcA,
vladvana 0:23d1f73bf130 3113 uint32_t srcALen,
vladvana 0:23d1f73bf130 3114 q15_t * pSrcB,
vladvana 0:23d1f73bf130 3115 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3116 q15_t * pDst);
vladvana 0:23d1f73bf130 3117
vladvana 0:23d1f73bf130 3118 /**
vladvana 0:23d1f73bf130 3119 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
vladvana 0:23d1f73bf130 3120 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3121 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3122 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3123 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3124 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
vladvana 0:23d1f73bf130 3125 * @return none.
vladvana 0:23d1f73bf130 3126 */
vladvana 0:23d1f73bf130 3127
vladvana 0:23d1f73bf130 3128 void arm_conv_fast_q15(
vladvana 0:23d1f73bf130 3129 q15_t * pSrcA,
vladvana 0:23d1f73bf130 3130 uint32_t srcALen,
vladvana 0:23d1f73bf130 3131 q15_t * pSrcB,
vladvana 0:23d1f73bf130 3132 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3133 q15_t * pDst);
vladvana 0:23d1f73bf130 3134
vladvana 0:23d1f73bf130 3135 /**
vladvana 0:23d1f73bf130 3136 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
vladvana 0:23d1f73bf130 3137 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3138 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3139 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3140 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3141 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
vladvana 0:23d1f73bf130 3142 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
vladvana 0:23d1f73bf130 3143 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
vladvana 0:23d1f73bf130 3144 * @return none.
vladvana 0:23d1f73bf130 3145 */
vladvana 0:23d1f73bf130 3146
vladvana 0:23d1f73bf130 3147 void arm_conv_fast_opt_q15(
vladvana 0:23d1f73bf130 3148 q15_t * pSrcA,
vladvana 0:23d1f73bf130 3149 uint32_t srcALen,
vladvana 0:23d1f73bf130 3150 q15_t * pSrcB,
vladvana 0:23d1f73bf130 3151 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3152 q15_t * pDst,
vladvana 0:23d1f73bf130 3153 q15_t * pScratch1,
vladvana 0:23d1f73bf130 3154 q15_t * pScratch2);
vladvana 0:23d1f73bf130 3155
vladvana 0:23d1f73bf130 3156
vladvana 0:23d1f73bf130 3157
vladvana 0:23d1f73bf130 3158 /**
vladvana 0:23d1f73bf130 3159 * @brief Convolution of Q31 sequences.
vladvana 0:23d1f73bf130 3160 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3161 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3162 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3163 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3164 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
vladvana 0:23d1f73bf130 3165 * @return none.
vladvana 0:23d1f73bf130 3166 */
vladvana 0:23d1f73bf130 3167
vladvana 0:23d1f73bf130 3168 void arm_conv_q31(
vladvana 0:23d1f73bf130 3169 q31_t * pSrcA,
vladvana 0:23d1f73bf130 3170 uint32_t srcALen,
vladvana 0:23d1f73bf130 3171 q31_t * pSrcB,
vladvana 0:23d1f73bf130 3172 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3173 q31_t * pDst);
vladvana 0:23d1f73bf130 3174
vladvana 0:23d1f73bf130 3175 /**
vladvana 0:23d1f73bf130 3176 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
vladvana 0:23d1f73bf130 3177 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3178 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3179 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3180 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3181 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
vladvana 0:23d1f73bf130 3182 * @return none.
vladvana 0:23d1f73bf130 3183 */
vladvana 0:23d1f73bf130 3184
vladvana 0:23d1f73bf130 3185 void arm_conv_fast_q31(
vladvana 0:23d1f73bf130 3186 q31_t * pSrcA,
vladvana 0:23d1f73bf130 3187 uint32_t srcALen,
vladvana 0:23d1f73bf130 3188 q31_t * pSrcB,
vladvana 0:23d1f73bf130 3189 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3190 q31_t * pDst);
vladvana 0:23d1f73bf130 3191
vladvana 0:23d1f73bf130 3192
vladvana 0:23d1f73bf130 3193 /**
vladvana 0:23d1f73bf130 3194 * @brief Convolution of Q7 sequences.
vladvana 0:23d1f73bf130 3195 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3196 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3197 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3198 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3199 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
vladvana 0:23d1f73bf130 3200 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
vladvana 0:23d1f73bf130 3201 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
vladvana 0:23d1f73bf130 3202 * @return none.
vladvana 0:23d1f73bf130 3203 */
vladvana 0:23d1f73bf130 3204
vladvana 0:23d1f73bf130 3205 void arm_conv_opt_q7(
vladvana 0:23d1f73bf130 3206 q7_t * pSrcA,
vladvana 0:23d1f73bf130 3207 uint32_t srcALen,
vladvana 0:23d1f73bf130 3208 q7_t * pSrcB,
vladvana 0:23d1f73bf130 3209 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3210 q7_t * pDst,
vladvana 0:23d1f73bf130 3211 q15_t * pScratch1,
vladvana 0:23d1f73bf130 3212 q15_t * pScratch2);
vladvana 0:23d1f73bf130 3213
vladvana 0:23d1f73bf130 3214
vladvana 0:23d1f73bf130 3215
vladvana 0:23d1f73bf130 3216 /**
vladvana 0:23d1f73bf130 3217 * @brief Convolution of Q7 sequences.
vladvana 0:23d1f73bf130 3218 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3219 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3220 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3221 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3222 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
vladvana 0:23d1f73bf130 3223 * @return none.
vladvana 0:23d1f73bf130 3224 */
vladvana 0:23d1f73bf130 3225
vladvana 0:23d1f73bf130 3226 void arm_conv_q7(
vladvana 0:23d1f73bf130 3227 q7_t * pSrcA,
vladvana 0:23d1f73bf130 3228 uint32_t srcALen,
vladvana 0:23d1f73bf130 3229 q7_t * pSrcB,
vladvana 0:23d1f73bf130 3230 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3231 q7_t * pDst);
vladvana 0:23d1f73bf130 3232
vladvana 0:23d1f73bf130 3233
vladvana 0:23d1f73bf130 3234 /**
vladvana 0:23d1f73bf130 3235 * @brief Partial convolution of floating-point sequences.
vladvana 0:23d1f73bf130 3236 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3237 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3238 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3239 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3240 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3241 * @param[in] firstIndex is the first output sample to start with.
vladvana 0:23d1f73bf130 3242 * @param[in] numPoints is the number of output points to be computed.
vladvana 0:23d1f73bf130 3243 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
vladvana 0:23d1f73bf130 3244 */
vladvana 0:23d1f73bf130 3245
vladvana 0:23d1f73bf130 3246 arm_status arm_conv_partial_f32(
vladvana 0:23d1f73bf130 3247 float32_t * pSrcA,
vladvana 0:23d1f73bf130 3248 uint32_t srcALen,
vladvana 0:23d1f73bf130 3249 float32_t * pSrcB,
vladvana 0:23d1f73bf130 3250 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3251 float32_t * pDst,
vladvana 0:23d1f73bf130 3252 uint32_t firstIndex,
vladvana 0:23d1f73bf130 3253 uint32_t numPoints);
vladvana 0:23d1f73bf130 3254
vladvana 0:23d1f73bf130 3255 /**
vladvana 0:23d1f73bf130 3256 * @brief Partial convolution of Q15 sequences.
vladvana 0:23d1f73bf130 3257 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3258 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3259 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3260 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3261 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3262 * @param[in] firstIndex is the first output sample to start with.
vladvana 0:23d1f73bf130 3263 * @param[in] numPoints is the number of output points to be computed.
vladvana 0:23d1f73bf130 3264 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
vladvana 0:23d1f73bf130 3265 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
vladvana 0:23d1f73bf130 3266 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
vladvana 0:23d1f73bf130 3267 */
vladvana 0:23d1f73bf130 3268
vladvana 0:23d1f73bf130 3269 arm_status arm_conv_partial_opt_q15(
vladvana 0:23d1f73bf130 3270 q15_t * pSrcA,
vladvana 0:23d1f73bf130 3271 uint32_t srcALen,
vladvana 0:23d1f73bf130 3272 q15_t * pSrcB,
vladvana 0:23d1f73bf130 3273 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3274 q15_t * pDst,
vladvana 0:23d1f73bf130 3275 uint32_t firstIndex,
vladvana 0:23d1f73bf130 3276 uint32_t numPoints,
vladvana 0:23d1f73bf130 3277 q15_t * pScratch1,
vladvana 0:23d1f73bf130 3278 q15_t * pScratch2);
vladvana 0:23d1f73bf130 3279
vladvana 0:23d1f73bf130 3280
vladvana 0:23d1f73bf130 3281 /**
vladvana 0:23d1f73bf130 3282 * @brief Partial convolution of Q15 sequences.
vladvana 0:23d1f73bf130 3283 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3284 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3285 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3286 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3287 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3288 * @param[in] firstIndex is the first output sample to start with.
vladvana 0:23d1f73bf130 3289 * @param[in] numPoints is the number of output points to be computed.
vladvana 0:23d1f73bf130 3290 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
vladvana 0:23d1f73bf130 3291 */
vladvana 0:23d1f73bf130 3292
vladvana 0:23d1f73bf130 3293 arm_status arm_conv_partial_q15(
vladvana 0:23d1f73bf130 3294 q15_t * pSrcA,
vladvana 0:23d1f73bf130 3295 uint32_t srcALen,
vladvana 0:23d1f73bf130 3296 q15_t * pSrcB,
vladvana 0:23d1f73bf130 3297 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3298 q15_t * pDst,
vladvana 0:23d1f73bf130 3299 uint32_t firstIndex,
vladvana 0:23d1f73bf130 3300 uint32_t numPoints);
vladvana 0:23d1f73bf130 3301
vladvana 0:23d1f73bf130 3302 /**
vladvana 0:23d1f73bf130 3303 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
vladvana 0:23d1f73bf130 3304 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3305 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3306 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3307 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3308 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3309 * @param[in] firstIndex is the first output sample to start with.
vladvana 0:23d1f73bf130 3310 * @param[in] numPoints is the number of output points to be computed.
vladvana 0:23d1f73bf130 3311 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
vladvana 0:23d1f73bf130 3312 */
vladvana 0:23d1f73bf130 3313
vladvana 0:23d1f73bf130 3314 arm_status arm_conv_partial_fast_q15(
vladvana 0:23d1f73bf130 3315 q15_t * pSrcA,
vladvana 0:23d1f73bf130 3316 uint32_t srcALen,
vladvana 0:23d1f73bf130 3317 q15_t * pSrcB,
vladvana 0:23d1f73bf130 3318 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3319 q15_t * pDst,
vladvana 0:23d1f73bf130 3320 uint32_t firstIndex,
vladvana 0:23d1f73bf130 3321 uint32_t numPoints);
vladvana 0:23d1f73bf130 3322
vladvana 0:23d1f73bf130 3323
vladvana 0:23d1f73bf130 3324 /**
vladvana 0:23d1f73bf130 3325 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
vladvana 0:23d1f73bf130 3326 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3327 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3328 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3329 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3330 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3331 * @param[in] firstIndex is the first output sample to start with.
vladvana 0:23d1f73bf130 3332 * @param[in] numPoints is the number of output points to be computed.
vladvana 0:23d1f73bf130 3333 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
vladvana 0:23d1f73bf130 3334 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
vladvana 0:23d1f73bf130 3335 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
vladvana 0:23d1f73bf130 3336 */
vladvana 0:23d1f73bf130 3337
vladvana 0:23d1f73bf130 3338 arm_status arm_conv_partial_fast_opt_q15(
vladvana 0:23d1f73bf130 3339 q15_t * pSrcA,
vladvana 0:23d1f73bf130 3340 uint32_t srcALen,
vladvana 0:23d1f73bf130 3341 q15_t * pSrcB,
vladvana 0:23d1f73bf130 3342 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3343 q15_t * pDst,
vladvana 0:23d1f73bf130 3344 uint32_t firstIndex,
vladvana 0:23d1f73bf130 3345 uint32_t numPoints,
vladvana 0:23d1f73bf130 3346 q15_t * pScratch1,
vladvana 0:23d1f73bf130 3347 q15_t * pScratch2);
vladvana 0:23d1f73bf130 3348
vladvana 0:23d1f73bf130 3349
vladvana 0:23d1f73bf130 3350 /**
vladvana 0:23d1f73bf130 3351 * @brief Partial convolution of Q31 sequences.
vladvana 0:23d1f73bf130 3352 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3353 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3354 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3355 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3356 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3357 * @param[in] firstIndex is the first output sample to start with.
vladvana 0:23d1f73bf130 3358 * @param[in] numPoints is the number of output points to be computed.
vladvana 0:23d1f73bf130 3359 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
vladvana 0:23d1f73bf130 3360 */
vladvana 0:23d1f73bf130 3361
vladvana 0:23d1f73bf130 3362 arm_status arm_conv_partial_q31(
vladvana 0:23d1f73bf130 3363 q31_t * pSrcA,
vladvana 0:23d1f73bf130 3364 uint32_t srcALen,
vladvana 0:23d1f73bf130 3365 q31_t * pSrcB,
vladvana 0:23d1f73bf130 3366 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3367 q31_t * pDst,
vladvana 0:23d1f73bf130 3368 uint32_t firstIndex,
vladvana 0:23d1f73bf130 3369 uint32_t numPoints);
vladvana 0:23d1f73bf130 3370
vladvana 0:23d1f73bf130 3371
vladvana 0:23d1f73bf130 3372 /**
vladvana 0:23d1f73bf130 3373 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
vladvana 0:23d1f73bf130 3374 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3375 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3376 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3377 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3378 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3379 * @param[in] firstIndex is the first output sample to start with.
vladvana 0:23d1f73bf130 3380 * @param[in] numPoints is the number of output points to be computed.
vladvana 0:23d1f73bf130 3381 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
vladvana 0:23d1f73bf130 3382 */
vladvana 0:23d1f73bf130 3383
vladvana 0:23d1f73bf130 3384 arm_status arm_conv_partial_fast_q31(
vladvana 0:23d1f73bf130 3385 q31_t * pSrcA,
vladvana 0:23d1f73bf130 3386 uint32_t srcALen,
vladvana 0:23d1f73bf130 3387 q31_t * pSrcB,
vladvana 0:23d1f73bf130 3388 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3389 q31_t * pDst,
vladvana 0:23d1f73bf130 3390 uint32_t firstIndex,
vladvana 0:23d1f73bf130 3391 uint32_t numPoints);
vladvana 0:23d1f73bf130 3392
vladvana 0:23d1f73bf130 3393
vladvana 0:23d1f73bf130 3394 /**
vladvana 0:23d1f73bf130 3395 * @brief Partial convolution of Q7 sequences
vladvana 0:23d1f73bf130 3396 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3397 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3398 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3399 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3400 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3401 * @param[in] firstIndex is the first output sample to start with.
vladvana 0:23d1f73bf130 3402 * @param[in] numPoints is the number of output points to be computed.
vladvana 0:23d1f73bf130 3403 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
vladvana 0:23d1f73bf130 3404 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
vladvana 0:23d1f73bf130 3405 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
vladvana 0:23d1f73bf130 3406 */
vladvana 0:23d1f73bf130 3407
vladvana 0:23d1f73bf130 3408 arm_status arm_conv_partial_opt_q7(
vladvana 0:23d1f73bf130 3409 q7_t * pSrcA,
vladvana 0:23d1f73bf130 3410 uint32_t srcALen,
vladvana 0:23d1f73bf130 3411 q7_t * pSrcB,
vladvana 0:23d1f73bf130 3412 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3413 q7_t * pDst,
vladvana 0:23d1f73bf130 3414 uint32_t firstIndex,
vladvana 0:23d1f73bf130 3415 uint32_t numPoints,
vladvana 0:23d1f73bf130 3416 q15_t * pScratch1,
vladvana 0:23d1f73bf130 3417 q15_t * pScratch2);
vladvana 0:23d1f73bf130 3418
vladvana 0:23d1f73bf130 3419
vladvana 0:23d1f73bf130 3420 /**
vladvana 0:23d1f73bf130 3421 * @brief Partial convolution of Q7 sequences.
vladvana 0:23d1f73bf130 3422 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 3423 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 3424 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 3425 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 3426 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3427 * @param[in] firstIndex is the first output sample to start with.
vladvana 0:23d1f73bf130 3428 * @param[in] numPoints is the number of output points to be computed.
vladvana 0:23d1f73bf130 3429 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
vladvana 0:23d1f73bf130 3430 */
vladvana 0:23d1f73bf130 3431
vladvana 0:23d1f73bf130 3432 arm_status arm_conv_partial_q7(
vladvana 0:23d1f73bf130 3433 q7_t * pSrcA,
vladvana 0:23d1f73bf130 3434 uint32_t srcALen,
vladvana 0:23d1f73bf130 3435 q7_t * pSrcB,
vladvana 0:23d1f73bf130 3436 uint32_t srcBLen,
vladvana 0:23d1f73bf130 3437 q7_t * pDst,
vladvana 0:23d1f73bf130 3438 uint32_t firstIndex,
vladvana 0:23d1f73bf130 3439 uint32_t numPoints);
vladvana 0:23d1f73bf130 3440
vladvana 0:23d1f73bf130 3441
vladvana 0:23d1f73bf130 3442
vladvana 0:23d1f73bf130 3443 /**
vladvana 0:23d1f73bf130 3444 * @brief Instance structure for the Q15 FIR decimator.
vladvana 0:23d1f73bf130 3445 */
vladvana 0:23d1f73bf130 3446
vladvana 0:23d1f73bf130 3447 typedef struct
vladvana 0:23d1f73bf130 3448 {
vladvana 0:23d1f73bf130 3449 uint8_t M; /**< decimation factor. */
vladvana 0:23d1f73bf130 3450 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 3451 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
vladvana 0:23d1f73bf130 3452 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 3453 } arm_fir_decimate_instance_q15;
vladvana 0:23d1f73bf130 3454
vladvana 0:23d1f73bf130 3455 /**
vladvana 0:23d1f73bf130 3456 * @brief Instance structure for the Q31 FIR decimator.
vladvana 0:23d1f73bf130 3457 */
vladvana 0:23d1f73bf130 3458
vladvana 0:23d1f73bf130 3459 typedef struct
vladvana 0:23d1f73bf130 3460 {
vladvana 0:23d1f73bf130 3461 uint8_t M; /**< decimation factor. */
vladvana 0:23d1f73bf130 3462 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 3463 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
vladvana 0:23d1f73bf130 3464 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 3465
vladvana 0:23d1f73bf130 3466 } arm_fir_decimate_instance_q31;
vladvana 0:23d1f73bf130 3467
vladvana 0:23d1f73bf130 3468 /**
vladvana 0:23d1f73bf130 3469 * @brief Instance structure for the floating-point FIR decimator.
vladvana 0:23d1f73bf130 3470 */
vladvana 0:23d1f73bf130 3471
vladvana 0:23d1f73bf130 3472 typedef struct
vladvana 0:23d1f73bf130 3473 {
vladvana 0:23d1f73bf130 3474 uint8_t M; /**< decimation factor. */
vladvana 0:23d1f73bf130 3475 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 3476 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
vladvana 0:23d1f73bf130 3477 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 3478
vladvana 0:23d1f73bf130 3479 } arm_fir_decimate_instance_f32;
vladvana 0:23d1f73bf130 3480
vladvana 0:23d1f73bf130 3481
vladvana 0:23d1f73bf130 3482
vladvana 0:23d1f73bf130 3483 /**
vladvana 0:23d1f73bf130 3484 * @brief Processing function for the floating-point FIR decimator.
vladvana 0:23d1f73bf130 3485 * @param[in] *S points to an instance of the floating-point FIR decimator structure.
vladvana 0:23d1f73bf130 3486 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3487 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3488 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3489 * @return none
vladvana 0:23d1f73bf130 3490 */
vladvana 0:23d1f73bf130 3491
vladvana 0:23d1f73bf130 3492 void arm_fir_decimate_f32(
vladvana 0:23d1f73bf130 3493 const arm_fir_decimate_instance_f32 * S,
vladvana 0:23d1f73bf130 3494 float32_t * pSrc,
vladvana 0:23d1f73bf130 3495 float32_t * pDst,
vladvana 0:23d1f73bf130 3496 uint32_t blockSize);
vladvana 0:23d1f73bf130 3497
vladvana 0:23d1f73bf130 3498
vladvana 0:23d1f73bf130 3499 /**
vladvana 0:23d1f73bf130 3500 * @brief Initialization function for the floating-point FIR decimator.
vladvana 0:23d1f73bf130 3501 * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
vladvana 0:23d1f73bf130 3502 * @param[in] numTaps number of coefficients in the filter.
vladvana 0:23d1f73bf130 3503 * @param[in] M decimation factor.
vladvana 0:23d1f73bf130 3504 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 3505 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3506 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3507 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
vladvana 0:23d1f73bf130 3508 * <code>blockSize</code> is not a multiple of <code>M</code>.
vladvana 0:23d1f73bf130 3509 */
vladvana 0:23d1f73bf130 3510
vladvana 0:23d1f73bf130 3511 arm_status arm_fir_decimate_init_f32(
vladvana 0:23d1f73bf130 3512 arm_fir_decimate_instance_f32 * S,
vladvana 0:23d1f73bf130 3513 uint16_t numTaps,
vladvana 0:23d1f73bf130 3514 uint8_t M,
vladvana 0:23d1f73bf130 3515 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 3516 float32_t * pState,
vladvana 0:23d1f73bf130 3517 uint32_t blockSize);
vladvana 0:23d1f73bf130 3518
vladvana 0:23d1f73bf130 3519 /**
vladvana 0:23d1f73bf130 3520 * @brief Processing function for the Q15 FIR decimator.
vladvana 0:23d1f73bf130 3521 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
vladvana 0:23d1f73bf130 3522 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3523 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3524 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3525 * @return none
vladvana 0:23d1f73bf130 3526 */
vladvana 0:23d1f73bf130 3527
vladvana 0:23d1f73bf130 3528 void arm_fir_decimate_q15(
vladvana 0:23d1f73bf130 3529 const arm_fir_decimate_instance_q15 * S,
vladvana 0:23d1f73bf130 3530 q15_t * pSrc,
vladvana 0:23d1f73bf130 3531 q15_t * pDst,
vladvana 0:23d1f73bf130 3532 uint32_t blockSize);
vladvana 0:23d1f73bf130 3533
vladvana 0:23d1f73bf130 3534 /**
vladvana 0:23d1f73bf130 3535 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
vladvana 0:23d1f73bf130 3536 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
vladvana 0:23d1f73bf130 3537 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3538 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3539 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3540 * @return none
vladvana 0:23d1f73bf130 3541 */
vladvana 0:23d1f73bf130 3542
vladvana 0:23d1f73bf130 3543 void arm_fir_decimate_fast_q15(
vladvana 0:23d1f73bf130 3544 const arm_fir_decimate_instance_q15 * S,
vladvana 0:23d1f73bf130 3545 q15_t * pSrc,
vladvana 0:23d1f73bf130 3546 q15_t * pDst,
vladvana 0:23d1f73bf130 3547 uint32_t blockSize);
vladvana 0:23d1f73bf130 3548
vladvana 0:23d1f73bf130 3549
vladvana 0:23d1f73bf130 3550
vladvana 0:23d1f73bf130 3551 /**
vladvana 0:23d1f73bf130 3552 * @brief Initialization function for the Q15 FIR decimator.
vladvana 0:23d1f73bf130 3553 * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
vladvana 0:23d1f73bf130 3554 * @param[in] numTaps number of coefficients in the filter.
vladvana 0:23d1f73bf130 3555 * @param[in] M decimation factor.
vladvana 0:23d1f73bf130 3556 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 3557 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3558 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3559 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
vladvana 0:23d1f73bf130 3560 * <code>blockSize</code> is not a multiple of <code>M</code>.
vladvana 0:23d1f73bf130 3561 */
vladvana 0:23d1f73bf130 3562
vladvana 0:23d1f73bf130 3563 arm_status arm_fir_decimate_init_q15(
vladvana 0:23d1f73bf130 3564 arm_fir_decimate_instance_q15 * S,
vladvana 0:23d1f73bf130 3565 uint16_t numTaps,
vladvana 0:23d1f73bf130 3566 uint8_t M,
vladvana 0:23d1f73bf130 3567 q15_t * pCoeffs,
vladvana 0:23d1f73bf130 3568 q15_t * pState,
vladvana 0:23d1f73bf130 3569 uint32_t blockSize);
vladvana 0:23d1f73bf130 3570
vladvana 0:23d1f73bf130 3571 /**
vladvana 0:23d1f73bf130 3572 * @brief Processing function for the Q31 FIR decimator.
vladvana 0:23d1f73bf130 3573 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
vladvana 0:23d1f73bf130 3574 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3575 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3576 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3577 * @return none
vladvana 0:23d1f73bf130 3578 */
vladvana 0:23d1f73bf130 3579
vladvana 0:23d1f73bf130 3580 void arm_fir_decimate_q31(
vladvana 0:23d1f73bf130 3581 const arm_fir_decimate_instance_q31 * S,
vladvana 0:23d1f73bf130 3582 q31_t * pSrc,
vladvana 0:23d1f73bf130 3583 q31_t * pDst,
vladvana 0:23d1f73bf130 3584 uint32_t blockSize);
vladvana 0:23d1f73bf130 3585
vladvana 0:23d1f73bf130 3586 /**
vladvana 0:23d1f73bf130 3587 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
vladvana 0:23d1f73bf130 3588 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
vladvana 0:23d1f73bf130 3589 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3590 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3591 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3592 * @return none
vladvana 0:23d1f73bf130 3593 */
vladvana 0:23d1f73bf130 3594
vladvana 0:23d1f73bf130 3595 void arm_fir_decimate_fast_q31(
vladvana 0:23d1f73bf130 3596 arm_fir_decimate_instance_q31 * S,
vladvana 0:23d1f73bf130 3597 q31_t * pSrc,
vladvana 0:23d1f73bf130 3598 q31_t * pDst,
vladvana 0:23d1f73bf130 3599 uint32_t blockSize);
vladvana 0:23d1f73bf130 3600
vladvana 0:23d1f73bf130 3601
vladvana 0:23d1f73bf130 3602 /**
vladvana 0:23d1f73bf130 3603 * @brief Initialization function for the Q31 FIR decimator.
vladvana 0:23d1f73bf130 3604 * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
vladvana 0:23d1f73bf130 3605 * @param[in] numTaps number of coefficients in the filter.
vladvana 0:23d1f73bf130 3606 * @param[in] M decimation factor.
vladvana 0:23d1f73bf130 3607 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 3608 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3609 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3610 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
vladvana 0:23d1f73bf130 3611 * <code>blockSize</code> is not a multiple of <code>M</code>.
vladvana 0:23d1f73bf130 3612 */
vladvana 0:23d1f73bf130 3613
vladvana 0:23d1f73bf130 3614 arm_status arm_fir_decimate_init_q31(
vladvana 0:23d1f73bf130 3615 arm_fir_decimate_instance_q31 * S,
vladvana 0:23d1f73bf130 3616 uint16_t numTaps,
vladvana 0:23d1f73bf130 3617 uint8_t M,
vladvana 0:23d1f73bf130 3618 q31_t * pCoeffs,
vladvana 0:23d1f73bf130 3619 q31_t * pState,
vladvana 0:23d1f73bf130 3620 uint32_t blockSize);
vladvana 0:23d1f73bf130 3621
vladvana 0:23d1f73bf130 3622
vladvana 0:23d1f73bf130 3623
vladvana 0:23d1f73bf130 3624 /**
vladvana 0:23d1f73bf130 3625 * @brief Instance structure for the Q15 FIR interpolator.
vladvana 0:23d1f73bf130 3626 */
vladvana 0:23d1f73bf130 3627
vladvana 0:23d1f73bf130 3628 typedef struct
vladvana 0:23d1f73bf130 3629 {
vladvana 0:23d1f73bf130 3630 uint8_t L; /**< upsample factor. */
vladvana 0:23d1f73bf130 3631 uint16_t phaseLength; /**< length of each polyphase filter component. */
vladvana 0:23d1f73bf130 3632 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
vladvana 0:23d1f73bf130 3633 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
vladvana 0:23d1f73bf130 3634 } arm_fir_interpolate_instance_q15;
vladvana 0:23d1f73bf130 3635
vladvana 0:23d1f73bf130 3636 /**
vladvana 0:23d1f73bf130 3637 * @brief Instance structure for the Q31 FIR interpolator.
vladvana 0:23d1f73bf130 3638 */
vladvana 0:23d1f73bf130 3639
vladvana 0:23d1f73bf130 3640 typedef struct
vladvana 0:23d1f73bf130 3641 {
vladvana 0:23d1f73bf130 3642 uint8_t L; /**< upsample factor. */
vladvana 0:23d1f73bf130 3643 uint16_t phaseLength; /**< length of each polyphase filter component. */
vladvana 0:23d1f73bf130 3644 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
vladvana 0:23d1f73bf130 3645 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
vladvana 0:23d1f73bf130 3646 } arm_fir_interpolate_instance_q31;
vladvana 0:23d1f73bf130 3647
vladvana 0:23d1f73bf130 3648 /**
vladvana 0:23d1f73bf130 3649 * @brief Instance structure for the floating-point FIR interpolator.
vladvana 0:23d1f73bf130 3650 */
vladvana 0:23d1f73bf130 3651
vladvana 0:23d1f73bf130 3652 typedef struct
vladvana 0:23d1f73bf130 3653 {
vladvana 0:23d1f73bf130 3654 uint8_t L; /**< upsample factor. */
vladvana 0:23d1f73bf130 3655 uint16_t phaseLength; /**< length of each polyphase filter component. */
vladvana 0:23d1f73bf130 3656 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
vladvana 0:23d1f73bf130 3657 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
vladvana 0:23d1f73bf130 3658 } arm_fir_interpolate_instance_f32;
vladvana 0:23d1f73bf130 3659
vladvana 0:23d1f73bf130 3660
vladvana 0:23d1f73bf130 3661 /**
vladvana 0:23d1f73bf130 3662 * @brief Processing function for the Q15 FIR interpolator.
vladvana 0:23d1f73bf130 3663 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
vladvana 0:23d1f73bf130 3664 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3665 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 3666 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3667 * @return none.
vladvana 0:23d1f73bf130 3668 */
vladvana 0:23d1f73bf130 3669
vladvana 0:23d1f73bf130 3670 void arm_fir_interpolate_q15(
vladvana 0:23d1f73bf130 3671 const arm_fir_interpolate_instance_q15 * S,
vladvana 0:23d1f73bf130 3672 q15_t * pSrc,
vladvana 0:23d1f73bf130 3673 q15_t * pDst,
vladvana 0:23d1f73bf130 3674 uint32_t blockSize);
vladvana 0:23d1f73bf130 3675
vladvana 0:23d1f73bf130 3676
vladvana 0:23d1f73bf130 3677 /**
vladvana 0:23d1f73bf130 3678 * @brief Initialization function for the Q15 FIR interpolator.
vladvana 0:23d1f73bf130 3679 * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
vladvana 0:23d1f73bf130 3680 * @param[in] L upsample factor.
vladvana 0:23d1f73bf130 3681 * @param[in] numTaps number of filter coefficients in the filter.
vladvana 0:23d1f73bf130 3682 * @param[in] *pCoeffs points to the filter coefficient buffer.
vladvana 0:23d1f73bf130 3683 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3684 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3685 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
vladvana 0:23d1f73bf130 3686 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
vladvana 0:23d1f73bf130 3687 */
vladvana 0:23d1f73bf130 3688
vladvana 0:23d1f73bf130 3689 arm_status arm_fir_interpolate_init_q15(
vladvana 0:23d1f73bf130 3690 arm_fir_interpolate_instance_q15 * S,
vladvana 0:23d1f73bf130 3691 uint8_t L,
vladvana 0:23d1f73bf130 3692 uint16_t numTaps,
vladvana 0:23d1f73bf130 3693 q15_t * pCoeffs,
vladvana 0:23d1f73bf130 3694 q15_t * pState,
vladvana 0:23d1f73bf130 3695 uint32_t blockSize);
vladvana 0:23d1f73bf130 3696
vladvana 0:23d1f73bf130 3697 /**
vladvana 0:23d1f73bf130 3698 * @brief Processing function for the Q31 FIR interpolator.
vladvana 0:23d1f73bf130 3699 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
vladvana 0:23d1f73bf130 3700 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3701 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 3702 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3703 * @return none.
vladvana 0:23d1f73bf130 3704 */
vladvana 0:23d1f73bf130 3705
vladvana 0:23d1f73bf130 3706 void arm_fir_interpolate_q31(
vladvana 0:23d1f73bf130 3707 const arm_fir_interpolate_instance_q31 * S,
vladvana 0:23d1f73bf130 3708 q31_t * pSrc,
vladvana 0:23d1f73bf130 3709 q31_t * pDst,
vladvana 0:23d1f73bf130 3710 uint32_t blockSize);
vladvana 0:23d1f73bf130 3711
vladvana 0:23d1f73bf130 3712 /**
vladvana 0:23d1f73bf130 3713 * @brief Initialization function for the Q31 FIR interpolator.
vladvana 0:23d1f73bf130 3714 * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
vladvana 0:23d1f73bf130 3715 * @param[in] L upsample factor.
vladvana 0:23d1f73bf130 3716 * @param[in] numTaps number of filter coefficients in the filter.
vladvana 0:23d1f73bf130 3717 * @param[in] *pCoeffs points to the filter coefficient buffer.
vladvana 0:23d1f73bf130 3718 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3719 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3720 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
vladvana 0:23d1f73bf130 3721 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
vladvana 0:23d1f73bf130 3722 */
vladvana 0:23d1f73bf130 3723
vladvana 0:23d1f73bf130 3724 arm_status arm_fir_interpolate_init_q31(
vladvana 0:23d1f73bf130 3725 arm_fir_interpolate_instance_q31 * S,
vladvana 0:23d1f73bf130 3726 uint8_t L,
vladvana 0:23d1f73bf130 3727 uint16_t numTaps,
vladvana 0:23d1f73bf130 3728 q31_t * pCoeffs,
vladvana 0:23d1f73bf130 3729 q31_t * pState,
vladvana 0:23d1f73bf130 3730 uint32_t blockSize);
vladvana 0:23d1f73bf130 3731
vladvana 0:23d1f73bf130 3732
vladvana 0:23d1f73bf130 3733 /**
vladvana 0:23d1f73bf130 3734 * @brief Processing function for the floating-point FIR interpolator.
vladvana 0:23d1f73bf130 3735 * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
vladvana 0:23d1f73bf130 3736 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3737 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 3738 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3739 * @return none.
vladvana 0:23d1f73bf130 3740 */
vladvana 0:23d1f73bf130 3741
vladvana 0:23d1f73bf130 3742 void arm_fir_interpolate_f32(
vladvana 0:23d1f73bf130 3743 const arm_fir_interpolate_instance_f32 * S,
vladvana 0:23d1f73bf130 3744 float32_t * pSrc,
vladvana 0:23d1f73bf130 3745 float32_t * pDst,
vladvana 0:23d1f73bf130 3746 uint32_t blockSize);
vladvana 0:23d1f73bf130 3747
vladvana 0:23d1f73bf130 3748 /**
vladvana 0:23d1f73bf130 3749 * @brief Initialization function for the floating-point FIR interpolator.
vladvana 0:23d1f73bf130 3750 * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
vladvana 0:23d1f73bf130 3751 * @param[in] L upsample factor.
vladvana 0:23d1f73bf130 3752 * @param[in] numTaps number of filter coefficients in the filter.
vladvana 0:23d1f73bf130 3753 * @param[in] *pCoeffs points to the filter coefficient buffer.
vladvana 0:23d1f73bf130 3754 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3755 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 3756 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
vladvana 0:23d1f73bf130 3757 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
vladvana 0:23d1f73bf130 3758 */
vladvana 0:23d1f73bf130 3759
vladvana 0:23d1f73bf130 3760 arm_status arm_fir_interpolate_init_f32(
vladvana 0:23d1f73bf130 3761 arm_fir_interpolate_instance_f32 * S,
vladvana 0:23d1f73bf130 3762 uint8_t L,
vladvana 0:23d1f73bf130 3763 uint16_t numTaps,
vladvana 0:23d1f73bf130 3764 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 3765 float32_t * pState,
vladvana 0:23d1f73bf130 3766 uint32_t blockSize);
vladvana 0:23d1f73bf130 3767
vladvana 0:23d1f73bf130 3768 /**
vladvana 0:23d1f73bf130 3769 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
vladvana 0:23d1f73bf130 3770 */
vladvana 0:23d1f73bf130 3771
vladvana 0:23d1f73bf130 3772 typedef struct
vladvana 0:23d1f73bf130 3773 {
vladvana 0:23d1f73bf130 3774 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
vladvana 0:23d1f73bf130 3775 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
vladvana 0:23d1f73bf130 3776 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
vladvana 0:23d1f73bf130 3777 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
vladvana 0:23d1f73bf130 3778
vladvana 0:23d1f73bf130 3779 } arm_biquad_cas_df1_32x64_ins_q31;
vladvana 0:23d1f73bf130 3780
vladvana 0:23d1f73bf130 3781
vladvana 0:23d1f73bf130 3782 /**
vladvana 0:23d1f73bf130 3783 * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
vladvana 0:23d1f73bf130 3784 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3785 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3786 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 3787 * @return none.
vladvana 0:23d1f73bf130 3788 */
vladvana 0:23d1f73bf130 3789
vladvana 0:23d1f73bf130 3790 void arm_biquad_cas_df1_32x64_q31(
vladvana 0:23d1f73bf130 3791 const arm_biquad_cas_df1_32x64_ins_q31 * S,
vladvana 0:23d1f73bf130 3792 q31_t * pSrc,
vladvana 0:23d1f73bf130 3793 q31_t * pDst,
vladvana 0:23d1f73bf130 3794 uint32_t blockSize);
vladvana 0:23d1f73bf130 3795
vladvana 0:23d1f73bf130 3796
vladvana 0:23d1f73bf130 3797 /**
vladvana 0:23d1f73bf130 3798 * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
vladvana 0:23d1f73bf130 3799 * @param[in] numStages number of 2nd order stages in the filter.
vladvana 0:23d1f73bf130 3800 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 3801 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3802 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
vladvana 0:23d1f73bf130 3803 * @return none
vladvana 0:23d1f73bf130 3804 */
vladvana 0:23d1f73bf130 3805
vladvana 0:23d1f73bf130 3806 void arm_biquad_cas_df1_32x64_init_q31(
vladvana 0:23d1f73bf130 3807 arm_biquad_cas_df1_32x64_ins_q31 * S,
vladvana 0:23d1f73bf130 3808 uint8_t numStages,
vladvana 0:23d1f73bf130 3809 q31_t * pCoeffs,
vladvana 0:23d1f73bf130 3810 q63_t * pState,
vladvana 0:23d1f73bf130 3811 uint8_t postShift);
vladvana 0:23d1f73bf130 3812
vladvana 0:23d1f73bf130 3813
vladvana 0:23d1f73bf130 3814
vladvana 0:23d1f73bf130 3815 /**
vladvana 0:23d1f73bf130 3816 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
vladvana 0:23d1f73bf130 3817 */
vladvana 0:23d1f73bf130 3818
vladvana 0:23d1f73bf130 3819 typedef struct
vladvana 0:23d1f73bf130 3820 {
vladvana 0:23d1f73bf130 3821 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
vladvana 0:23d1f73bf130 3822 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
vladvana 0:23d1f73bf130 3823 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
vladvana 0:23d1f73bf130 3824 } arm_biquad_cascade_df2T_instance_f32;
vladvana 0:23d1f73bf130 3825
vladvana 0:23d1f73bf130 3826
vladvana 0:23d1f73bf130 3827
vladvana 0:23d1f73bf130 3828 /**
vladvana 0:23d1f73bf130 3829 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
vladvana 0:23d1f73bf130 3830 */
vladvana 0:23d1f73bf130 3831
vladvana 0:23d1f73bf130 3832 typedef struct
vladvana 0:23d1f73bf130 3833 {
vladvana 0:23d1f73bf130 3834 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
vladvana 0:23d1f73bf130 3835 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
vladvana 0:23d1f73bf130 3836 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
vladvana 0:23d1f73bf130 3837 } arm_biquad_cascade_stereo_df2T_instance_f32;
vladvana 0:23d1f73bf130 3838
vladvana 0:23d1f73bf130 3839
vladvana 0:23d1f73bf130 3840
vladvana 0:23d1f73bf130 3841 /**
vladvana 0:23d1f73bf130 3842 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
vladvana 0:23d1f73bf130 3843 */
vladvana 0:23d1f73bf130 3844
vladvana 0:23d1f73bf130 3845 typedef struct
vladvana 0:23d1f73bf130 3846 {
vladvana 0:23d1f73bf130 3847 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
vladvana 0:23d1f73bf130 3848 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
vladvana 0:23d1f73bf130 3849 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
vladvana 0:23d1f73bf130 3850 } arm_biquad_cascade_df2T_instance_f64;
vladvana 0:23d1f73bf130 3851
vladvana 0:23d1f73bf130 3852
vladvana 0:23d1f73bf130 3853 /**
vladvana 0:23d1f73bf130 3854 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
vladvana 0:23d1f73bf130 3855 * @param[in] *S points to an instance of the filter data structure.
vladvana 0:23d1f73bf130 3856 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3857 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3858 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 3859 * @return none.
vladvana 0:23d1f73bf130 3860 */
vladvana 0:23d1f73bf130 3861
vladvana 0:23d1f73bf130 3862 void arm_biquad_cascade_df2T_f32(
vladvana 0:23d1f73bf130 3863 const arm_biquad_cascade_df2T_instance_f32 * S,
vladvana 0:23d1f73bf130 3864 float32_t * pSrc,
vladvana 0:23d1f73bf130 3865 float32_t * pDst,
vladvana 0:23d1f73bf130 3866 uint32_t blockSize);
vladvana 0:23d1f73bf130 3867
vladvana 0:23d1f73bf130 3868
vladvana 0:23d1f73bf130 3869 /**
vladvana 0:23d1f73bf130 3870 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
vladvana 0:23d1f73bf130 3871 * @param[in] *S points to an instance of the filter data structure.
vladvana 0:23d1f73bf130 3872 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3873 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3874 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 3875 * @return none.
vladvana 0:23d1f73bf130 3876 */
vladvana 0:23d1f73bf130 3877
vladvana 0:23d1f73bf130 3878 void arm_biquad_cascade_stereo_df2T_f32(
vladvana 0:23d1f73bf130 3879 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
vladvana 0:23d1f73bf130 3880 float32_t * pSrc,
vladvana 0:23d1f73bf130 3881 float32_t * pDst,
vladvana 0:23d1f73bf130 3882 uint32_t blockSize);
vladvana 0:23d1f73bf130 3883
vladvana 0:23d1f73bf130 3884 /**
vladvana 0:23d1f73bf130 3885 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
vladvana 0:23d1f73bf130 3886 * @param[in] *S points to an instance of the filter data structure.
vladvana 0:23d1f73bf130 3887 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 3888 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 3889 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 3890 * @return none.
vladvana 0:23d1f73bf130 3891 */
vladvana 0:23d1f73bf130 3892
vladvana 0:23d1f73bf130 3893 void arm_biquad_cascade_df2T_f64(
vladvana 0:23d1f73bf130 3894 const arm_biquad_cascade_df2T_instance_f64 * S,
vladvana 0:23d1f73bf130 3895 float64_t * pSrc,
vladvana 0:23d1f73bf130 3896 float64_t * pDst,
vladvana 0:23d1f73bf130 3897 uint32_t blockSize);
vladvana 0:23d1f73bf130 3898
vladvana 0:23d1f73bf130 3899
vladvana 0:23d1f73bf130 3900 /**
vladvana 0:23d1f73bf130 3901 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
vladvana 0:23d1f73bf130 3902 * @param[in,out] *S points to an instance of the filter data structure.
vladvana 0:23d1f73bf130 3903 * @param[in] numStages number of 2nd order stages in the filter.
vladvana 0:23d1f73bf130 3904 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 3905 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3906 * @return none
vladvana 0:23d1f73bf130 3907 */
vladvana 0:23d1f73bf130 3908
vladvana 0:23d1f73bf130 3909 void arm_biquad_cascade_df2T_init_f32(
vladvana 0:23d1f73bf130 3910 arm_biquad_cascade_df2T_instance_f32 * S,
vladvana 0:23d1f73bf130 3911 uint8_t numStages,
vladvana 0:23d1f73bf130 3912 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 3913 float32_t * pState);
vladvana 0:23d1f73bf130 3914
vladvana 0:23d1f73bf130 3915
vladvana 0:23d1f73bf130 3916 /**
vladvana 0:23d1f73bf130 3917 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
vladvana 0:23d1f73bf130 3918 * @param[in,out] *S points to an instance of the filter data structure.
vladvana 0:23d1f73bf130 3919 * @param[in] numStages number of 2nd order stages in the filter.
vladvana 0:23d1f73bf130 3920 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 3921 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3922 * @return none
vladvana 0:23d1f73bf130 3923 */
vladvana 0:23d1f73bf130 3924
vladvana 0:23d1f73bf130 3925 void arm_biquad_cascade_stereo_df2T_init_f32(
vladvana 0:23d1f73bf130 3926 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
vladvana 0:23d1f73bf130 3927 uint8_t numStages,
vladvana 0:23d1f73bf130 3928 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 3929 float32_t * pState);
vladvana 0:23d1f73bf130 3930
vladvana 0:23d1f73bf130 3931
vladvana 0:23d1f73bf130 3932 /**
vladvana 0:23d1f73bf130 3933 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
vladvana 0:23d1f73bf130 3934 * @param[in,out] *S points to an instance of the filter data structure.
vladvana 0:23d1f73bf130 3935 * @param[in] numStages number of 2nd order stages in the filter.
vladvana 0:23d1f73bf130 3936 * @param[in] *pCoeffs points to the filter coefficients.
vladvana 0:23d1f73bf130 3937 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 3938 * @return none
vladvana 0:23d1f73bf130 3939 */
vladvana 0:23d1f73bf130 3940
vladvana 0:23d1f73bf130 3941 void arm_biquad_cascade_df2T_init_f64(
vladvana 0:23d1f73bf130 3942 arm_biquad_cascade_df2T_instance_f64 * S,
vladvana 0:23d1f73bf130 3943 uint8_t numStages,
vladvana 0:23d1f73bf130 3944 float64_t * pCoeffs,
vladvana 0:23d1f73bf130 3945 float64_t * pState);
vladvana 0:23d1f73bf130 3946
vladvana 0:23d1f73bf130 3947
vladvana 0:23d1f73bf130 3948
vladvana 0:23d1f73bf130 3949 /**
vladvana 0:23d1f73bf130 3950 * @brief Instance structure for the Q15 FIR lattice filter.
vladvana 0:23d1f73bf130 3951 */
vladvana 0:23d1f73bf130 3952
vladvana 0:23d1f73bf130 3953 typedef struct
vladvana 0:23d1f73bf130 3954 {
vladvana 0:23d1f73bf130 3955 uint16_t numStages; /**< number of filter stages. */
vladvana 0:23d1f73bf130 3956 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
vladvana 0:23d1f73bf130 3957 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
vladvana 0:23d1f73bf130 3958 } arm_fir_lattice_instance_q15;
vladvana 0:23d1f73bf130 3959
vladvana 0:23d1f73bf130 3960 /**
vladvana 0:23d1f73bf130 3961 * @brief Instance structure for the Q31 FIR lattice filter.
vladvana 0:23d1f73bf130 3962 */
vladvana 0:23d1f73bf130 3963
vladvana 0:23d1f73bf130 3964 typedef struct
vladvana 0:23d1f73bf130 3965 {
vladvana 0:23d1f73bf130 3966 uint16_t numStages; /**< number of filter stages. */
vladvana 0:23d1f73bf130 3967 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
vladvana 0:23d1f73bf130 3968 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
vladvana 0:23d1f73bf130 3969 } arm_fir_lattice_instance_q31;
vladvana 0:23d1f73bf130 3970
vladvana 0:23d1f73bf130 3971 /**
vladvana 0:23d1f73bf130 3972 * @brief Instance structure for the floating-point FIR lattice filter.
vladvana 0:23d1f73bf130 3973 */
vladvana 0:23d1f73bf130 3974
vladvana 0:23d1f73bf130 3975 typedef struct
vladvana 0:23d1f73bf130 3976 {
vladvana 0:23d1f73bf130 3977 uint16_t numStages; /**< number of filter stages. */
vladvana 0:23d1f73bf130 3978 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
vladvana 0:23d1f73bf130 3979 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
vladvana 0:23d1f73bf130 3980 } arm_fir_lattice_instance_f32;
vladvana 0:23d1f73bf130 3981
vladvana 0:23d1f73bf130 3982 /**
vladvana 0:23d1f73bf130 3983 * @brief Initialization function for the Q15 FIR lattice filter.
vladvana 0:23d1f73bf130 3984 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
vladvana 0:23d1f73bf130 3985 * @param[in] numStages number of filter stages.
vladvana 0:23d1f73bf130 3986 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
vladvana 0:23d1f73bf130 3987 * @param[in] *pState points to the state buffer. The array is of length numStages.
vladvana 0:23d1f73bf130 3988 * @return none.
vladvana 0:23d1f73bf130 3989 */
vladvana 0:23d1f73bf130 3990
vladvana 0:23d1f73bf130 3991 void arm_fir_lattice_init_q15(
vladvana 0:23d1f73bf130 3992 arm_fir_lattice_instance_q15 * S,
vladvana 0:23d1f73bf130 3993 uint16_t numStages,
vladvana 0:23d1f73bf130 3994 q15_t * pCoeffs,
vladvana 0:23d1f73bf130 3995 q15_t * pState);
vladvana 0:23d1f73bf130 3996
vladvana 0:23d1f73bf130 3997
vladvana 0:23d1f73bf130 3998 /**
vladvana 0:23d1f73bf130 3999 * @brief Processing function for the Q15 FIR lattice filter.
vladvana 0:23d1f73bf130 4000 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
vladvana 0:23d1f73bf130 4001 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4002 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 4003 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4004 * @return none.
vladvana 0:23d1f73bf130 4005 */
vladvana 0:23d1f73bf130 4006 void arm_fir_lattice_q15(
vladvana 0:23d1f73bf130 4007 const arm_fir_lattice_instance_q15 * S,
vladvana 0:23d1f73bf130 4008 q15_t * pSrc,
vladvana 0:23d1f73bf130 4009 q15_t * pDst,
vladvana 0:23d1f73bf130 4010 uint32_t blockSize);
vladvana 0:23d1f73bf130 4011
vladvana 0:23d1f73bf130 4012 /**
vladvana 0:23d1f73bf130 4013 * @brief Initialization function for the Q31 FIR lattice filter.
vladvana 0:23d1f73bf130 4014 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
vladvana 0:23d1f73bf130 4015 * @param[in] numStages number of filter stages.
vladvana 0:23d1f73bf130 4016 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
vladvana 0:23d1f73bf130 4017 * @param[in] *pState points to the state buffer. The array is of length numStages.
vladvana 0:23d1f73bf130 4018 * @return none.
vladvana 0:23d1f73bf130 4019 */
vladvana 0:23d1f73bf130 4020
vladvana 0:23d1f73bf130 4021 void arm_fir_lattice_init_q31(
vladvana 0:23d1f73bf130 4022 arm_fir_lattice_instance_q31 * S,
vladvana 0:23d1f73bf130 4023 uint16_t numStages,
vladvana 0:23d1f73bf130 4024 q31_t * pCoeffs,
vladvana 0:23d1f73bf130 4025 q31_t * pState);
vladvana 0:23d1f73bf130 4026
vladvana 0:23d1f73bf130 4027
vladvana 0:23d1f73bf130 4028 /**
vladvana 0:23d1f73bf130 4029 * @brief Processing function for the Q31 FIR lattice filter.
vladvana 0:23d1f73bf130 4030 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
vladvana 0:23d1f73bf130 4031 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4032 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 4033 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4034 * @return none.
vladvana 0:23d1f73bf130 4035 */
vladvana 0:23d1f73bf130 4036
vladvana 0:23d1f73bf130 4037 void arm_fir_lattice_q31(
vladvana 0:23d1f73bf130 4038 const arm_fir_lattice_instance_q31 * S,
vladvana 0:23d1f73bf130 4039 q31_t * pSrc,
vladvana 0:23d1f73bf130 4040 q31_t * pDst,
vladvana 0:23d1f73bf130 4041 uint32_t blockSize);
vladvana 0:23d1f73bf130 4042
vladvana 0:23d1f73bf130 4043 /**
vladvana 0:23d1f73bf130 4044 * @brief Initialization function for the floating-point FIR lattice filter.
vladvana 0:23d1f73bf130 4045 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
vladvana 0:23d1f73bf130 4046 * @param[in] numStages number of filter stages.
vladvana 0:23d1f73bf130 4047 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
vladvana 0:23d1f73bf130 4048 * @param[in] *pState points to the state buffer. The array is of length numStages.
vladvana 0:23d1f73bf130 4049 * @return none.
vladvana 0:23d1f73bf130 4050 */
vladvana 0:23d1f73bf130 4051
vladvana 0:23d1f73bf130 4052 void arm_fir_lattice_init_f32(
vladvana 0:23d1f73bf130 4053 arm_fir_lattice_instance_f32 * S,
vladvana 0:23d1f73bf130 4054 uint16_t numStages,
vladvana 0:23d1f73bf130 4055 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 4056 float32_t * pState);
vladvana 0:23d1f73bf130 4057
vladvana 0:23d1f73bf130 4058 /**
vladvana 0:23d1f73bf130 4059 * @brief Processing function for the floating-point FIR lattice filter.
vladvana 0:23d1f73bf130 4060 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
vladvana 0:23d1f73bf130 4061 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4062 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 4063 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4064 * @return none.
vladvana 0:23d1f73bf130 4065 */
vladvana 0:23d1f73bf130 4066
vladvana 0:23d1f73bf130 4067 void arm_fir_lattice_f32(
vladvana 0:23d1f73bf130 4068 const arm_fir_lattice_instance_f32 * S,
vladvana 0:23d1f73bf130 4069 float32_t * pSrc,
vladvana 0:23d1f73bf130 4070 float32_t * pDst,
vladvana 0:23d1f73bf130 4071 uint32_t blockSize);
vladvana 0:23d1f73bf130 4072
vladvana 0:23d1f73bf130 4073 /**
vladvana 0:23d1f73bf130 4074 * @brief Instance structure for the Q15 IIR lattice filter.
vladvana 0:23d1f73bf130 4075 */
vladvana 0:23d1f73bf130 4076 typedef struct
vladvana 0:23d1f73bf130 4077 {
vladvana 0:23d1f73bf130 4078 uint16_t numStages; /**< number of stages in the filter. */
vladvana 0:23d1f73bf130 4079 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
vladvana 0:23d1f73bf130 4080 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
vladvana 0:23d1f73bf130 4081 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
vladvana 0:23d1f73bf130 4082 } arm_iir_lattice_instance_q15;
vladvana 0:23d1f73bf130 4083
vladvana 0:23d1f73bf130 4084 /**
vladvana 0:23d1f73bf130 4085 * @brief Instance structure for the Q31 IIR lattice filter.
vladvana 0:23d1f73bf130 4086 */
vladvana 0:23d1f73bf130 4087 typedef struct
vladvana 0:23d1f73bf130 4088 {
vladvana 0:23d1f73bf130 4089 uint16_t numStages; /**< number of stages in the filter. */
vladvana 0:23d1f73bf130 4090 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
vladvana 0:23d1f73bf130 4091 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
vladvana 0:23d1f73bf130 4092 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
vladvana 0:23d1f73bf130 4093 } arm_iir_lattice_instance_q31;
vladvana 0:23d1f73bf130 4094
vladvana 0:23d1f73bf130 4095 /**
vladvana 0:23d1f73bf130 4096 * @brief Instance structure for the floating-point IIR lattice filter.
vladvana 0:23d1f73bf130 4097 */
vladvana 0:23d1f73bf130 4098 typedef struct
vladvana 0:23d1f73bf130 4099 {
vladvana 0:23d1f73bf130 4100 uint16_t numStages; /**< number of stages in the filter. */
vladvana 0:23d1f73bf130 4101 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
vladvana 0:23d1f73bf130 4102 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
vladvana 0:23d1f73bf130 4103 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
vladvana 0:23d1f73bf130 4104 } arm_iir_lattice_instance_f32;
vladvana 0:23d1f73bf130 4105
vladvana 0:23d1f73bf130 4106 /**
vladvana 0:23d1f73bf130 4107 * @brief Processing function for the floating-point IIR lattice filter.
vladvana 0:23d1f73bf130 4108 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
vladvana 0:23d1f73bf130 4109 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4110 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 4111 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4112 * @return none.
vladvana 0:23d1f73bf130 4113 */
vladvana 0:23d1f73bf130 4114
vladvana 0:23d1f73bf130 4115 void arm_iir_lattice_f32(
vladvana 0:23d1f73bf130 4116 const arm_iir_lattice_instance_f32 * S,
vladvana 0:23d1f73bf130 4117 float32_t * pSrc,
vladvana 0:23d1f73bf130 4118 float32_t * pDst,
vladvana 0:23d1f73bf130 4119 uint32_t blockSize);
vladvana 0:23d1f73bf130 4120
vladvana 0:23d1f73bf130 4121 /**
vladvana 0:23d1f73bf130 4122 * @brief Initialization function for the floating-point IIR lattice filter.
vladvana 0:23d1f73bf130 4123 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
vladvana 0:23d1f73bf130 4124 * @param[in] numStages number of stages in the filter.
vladvana 0:23d1f73bf130 4125 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
vladvana 0:23d1f73bf130 4126 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
vladvana 0:23d1f73bf130 4127 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
vladvana 0:23d1f73bf130 4128 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4129 * @return none.
vladvana 0:23d1f73bf130 4130 */
vladvana 0:23d1f73bf130 4131
vladvana 0:23d1f73bf130 4132 void arm_iir_lattice_init_f32(
vladvana 0:23d1f73bf130 4133 arm_iir_lattice_instance_f32 * S,
vladvana 0:23d1f73bf130 4134 uint16_t numStages,
vladvana 0:23d1f73bf130 4135 float32_t * pkCoeffs,
vladvana 0:23d1f73bf130 4136 float32_t * pvCoeffs,
vladvana 0:23d1f73bf130 4137 float32_t * pState,
vladvana 0:23d1f73bf130 4138 uint32_t blockSize);
vladvana 0:23d1f73bf130 4139
vladvana 0:23d1f73bf130 4140
vladvana 0:23d1f73bf130 4141 /**
vladvana 0:23d1f73bf130 4142 * @brief Processing function for the Q31 IIR lattice filter.
vladvana 0:23d1f73bf130 4143 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
vladvana 0:23d1f73bf130 4144 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4145 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 4146 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4147 * @return none.
vladvana 0:23d1f73bf130 4148 */
vladvana 0:23d1f73bf130 4149
vladvana 0:23d1f73bf130 4150 void arm_iir_lattice_q31(
vladvana 0:23d1f73bf130 4151 const arm_iir_lattice_instance_q31 * S,
vladvana 0:23d1f73bf130 4152 q31_t * pSrc,
vladvana 0:23d1f73bf130 4153 q31_t * pDst,
vladvana 0:23d1f73bf130 4154 uint32_t blockSize);
vladvana 0:23d1f73bf130 4155
vladvana 0:23d1f73bf130 4156
vladvana 0:23d1f73bf130 4157 /**
vladvana 0:23d1f73bf130 4158 * @brief Initialization function for the Q31 IIR lattice filter.
vladvana 0:23d1f73bf130 4159 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
vladvana 0:23d1f73bf130 4160 * @param[in] numStages number of stages in the filter.
vladvana 0:23d1f73bf130 4161 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
vladvana 0:23d1f73bf130 4162 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
vladvana 0:23d1f73bf130 4163 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
vladvana 0:23d1f73bf130 4164 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4165 * @return none.
vladvana 0:23d1f73bf130 4166 */
vladvana 0:23d1f73bf130 4167
vladvana 0:23d1f73bf130 4168 void arm_iir_lattice_init_q31(
vladvana 0:23d1f73bf130 4169 arm_iir_lattice_instance_q31 * S,
vladvana 0:23d1f73bf130 4170 uint16_t numStages,
vladvana 0:23d1f73bf130 4171 q31_t * pkCoeffs,
vladvana 0:23d1f73bf130 4172 q31_t * pvCoeffs,
vladvana 0:23d1f73bf130 4173 q31_t * pState,
vladvana 0:23d1f73bf130 4174 uint32_t blockSize);
vladvana 0:23d1f73bf130 4175
vladvana 0:23d1f73bf130 4176
vladvana 0:23d1f73bf130 4177 /**
vladvana 0:23d1f73bf130 4178 * @brief Processing function for the Q15 IIR lattice filter.
vladvana 0:23d1f73bf130 4179 * @param[in] *S points to an instance of the Q15 IIR lattice structure.
vladvana 0:23d1f73bf130 4180 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4181 * @param[out] *pDst points to the block of output data.
vladvana 0:23d1f73bf130 4182 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4183 * @return none.
vladvana 0:23d1f73bf130 4184 */
vladvana 0:23d1f73bf130 4185
vladvana 0:23d1f73bf130 4186 void arm_iir_lattice_q15(
vladvana 0:23d1f73bf130 4187 const arm_iir_lattice_instance_q15 * S,
vladvana 0:23d1f73bf130 4188 q15_t * pSrc,
vladvana 0:23d1f73bf130 4189 q15_t * pDst,
vladvana 0:23d1f73bf130 4190 uint32_t blockSize);
vladvana 0:23d1f73bf130 4191
vladvana 0:23d1f73bf130 4192
vladvana 0:23d1f73bf130 4193 /**
vladvana 0:23d1f73bf130 4194 * @brief Initialization function for the Q15 IIR lattice filter.
vladvana 0:23d1f73bf130 4195 * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
vladvana 0:23d1f73bf130 4196 * @param[in] numStages number of stages in the filter.
vladvana 0:23d1f73bf130 4197 * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
vladvana 0:23d1f73bf130 4198 * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
vladvana 0:23d1f73bf130 4199 * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
vladvana 0:23d1f73bf130 4200 * @param[in] blockSize number of samples to process per call.
vladvana 0:23d1f73bf130 4201 * @return none.
vladvana 0:23d1f73bf130 4202 */
vladvana 0:23d1f73bf130 4203
vladvana 0:23d1f73bf130 4204 void arm_iir_lattice_init_q15(
vladvana 0:23d1f73bf130 4205 arm_iir_lattice_instance_q15 * S,
vladvana 0:23d1f73bf130 4206 uint16_t numStages,
vladvana 0:23d1f73bf130 4207 q15_t * pkCoeffs,
vladvana 0:23d1f73bf130 4208 q15_t * pvCoeffs,
vladvana 0:23d1f73bf130 4209 q15_t * pState,
vladvana 0:23d1f73bf130 4210 uint32_t blockSize);
vladvana 0:23d1f73bf130 4211
vladvana 0:23d1f73bf130 4212 /**
vladvana 0:23d1f73bf130 4213 * @brief Instance structure for the floating-point LMS filter.
vladvana 0:23d1f73bf130 4214 */
vladvana 0:23d1f73bf130 4215
vladvana 0:23d1f73bf130 4216 typedef struct
vladvana 0:23d1f73bf130 4217 {
vladvana 0:23d1f73bf130 4218 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4219 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 4220 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4221 float32_t mu; /**< step size that controls filter coefficient updates. */
vladvana 0:23d1f73bf130 4222 } arm_lms_instance_f32;
vladvana 0:23d1f73bf130 4223
vladvana 0:23d1f73bf130 4224 /**
vladvana 0:23d1f73bf130 4225 * @brief Processing function for floating-point LMS filter.
vladvana 0:23d1f73bf130 4226 * @param[in] *S points to an instance of the floating-point LMS filter structure.
vladvana 0:23d1f73bf130 4227 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4228 * @param[in] *pRef points to the block of reference data.
vladvana 0:23d1f73bf130 4229 * @param[out] *pOut points to the block of output data.
vladvana 0:23d1f73bf130 4230 * @param[out] *pErr points to the block of error data.
vladvana 0:23d1f73bf130 4231 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4232 * @return none.
vladvana 0:23d1f73bf130 4233 */
vladvana 0:23d1f73bf130 4234
vladvana 0:23d1f73bf130 4235 void arm_lms_f32(
vladvana 0:23d1f73bf130 4236 const arm_lms_instance_f32 * S,
vladvana 0:23d1f73bf130 4237 float32_t * pSrc,
vladvana 0:23d1f73bf130 4238 float32_t * pRef,
vladvana 0:23d1f73bf130 4239 float32_t * pOut,
vladvana 0:23d1f73bf130 4240 float32_t * pErr,
vladvana 0:23d1f73bf130 4241 uint32_t blockSize);
vladvana 0:23d1f73bf130 4242
vladvana 0:23d1f73bf130 4243 /**
vladvana 0:23d1f73bf130 4244 * @brief Initialization function for floating-point LMS filter.
vladvana 0:23d1f73bf130 4245 * @param[in] *S points to an instance of the floating-point LMS filter structure.
vladvana 0:23d1f73bf130 4246 * @param[in] numTaps number of filter coefficients.
vladvana 0:23d1f73bf130 4247 * @param[in] *pCoeffs points to the coefficient buffer.
vladvana 0:23d1f73bf130 4248 * @param[in] *pState points to state buffer.
vladvana 0:23d1f73bf130 4249 * @param[in] mu step size that controls filter coefficient updates.
vladvana 0:23d1f73bf130 4250 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4251 * @return none.
vladvana 0:23d1f73bf130 4252 */
vladvana 0:23d1f73bf130 4253
vladvana 0:23d1f73bf130 4254 void arm_lms_init_f32(
vladvana 0:23d1f73bf130 4255 arm_lms_instance_f32 * S,
vladvana 0:23d1f73bf130 4256 uint16_t numTaps,
vladvana 0:23d1f73bf130 4257 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 4258 float32_t * pState,
vladvana 0:23d1f73bf130 4259 float32_t mu,
vladvana 0:23d1f73bf130 4260 uint32_t blockSize);
vladvana 0:23d1f73bf130 4261
vladvana 0:23d1f73bf130 4262 /**
vladvana 0:23d1f73bf130 4263 * @brief Instance structure for the Q15 LMS filter.
vladvana 0:23d1f73bf130 4264 */
vladvana 0:23d1f73bf130 4265
vladvana 0:23d1f73bf130 4266 typedef struct
vladvana 0:23d1f73bf130 4267 {
vladvana 0:23d1f73bf130 4268 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4269 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 4270 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4271 q15_t mu; /**< step size that controls filter coefficient updates. */
vladvana 0:23d1f73bf130 4272 uint32_t postShift; /**< bit shift applied to coefficients. */
vladvana 0:23d1f73bf130 4273 } arm_lms_instance_q15;
vladvana 0:23d1f73bf130 4274
vladvana 0:23d1f73bf130 4275
vladvana 0:23d1f73bf130 4276 /**
vladvana 0:23d1f73bf130 4277 * @brief Initialization function for the Q15 LMS filter.
vladvana 0:23d1f73bf130 4278 * @param[in] *S points to an instance of the Q15 LMS filter structure.
vladvana 0:23d1f73bf130 4279 * @param[in] numTaps number of filter coefficients.
vladvana 0:23d1f73bf130 4280 * @param[in] *pCoeffs points to the coefficient buffer.
vladvana 0:23d1f73bf130 4281 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 4282 * @param[in] mu step size that controls filter coefficient updates.
vladvana 0:23d1f73bf130 4283 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4284 * @param[in] postShift bit shift applied to coefficients.
vladvana 0:23d1f73bf130 4285 * @return none.
vladvana 0:23d1f73bf130 4286 */
vladvana 0:23d1f73bf130 4287
vladvana 0:23d1f73bf130 4288 void arm_lms_init_q15(
vladvana 0:23d1f73bf130 4289 arm_lms_instance_q15 * S,
vladvana 0:23d1f73bf130 4290 uint16_t numTaps,
vladvana 0:23d1f73bf130 4291 q15_t * pCoeffs,
vladvana 0:23d1f73bf130 4292 q15_t * pState,
vladvana 0:23d1f73bf130 4293 q15_t mu,
vladvana 0:23d1f73bf130 4294 uint32_t blockSize,
vladvana 0:23d1f73bf130 4295 uint32_t postShift);
vladvana 0:23d1f73bf130 4296
vladvana 0:23d1f73bf130 4297 /**
vladvana 0:23d1f73bf130 4298 * @brief Processing function for Q15 LMS filter.
vladvana 0:23d1f73bf130 4299 * @param[in] *S points to an instance of the Q15 LMS filter structure.
vladvana 0:23d1f73bf130 4300 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4301 * @param[in] *pRef points to the block of reference data.
vladvana 0:23d1f73bf130 4302 * @param[out] *pOut points to the block of output data.
vladvana 0:23d1f73bf130 4303 * @param[out] *pErr points to the block of error data.
vladvana 0:23d1f73bf130 4304 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4305 * @return none.
vladvana 0:23d1f73bf130 4306 */
vladvana 0:23d1f73bf130 4307
vladvana 0:23d1f73bf130 4308 void arm_lms_q15(
vladvana 0:23d1f73bf130 4309 const arm_lms_instance_q15 * S,
vladvana 0:23d1f73bf130 4310 q15_t * pSrc,
vladvana 0:23d1f73bf130 4311 q15_t * pRef,
vladvana 0:23d1f73bf130 4312 q15_t * pOut,
vladvana 0:23d1f73bf130 4313 q15_t * pErr,
vladvana 0:23d1f73bf130 4314 uint32_t blockSize);
vladvana 0:23d1f73bf130 4315
vladvana 0:23d1f73bf130 4316
vladvana 0:23d1f73bf130 4317 /**
vladvana 0:23d1f73bf130 4318 * @brief Instance structure for the Q31 LMS filter.
vladvana 0:23d1f73bf130 4319 */
vladvana 0:23d1f73bf130 4320
vladvana 0:23d1f73bf130 4321 typedef struct
vladvana 0:23d1f73bf130 4322 {
vladvana 0:23d1f73bf130 4323 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4324 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 4325 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4326 q31_t mu; /**< step size that controls filter coefficient updates. */
vladvana 0:23d1f73bf130 4327 uint32_t postShift; /**< bit shift applied to coefficients. */
vladvana 0:23d1f73bf130 4328
vladvana 0:23d1f73bf130 4329 } arm_lms_instance_q31;
vladvana 0:23d1f73bf130 4330
vladvana 0:23d1f73bf130 4331 /**
vladvana 0:23d1f73bf130 4332 * @brief Processing function for Q31 LMS filter.
vladvana 0:23d1f73bf130 4333 * @param[in] *S points to an instance of the Q15 LMS filter structure.
vladvana 0:23d1f73bf130 4334 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4335 * @param[in] *pRef points to the block of reference data.
vladvana 0:23d1f73bf130 4336 * @param[out] *pOut points to the block of output data.
vladvana 0:23d1f73bf130 4337 * @param[out] *pErr points to the block of error data.
vladvana 0:23d1f73bf130 4338 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4339 * @return none.
vladvana 0:23d1f73bf130 4340 */
vladvana 0:23d1f73bf130 4341
vladvana 0:23d1f73bf130 4342 void arm_lms_q31(
vladvana 0:23d1f73bf130 4343 const arm_lms_instance_q31 * S,
vladvana 0:23d1f73bf130 4344 q31_t * pSrc,
vladvana 0:23d1f73bf130 4345 q31_t * pRef,
vladvana 0:23d1f73bf130 4346 q31_t * pOut,
vladvana 0:23d1f73bf130 4347 q31_t * pErr,
vladvana 0:23d1f73bf130 4348 uint32_t blockSize);
vladvana 0:23d1f73bf130 4349
vladvana 0:23d1f73bf130 4350 /**
vladvana 0:23d1f73bf130 4351 * @brief Initialization function for Q31 LMS filter.
vladvana 0:23d1f73bf130 4352 * @param[in] *S points to an instance of the Q31 LMS filter structure.
vladvana 0:23d1f73bf130 4353 * @param[in] numTaps number of filter coefficients.
vladvana 0:23d1f73bf130 4354 * @param[in] *pCoeffs points to coefficient buffer.
vladvana 0:23d1f73bf130 4355 * @param[in] *pState points to state buffer.
vladvana 0:23d1f73bf130 4356 * @param[in] mu step size that controls filter coefficient updates.
vladvana 0:23d1f73bf130 4357 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4358 * @param[in] postShift bit shift applied to coefficients.
vladvana 0:23d1f73bf130 4359 * @return none.
vladvana 0:23d1f73bf130 4360 */
vladvana 0:23d1f73bf130 4361
vladvana 0:23d1f73bf130 4362 void arm_lms_init_q31(
vladvana 0:23d1f73bf130 4363 arm_lms_instance_q31 * S,
vladvana 0:23d1f73bf130 4364 uint16_t numTaps,
vladvana 0:23d1f73bf130 4365 q31_t * pCoeffs,
vladvana 0:23d1f73bf130 4366 q31_t * pState,
vladvana 0:23d1f73bf130 4367 q31_t mu,
vladvana 0:23d1f73bf130 4368 uint32_t blockSize,
vladvana 0:23d1f73bf130 4369 uint32_t postShift);
vladvana 0:23d1f73bf130 4370
vladvana 0:23d1f73bf130 4371 /**
vladvana 0:23d1f73bf130 4372 * @brief Instance structure for the floating-point normalized LMS filter.
vladvana 0:23d1f73bf130 4373 */
vladvana 0:23d1f73bf130 4374
vladvana 0:23d1f73bf130 4375 typedef struct
vladvana 0:23d1f73bf130 4376 {
vladvana 0:23d1f73bf130 4377 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4378 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 4379 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4380 float32_t mu; /**< step size that control filter coefficient updates. */
vladvana 0:23d1f73bf130 4381 float32_t energy; /**< saves previous frame energy. */
vladvana 0:23d1f73bf130 4382 float32_t x0; /**< saves previous input sample. */
vladvana 0:23d1f73bf130 4383 } arm_lms_norm_instance_f32;
vladvana 0:23d1f73bf130 4384
vladvana 0:23d1f73bf130 4385 /**
vladvana 0:23d1f73bf130 4386 * @brief Processing function for floating-point normalized LMS filter.
vladvana 0:23d1f73bf130 4387 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
vladvana 0:23d1f73bf130 4388 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4389 * @param[in] *pRef points to the block of reference data.
vladvana 0:23d1f73bf130 4390 * @param[out] *pOut points to the block of output data.
vladvana 0:23d1f73bf130 4391 * @param[out] *pErr points to the block of error data.
vladvana 0:23d1f73bf130 4392 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4393 * @return none.
vladvana 0:23d1f73bf130 4394 */
vladvana 0:23d1f73bf130 4395
vladvana 0:23d1f73bf130 4396 void arm_lms_norm_f32(
vladvana 0:23d1f73bf130 4397 arm_lms_norm_instance_f32 * S,
vladvana 0:23d1f73bf130 4398 float32_t * pSrc,
vladvana 0:23d1f73bf130 4399 float32_t * pRef,
vladvana 0:23d1f73bf130 4400 float32_t * pOut,
vladvana 0:23d1f73bf130 4401 float32_t * pErr,
vladvana 0:23d1f73bf130 4402 uint32_t blockSize);
vladvana 0:23d1f73bf130 4403
vladvana 0:23d1f73bf130 4404 /**
vladvana 0:23d1f73bf130 4405 * @brief Initialization function for floating-point normalized LMS filter.
vladvana 0:23d1f73bf130 4406 * @param[in] *S points to an instance of the floating-point LMS filter structure.
vladvana 0:23d1f73bf130 4407 * @param[in] numTaps number of filter coefficients.
vladvana 0:23d1f73bf130 4408 * @param[in] *pCoeffs points to coefficient buffer.
vladvana 0:23d1f73bf130 4409 * @param[in] *pState points to state buffer.
vladvana 0:23d1f73bf130 4410 * @param[in] mu step size that controls filter coefficient updates.
vladvana 0:23d1f73bf130 4411 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4412 * @return none.
vladvana 0:23d1f73bf130 4413 */
vladvana 0:23d1f73bf130 4414
vladvana 0:23d1f73bf130 4415 void arm_lms_norm_init_f32(
vladvana 0:23d1f73bf130 4416 arm_lms_norm_instance_f32 * S,
vladvana 0:23d1f73bf130 4417 uint16_t numTaps,
vladvana 0:23d1f73bf130 4418 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 4419 float32_t * pState,
vladvana 0:23d1f73bf130 4420 float32_t mu,
vladvana 0:23d1f73bf130 4421 uint32_t blockSize);
vladvana 0:23d1f73bf130 4422
vladvana 0:23d1f73bf130 4423
vladvana 0:23d1f73bf130 4424 /**
vladvana 0:23d1f73bf130 4425 * @brief Instance structure for the Q31 normalized LMS filter.
vladvana 0:23d1f73bf130 4426 */
vladvana 0:23d1f73bf130 4427 typedef struct
vladvana 0:23d1f73bf130 4428 {
vladvana 0:23d1f73bf130 4429 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4430 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 4431 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4432 q31_t mu; /**< step size that controls filter coefficient updates. */
vladvana 0:23d1f73bf130 4433 uint8_t postShift; /**< bit shift applied to coefficients. */
vladvana 0:23d1f73bf130 4434 q31_t *recipTable; /**< points to the reciprocal initial value table. */
vladvana 0:23d1f73bf130 4435 q31_t energy; /**< saves previous frame energy. */
vladvana 0:23d1f73bf130 4436 q31_t x0; /**< saves previous input sample. */
vladvana 0:23d1f73bf130 4437 } arm_lms_norm_instance_q31;
vladvana 0:23d1f73bf130 4438
vladvana 0:23d1f73bf130 4439 /**
vladvana 0:23d1f73bf130 4440 * @brief Processing function for Q31 normalized LMS filter.
vladvana 0:23d1f73bf130 4441 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
vladvana 0:23d1f73bf130 4442 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4443 * @param[in] *pRef points to the block of reference data.
vladvana 0:23d1f73bf130 4444 * @param[out] *pOut points to the block of output data.
vladvana 0:23d1f73bf130 4445 * @param[out] *pErr points to the block of error data.
vladvana 0:23d1f73bf130 4446 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4447 * @return none.
vladvana 0:23d1f73bf130 4448 */
vladvana 0:23d1f73bf130 4449
vladvana 0:23d1f73bf130 4450 void arm_lms_norm_q31(
vladvana 0:23d1f73bf130 4451 arm_lms_norm_instance_q31 * S,
vladvana 0:23d1f73bf130 4452 q31_t * pSrc,
vladvana 0:23d1f73bf130 4453 q31_t * pRef,
vladvana 0:23d1f73bf130 4454 q31_t * pOut,
vladvana 0:23d1f73bf130 4455 q31_t * pErr,
vladvana 0:23d1f73bf130 4456 uint32_t blockSize);
vladvana 0:23d1f73bf130 4457
vladvana 0:23d1f73bf130 4458 /**
vladvana 0:23d1f73bf130 4459 * @brief Initialization function for Q31 normalized LMS filter.
vladvana 0:23d1f73bf130 4460 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
vladvana 0:23d1f73bf130 4461 * @param[in] numTaps number of filter coefficients.
vladvana 0:23d1f73bf130 4462 * @param[in] *pCoeffs points to coefficient buffer.
vladvana 0:23d1f73bf130 4463 * @param[in] *pState points to state buffer.
vladvana 0:23d1f73bf130 4464 * @param[in] mu step size that controls filter coefficient updates.
vladvana 0:23d1f73bf130 4465 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4466 * @param[in] postShift bit shift applied to coefficients.
vladvana 0:23d1f73bf130 4467 * @return none.
vladvana 0:23d1f73bf130 4468 */
vladvana 0:23d1f73bf130 4469
vladvana 0:23d1f73bf130 4470 void arm_lms_norm_init_q31(
vladvana 0:23d1f73bf130 4471 arm_lms_norm_instance_q31 * S,
vladvana 0:23d1f73bf130 4472 uint16_t numTaps,
vladvana 0:23d1f73bf130 4473 q31_t * pCoeffs,
vladvana 0:23d1f73bf130 4474 q31_t * pState,
vladvana 0:23d1f73bf130 4475 q31_t mu,
vladvana 0:23d1f73bf130 4476 uint32_t blockSize,
vladvana 0:23d1f73bf130 4477 uint8_t postShift);
vladvana 0:23d1f73bf130 4478
vladvana 0:23d1f73bf130 4479 /**
vladvana 0:23d1f73bf130 4480 * @brief Instance structure for the Q15 normalized LMS filter.
vladvana 0:23d1f73bf130 4481 */
vladvana 0:23d1f73bf130 4482
vladvana 0:23d1f73bf130 4483 typedef struct
vladvana 0:23d1f73bf130 4484 {
vladvana 0:23d1f73bf130 4485 uint16_t numTaps; /**< Number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4486 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
vladvana 0:23d1f73bf130 4487 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4488 q15_t mu; /**< step size that controls filter coefficient updates. */
vladvana 0:23d1f73bf130 4489 uint8_t postShift; /**< bit shift applied to coefficients. */
vladvana 0:23d1f73bf130 4490 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
vladvana 0:23d1f73bf130 4491 q15_t energy; /**< saves previous frame energy. */
vladvana 0:23d1f73bf130 4492 q15_t x0; /**< saves previous input sample. */
vladvana 0:23d1f73bf130 4493 } arm_lms_norm_instance_q15;
vladvana 0:23d1f73bf130 4494
vladvana 0:23d1f73bf130 4495 /**
vladvana 0:23d1f73bf130 4496 * @brief Processing function for Q15 normalized LMS filter.
vladvana 0:23d1f73bf130 4497 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
vladvana 0:23d1f73bf130 4498 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4499 * @param[in] *pRef points to the block of reference data.
vladvana 0:23d1f73bf130 4500 * @param[out] *pOut points to the block of output data.
vladvana 0:23d1f73bf130 4501 * @param[out] *pErr points to the block of error data.
vladvana 0:23d1f73bf130 4502 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4503 * @return none.
vladvana 0:23d1f73bf130 4504 */
vladvana 0:23d1f73bf130 4505
vladvana 0:23d1f73bf130 4506 void arm_lms_norm_q15(
vladvana 0:23d1f73bf130 4507 arm_lms_norm_instance_q15 * S,
vladvana 0:23d1f73bf130 4508 q15_t * pSrc,
vladvana 0:23d1f73bf130 4509 q15_t * pRef,
vladvana 0:23d1f73bf130 4510 q15_t * pOut,
vladvana 0:23d1f73bf130 4511 q15_t * pErr,
vladvana 0:23d1f73bf130 4512 uint32_t blockSize);
vladvana 0:23d1f73bf130 4513
vladvana 0:23d1f73bf130 4514
vladvana 0:23d1f73bf130 4515 /**
vladvana 0:23d1f73bf130 4516 * @brief Initialization function for Q15 normalized LMS filter.
vladvana 0:23d1f73bf130 4517 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
vladvana 0:23d1f73bf130 4518 * @param[in] numTaps number of filter coefficients.
vladvana 0:23d1f73bf130 4519 * @param[in] *pCoeffs points to coefficient buffer.
vladvana 0:23d1f73bf130 4520 * @param[in] *pState points to state buffer.
vladvana 0:23d1f73bf130 4521 * @param[in] mu step size that controls filter coefficient updates.
vladvana 0:23d1f73bf130 4522 * @param[in] blockSize number of samples to process.
vladvana 0:23d1f73bf130 4523 * @param[in] postShift bit shift applied to coefficients.
vladvana 0:23d1f73bf130 4524 * @return none.
vladvana 0:23d1f73bf130 4525 */
vladvana 0:23d1f73bf130 4526
vladvana 0:23d1f73bf130 4527 void arm_lms_norm_init_q15(
vladvana 0:23d1f73bf130 4528 arm_lms_norm_instance_q15 * S,
vladvana 0:23d1f73bf130 4529 uint16_t numTaps,
vladvana 0:23d1f73bf130 4530 q15_t * pCoeffs,
vladvana 0:23d1f73bf130 4531 q15_t * pState,
vladvana 0:23d1f73bf130 4532 q15_t mu,
vladvana 0:23d1f73bf130 4533 uint32_t blockSize,
vladvana 0:23d1f73bf130 4534 uint8_t postShift);
vladvana 0:23d1f73bf130 4535
vladvana 0:23d1f73bf130 4536 /**
vladvana 0:23d1f73bf130 4537 * @brief Correlation of floating-point sequences.
vladvana 0:23d1f73bf130 4538 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 4539 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 4540 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 4541 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 4542 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
vladvana 0:23d1f73bf130 4543 * @return none.
vladvana 0:23d1f73bf130 4544 */
vladvana 0:23d1f73bf130 4545
vladvana 0:23d1f73bf130 4546 void arm_correlate_f32(
vladvana 0:23d1f73bf130 4547 float32_t * pSrcA,
vladvana 0:23d1f73bf130 4548 uint32_t srcALen,
vladvana 0:23d1f73bf130 4549 float32_t * pSrcB,
vladvana 0:23d1f73bf130 4550 uint32_t srcBLen,
vladvana 0:23d1f73bf130 4551 float32_t * pDst);
vladvana 0:23d1f73bf130 4552
vladvana 0:23d1f73bf130 4553
vladvana 0:23d1f73bf130 4554 /**
vladvana 0:23d1f73bf130 4555 * @brief Correlation of Q15 sequences
vladvana 0:23d1f73bf130 4556 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 4557 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 4558 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 4559 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 4560 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
vladvana 0:23d1f73bf130 4561 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
vladvana 0:23d1f73bf130 4562 * @return none.
vladvana 0:23d1f73bf130 4563 */
vladvana 0:23d1f73bf130 4564 void arm_correlate_opt_q15(
vladvana 0:23d1f73bf130 4565 q15_t * pSrcA,
vladvana 0:23d1f73bf130 4566 uint32_t srcALen,
vladvana 0:23d1f73bf130 4567 q15_t * pSrcB,
vladvana 0:23d1f73bf130 4568 uint32_t srcBLen,
vladvana 0:23d1f73bf130 4569 q15_t * pDst,
vladvana 0:23d1f73bf130 4570 q15_t * pScratch);
vladvana 0:23d1f73bf130 4571
vladvana 0:23d1f73bf130 4572
vladvana 0:23d1f73bf130 4573 /**
vladvana 0:23d1f73bf130 4574 * @brief Correlation of Q15 sequences.
vladvana 0:23d1f73bf130 4575 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 4576 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 4577 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 4578 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 4579 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
vladvana 0:23d1f73bf130 4580 * @return none.
vladvana 0:23d1f73bf130 4581 */
vladvana 0:23d1f73bf130 4582
vladvana 0:23d1f73bf130 4583 void arm_correlate_q15(
vladvana 0:23d1f73bf130 4584 q15_t * pSrcA,
vladvana 0:23d1f73bf130 4585 uint32_t srcALen,
vladvana 0:23d1f73bf130 4586 q15_t * pSrcB,
vladvana 0:23d1f73bf130 4587 uint32_t srcBLen,
vladvana 0:23d1f73bf130 4588 q15_t * pDst);
vladvana 0:23d1f73bf130 4589
vladvana 0:23d1f73bf130 4590 /**
vladvana 0:23d1f73bf130 4591 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
vladvana 0:23d1f73bf130 4592 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 4593 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 4594 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 4595 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 4596 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
vladvana 0:23d1f73bf130 4597 * @return none.
vladvana 0:23d1f73bf130 4598 */
vladvana 0:23d1f73bf130 4599
vladvana 0:23d1f73bf130 4600 void arm_correlate_fast_q15(
vladvana 0:23d1f73bf130 4601 q15_t * pSrcA,
vladvana 0:23d1f73bf130 4602 uint32_t srcALen,
vladvana 0:23d1f73bf130 4603 q15_t * pSrcB,
vladvana 0:23d1f73bf130 4604 uint32_t srcBLen,
vladvana 0:23d1f73bf130 4605 q15_t * pDst);
vladvana 0:23d1f73bf130 4606
vladvana 0:23d1f73bf130 4607
vladvana 0:23d1f73bf130 4608
vladvana 0:23d1f73bf130 4609 /**
vladvana 0:23d1f73bf130 4610 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
vladvana 0:23d1f73bf130 4611 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 4612 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 4613 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 4614 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 4615 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
vladvana 0:23d1f73bf130 4616 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
vladvana 0:23d1f73bf130 4617 * @return none.
vladvana 0:23d1f73bf130 4618 */
vladvana 0:23d1f73bf130 4619
vladvana 0:23d1f73bf130 4620 void arm_correlate_fast_opt_q15(
vladvana 0:23d1f73bf130 4621 q15_t * pSrcA,
vladvana 0:23d1f73bf130 4622 uint32_t srcALen,
vladvana 0:23d1f73bf130 4623 q15_t * pSrcB,
vladvana 0:23d1f73bf130 4624 uint32_t srcBLen,
vladvana 0:23d1f73bf130 4625 q15_t * pDst,
vladvana 0:23d1f73bf130 4626 q15_t * pScratch);
vladvana 0:23d1f73bf130 4627
vladvana 0:23d1f73bf130 4628 /**
vladvana 0:23d1f73bf130 4629 * @brief Correlation of Q31 sequences.
vladvana 0:23d1f73bf130 4630 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 4631 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 4632 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 4633 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 4634 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
vladvana 0:23d1f73bf130 4635 * @return none.
vladvana 0:23d1f73bf130 4636 */
vladvana 0:23d1f73bf130 4637
vladvana 0:23d1f73bf130 4638 void arm_correlate_q31(
vladvana 0:23d1f73bf130 4639 q31_t * pSrcA,
vladvana 0:23d1f73bf130 4640 uint32_t srcALen,
vladvana 0:23d1f73bf130 4641 q31_t * pSrcB,
vladvana 0:23d1f73bf130 4642 uint32_t srcBLen,
vladvana 0:23d1f73bf130 4643 q31_t * pDst);
vladvana 0:23d1f73bf130 4644
vladvana 0:23d1f73bf130 4645 /**
vladvana 0:23d1f73bf130 4646 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
vladvana 0:23d1f73bf130 4647 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 4648 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 4649 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 4650 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 4651 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
vladvana 0:23d1f73bf130 4652 * @return none.
vladvana 0:23d1f73bf130 4653 */
vladvana 0:23d1f73bf130 4654
vladvana 0:23d1f73bf130 4655 void arm_correlate_fast_q31(
vladvana 0:23d1f73bf130 4656 q31_t * pSrcA,
vladvana 0:23d1f73bf130 4657 uint32_t srcALen,
vladvana 0:23d1f73bf130 4658 q31_t * pSrcB,
vladvana 0:23d1f73bf130 4659 uint32_t srcBLen,
vladvana 0:23d1f73bf130 4660 q31_t * pDst);
vladvana 0:23d1f73bf130 4661
vladvana 0:23d1f73bf130 4662
vladvana 0:23d1f73bf130 4663
vladvana 0:23d1f73bf130 4664 /**
vladvana 0:23d1f73bf130 4665 * @brief Correlation of Q7 sequences.
vladvana 0:23d1f73bf130 4666 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 4667 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 4668 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 4669 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 4670 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
vladvana 0:23d1f73bf130 4671 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
vladvana 0:23d1f73bf130 4672 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
vladvana 0:23d1f73bf130 4673 * @return none.
vladvana 0:23d1f73bf130 4674 */
vladvana 0:23d1f73bf130 4675
vladvana 0:23d1f73bf130 4676 void arm_correlate_opt_q7(
vladvana 0:23d1f73bf130 4677 q7_t * pSrcA,
vladvana 0:23d1f73bf130 4678 uint32_t srcALen,
vladvana 0:23d1f73bf130 4679 q7_t * pSrcB,
vladvana 0:23d1f73bf130 4680 uint32_t srcBLen,
vladvana 0:23d1f73bf130 4681 q7_t * pDst,
vladvana 0:23d1f73bf130 4682 q15_t * pScratch1,
vladvana 0:23d1f73bf130 4683 q15_t * pScratch2);
vladvana 0:23d1f73bf130 4684
vladvana 0:23d1f73bf130 4685
vladvana 0:23d1f73bf130 4686 /**
vladvana 0:23d1f73bf130 4687 * @brief Correlation of Q7 sequences.
vladvana 0:23d1f73bf130 4688 * @param[in] *pSrcA points to the first input sequence.
vladvana 0:23d1f73bf130 4689 * @param[in] srcALen length of the first input sequence.
vladvana 0:23d1f73bf130 4690 * @param[in] *pSrcB points to the second input sequence.
vladvana 0:23d1f73bf130 4691 * @param[in] srcBLen length of the second input sequence.
vladvana 0:23d1f73bf130 4692 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
vladvana 0:23d1f73bf130 4693 * @return none.
vladvana 0:23d1f73bf130 4694 */
vladvana 0:23d1f73bf130 4695
vladvana 0:23d1f73bf130 4696 void arm_correlate_q7(
vladvana 0:23d1f73bf130 4697 q7_t * pSrcA,
vladvana 0:23d1f73bf130 4698 uint32_t srcALen,
vladvana 0:23d1f73bf130 4699 q7_t * pSrcB,
vladvana 0:23d1f73bf130 4700 uint32_t srcBLen,
vladvana 0:23d1f73bf130 4701 q7_t * pDst);
vladvana 0:23d1f73bf130 4702
vladvana 0:23d1f73bf130 4703
vladvana 0:23d1f73bf130 4704 /**
vladvana 0:23d1f73bf130 4705 * @brief Instance structure for the floating-point sparse FIR filter.
vladvana 0:23d1f73bf130 4706 */
vladvana 0:23d1f73bf130 4707 typedef struct
vladvana 0:23d1f73bf130 4708 {
vladvana 0:23d1f73bf130 4709 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4710 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
vladvana 0:23d1f73bf130 4711 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
vladvana 0:23d1f73bf130 4712 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
vladvana 0:23d1f73bf130 4713 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
vladvana 0:23d1f73bf130 4714 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4715 } arm_fir_sparse_instance_f32;
vladvana 0:23d1f73bf130 4716
vladvana 0:23d1f73bf130 4717 /**
vladvana 0:23d1f73bf130 4718 * @brief Instance structure for the Q31 sparse FIR filter.
vladvana 0:23d1f73bf130 4719 */
vladvana 0:23d1f73bf130 4720
vladvana 0:23d1f73bf130 4721 typedef struct
vladvana 0:23d1f73bf130 4722 {
vladvana 0:23d1f73bf130 4723 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4724 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
vladvana 0:23d1f73bf130 4725 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
vladvana 0:23d1f73bf130 4726 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
vladvana 0:23d1f73bf130 4727 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
vladvana 0:23d1f73bf130 4728 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4729 } arm_fir_sparse_instance_q31;
vladvana 0:23d1f73bf130 4730
vladvana 0:23d1f73bf130 4731 /**
vladvana 0:23d1f73bf130 4732 * @brief Instance structure for the Q15 sparse FIR filter.
vladvana 0:23d1f73bf130 4733 */
vladvana 0:23d1f73bf130 4734
vladvana 0:23d1f73bf130 4735 typedef struct
vladvana 0:23d1f73bf130 4736 {
vladvana 0:23d1f73bf130 4737 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4738 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
vladvana 0:23d1f73bf130 4739 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
vladvana 0:23d1f73bf130 4740 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
vladvana 0:23d1f73bf130 4741 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
vladvana 0:23d1f73bf130 4742 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4743 } arm_fir_sparse_instance_q15;
vladvana 0:23d1f73bf130 4744
vladvana 0:23d1f73bf130 4745 /**
vladvana 0:23d1f73bf130 4746 * @brief Instance structure for the Q7 sparse FIR filter.
vladvana 0:23d1f73bf130 4747 */
vladvana 0:23d1f73bf130 4748
vladvana 0:23d1f73bf130 4749 typedef struct
vladvana 0:23d1f73bf130 4750 {
vladvana 0:23d1f73bf130 4751 uint16_t numTaps; /**< number of coefficients in the filter. */
vladvana 0:23d1f73bf130 4752 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
vladvana 0:23d1f73bf130 4753 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
vladvana 0:23d1f73bf130 4754 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
vladvana 0:23d1f73bf130 4755 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
vladvana 0:23d1f73bf130 4756 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
vladvana 0:23d1f73bf130 4757 } arm_fir_sparse_instance_q7;
vladvana 0:23d1f73bf130 4758
vladvana 0:23d1f73bf130 4759 /**
vladvana 0:23d1f73bf130 4760 * @brief Processing function for the floating-point sparse FIR filter.
vladvana 0:23d1f73bf130 4761 * @param[in] *S points to an instance of the floating-point sparse FIR structure.
vladvana 0:23d1f73bf130 4762 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4763 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 4764 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
vladvana 0:23d1f73bf130 4765 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 4766 * @return none.
vladvana 0:23d1f73bf130 4767 */
vladvana 0:23d1f73bf130 4768
vladvana 0:23d1f73bf130 4769 void arm_fir_sparse_f32(
vladvana 0:23d1f73bf130 4770 arm_fir_sparse_instance_f32 * S,
vladvana 0:23d1f73bf130 4771 float32_t * pSrc,
vladvana 0:23d1f73bf130 4772 float32_t * pDst,
vladvana 0:23d1f73bf130 4773 float32_t * pScratchIn,
vladvana 0:23d1f73bf130 4774 uint32_t blockSize);
vladvana 0:23d1f73bf130 4775
vladvana 0:23d1f73bf130 4776 /**
vladvana 0:23d1f73bf130 4777 * @brief Initialization function for the floating-point sparse FIR filter.
vladvana 0:23d1f73bf130 4778 * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
vladvana 0:23d1f73bf130 4779 * @param[in] numTaps number of nonzero coefficients in the filter.
vladvana 0:23d1f73bf130 4780 * @param[in] *pCoeffs points to the array of filter coefficients.
vladvana 0:23d1f73bf130 4781 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 4782 * @param[in] *pTapDelay points to the array of offset times.
vladvana 0:23d1f73bf130 4783 * @param[in] maxDelay maximum offset time supported.
vladvana 0:23d1f73bf130 4784 * @param[in] blockSize number of samples that will be processed per block.
vladvana 0:23d1f73bf130 4785 * @return none
vladvana 0:23d1f73bf130 4786 */
vladvana 0:23d1f73bf130 4787
vladvana 0:23d1f73bf130 4788 void arm_fir_sparse_init_f32(
vladvana 0:23d1f73bf130 4789 arm_fir_sparse_instance_f32 * S,
vladvana 0:23d1f73bf130 4790 uint16_t numTaps,
vladvana 0:23d1f73bf130 4791 float32_t * pCoeffs,
vladvana 0:23d1f73bf130 4792 float32_t * pState,
vladvana 0:23d1f73bf130 4793 int32_t * pTapDelay,
vladvana 0:23d1f73bf130 4794 uint16_t maxDelay,
vladvana 0:23d1f73bf130 4795 uint32_t blockSize);
vladvana 0:23d1f73bf130 4796
vladvana 0:23d1f73bf130 4797 /**
vladvana 0:23d1f73bf130 4798 * @brief Processing function for the Q31 sparse FIR filter.
vladvana 0:23d1f73bf130 4799 * @param[in] *S points to an instance of the Q31 sparse FIR structure.
vladvana 0:23d1f73bf130 4800 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4801 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 4802 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
vladvana 0:23d1f73bf130 4803 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 4804 * @return none.
vladvana 0:23d1f73bf130 4805 */
vladvana 0:23d1f73bf130 4806
vladvana 0:23d1f73bf130 4807 void arm_fir_sparse_q31(
vladvana 0:23d1f73bf130 4808 arm_fir_sparse_instance_q31 * S,
vladvana 0:23d1f73bf130 4809 q31_t * pSrc,
vladvana 0:23d1f73bf130 4810 q31_t * pDst,
vladvana 0:23d1f73bf130 4811 q31_t * pScratchIn,
vladvana 0:23d1f73bf130 4812 uint32_t blockSize);
vladvana 0:23d1f73bf130 4813
vladvana 0:23d1f73bf130 4814 /**
vladvana 0:23d1f73bf130 4815 * @brief Initialization function for the Q31 sparse FIR filter.
vladvana 0:23d1f73bf130 4816 * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
vladvana 0:23d1f73bf130 4817 * @param[in] numTaps number of nonzero coefficients in the filter.
vladvana 0:23d1f73bf130 4818 * @param[in] *pCoeffs points to the array of filter coefficients.
vladvana 0:23d1f73bf130 4819 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 4820 * @param[in] *pTapDelay points to the array of offset times.
vladvana 0:23d1f73bf130 4821 * @param[in] maxDelay maximum offset time supported.
vladvana 0:23d1f73bf130 4822 * @param[in] blockSize number of samples that will be processed per block.
vladvana 0:23d1f73bf130 4823 * @return none
vladvana 0:23d1f73bf130 4824 */
vladvana 0:23d1f73bf130 4825
vladvana 0:23d1f73bf130 4826 void arm_fir_sparse_init_q31(
vladvana 0:23d1f73bf130 4827 arm_fir_sparse_instance_q31 * S,
vladvana 0:23d1f73bf130 4828 uint16_t numTaps,
vladvana 0:23d1f73bf130 4829 q31_t * pCoeffs,
vladvana 0:23d1f73bf130 4830 q31_t * pState,
vladvana 0:23d1f73bf130 4831 int32_t * pTapDelay,
vladvana 0:23d1f73bf130 4832 uint16_t maxDelay,
vladvana 0:23d1f73bf130 4833 uint32_t blockSize);
vladvana 0:23d1f73bf130 4834
vladvana 0:23d1f73bf130 4835 /**
vladvana 0:23d1f73bf130 4836 * @brief Processing function for the Q15 sparse FIR filter.
vladvana 0:23d1f73bf130 4837 * @param[in] *S points to an instance of the Q15 sparse FIR structure.
vladvana 0:23d1f73bf130 4838 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4839 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 4840 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
vladvana 0:23d1f73bf130 4841 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
vladvana 0:23d1f73bf130 4842 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 4843 * @return none.
vladvana 0:23d1f73bf130 4844 */
vladvana 0:23d1f73bf130 4845
vladvana 0:23d1f73bf130 4846 void arm_fir_sparse_q15(
vladvana 0:23d1f73bf130 4847 arm_fir_sparse_instance_q15 * S,
vladvana 0:23d1f73bf130 4848 q15_t * pSrc,
vladvana 0:23d1f73bf130 4849 q15_t * pDst,
vladvana 0:23d1f73bf130 4850 q15_t * pScratchIn,
vladvana 0:23d1f73bf130 4851 q31_t * pScratchOut,
vladvana 0:23d1f73bf130 4852 uint32_t blockSize);
vladvana 0:23d1f73bf130 4853
vladvana 0:23d1f73bf130 4854
vladvana 0:23d1f73bf130 4855 /**
vladvana 0:23d1f73bf130 4856 * @brief Initialization function for the Q15 sparse FIR filter.
vladvana 0:23d1f73bf130 4857 * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
vladvana 0:23d1f73bf130 4858 * @param[in] numTaps number of nonzero coefficients in the filter.
vladvana 0:23d1f73bf130 4859 * @param[in] *pCoeffs points to the array of filter coefficients.
vladvana 0:23d1f73bf130 4860 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 4861 * @param[in] *pTapDelay points to the array of offset times.
vladvana 0:23d1f73bf130 4862 * @param[in] maxDelay maximum offset time supported.
vladvana 0:23d1f73bf130 4863 * @param[in] blockSize number of samples that will be processed per block.
vladvana 0:23d1f73bf130 4864 * @return none
vladvana 0:23d1f73bf130 4865 */
vladvana 0:23d1f73bf130 4866
vladvana 0:23d1f73bf130 4867 void arm_fir_sparse_init_q15(
vladvana 0:23d1f73bf130 4868 arm_fir_sparse_instance_q15 * S,
vladvana 0:23d1f73bf130 4869 uint16_t numTaps,
vladvana 0:23d1f73bf130 4870 q15_t * pCoeffs,
vladvana 0:23d1f73bf130 4871 q15_t * pState,
vladvana 0:23d1f73bf130 4872 int32_t * pTapDelay,
vladvana 0:23d1f73bf130 4873 uint16_t maxDelay,
vladvana 0:23d1f73bf130 4874 uint32_t blockSize);
vladvana 0:23d1f73bf130 4875
vladvana 0:23d1f73bf130 4876 /**
vladvana 0:23d1f73bf130 4877 * @brief Processing function for the Q7 sparse FIR filter.
vladvana 0:23d1f73bf130 4878 * @param[in] *S points to an instance of the Q7 sparse FIR structure.
vladvana 0:23d1f73bf130 4879 * @param[in] *pSrc points to the block of input data.
vladvana 0:23d1f73bf130 4880 * @param[out] *pDst points to the block of output data
vladvana 0:23d1f73bf130 4881 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
vladvana 0:23d1f73bf130 4882 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
vladvana 0:23d1f73bf130 4883 * @param[in] blockSize number of input samples to process per call.
vladvana 0:23d1f73bf130 4884 * @return none.
vladvana 0:23d1f73bf130 4885 */
vladvana 0:23d1f73bf130 4886
vladvana 0:23d1f73bf130 4887 void arm_fir_sparse_q7(
vladvana 0:23d1f73bf130 4888 arm_fir_sparse_instance_q7 * S,
vladvana 0:23d1f73bf130 4889 q7_t * pSrc,
vladvana 0:23d1f73bf130 4890 q7_t * pDst,
vladvana 0:23d1f73bf130 4891 q7_t * pScratchIn,
vladvana 0:23d1f73bf130 4892 q31_t * pScratchOut,
vladvana 0:23d1f73bf130 4893 uint32_t blockSize);
vladvana 0:23d1f73bf130 4894
vladvana 0:23d1f73bf130 4895 /**
vladvana 0:23d1f73bf130 4896 * @brief Initialization function for the Q7 sparse FIR filter.
vladvana 0:23d1f73bf130 4897 * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
vladvana 0:23d1f73bf130 4898 * @param[in] numTaps number of nonzero coefficients in the filter.
vladvana 0:23d1f73bf130 4899 * @param[in] *pCoeffs points to the array of filter coefficients.
vladvana 0:23d1f73bf130 4900 * @param[in] *pState points to the state buffer.
vladvana 0:23d1f73bf130 4901 * @param[in] *pTapDelay points to the array of offset times.
vladvana 0:23d1f73bf130 4902 * @param[in] maxDelay maximum offset time supported.
vladvana 0:23d1f73bf130 4903 * @param[in] blockSize number of samples that will be processed per block.
vladvana 0:23d1f73bf130 4904 * @return none
vladvana 0:23d1f73bf130 4905 */
vladvana 0:23d1f73bf130 4906
vladvana 0:23d1f73bf130 4907 void arm_fir_sparse_init_q7(
vladvana 0:23d1f73bf130 4908 arm_fir_sparse_instance_q7 * S,
vladvana 0:23d1f73bf130 4909 uint16_t numTaps,
vladvana 0:23d1f73bf130 4910 q7_t * pCoeffs,
vladvana 0:23d1f73bf130 4911 q7_t * pState,
vladvana 0:23d1f73bf130 4912 int32_t * pTapDelay,
vladvana 0:23d1f73bf130 4913 uint16_t maxDelay,
vladvana 0:23d1f73bf130 4914 uint32_t blockSize);
vladvana 0:23d1f73bf130 4915
vladvana 0:23d1f73bf130 4916
vladvana 0:23d1f73bf130 4917 /*
vladvana 0:23d1f73bf130 4918 * @brief Floating-point sin_cos function.
vladvana 0:23d1f73bf130 4919 * @param[in] theta input value in degrees
vladvana 0:23d1f73bf130 4920 * @param[out] *pSinVal points to the processed sine output.
vladvana 0:23d1f73bf130 4921 * @param[out] *pCosVal points to the processed cos output.
vladvana 0:23d1f73bf130 4922 * @return none.
vladvana 0:23d1f73bf130 4923 */
vladvana 0:23d1f73bf130 4924
vladvana 0:23d1f73bf130 4925 void arm_sin_cos_f32(
vladvana 0:23d1f73bf130 4926 float32_t theta,
vladvana 0:23d1f73bf130 4927 float32_t * pSinVal,
vladvana 0:23d1f73bf130 4928 float32_t * pCcosVal);
vladvana 0:23d1f73bf130 4929
vladvana 0:23d1f73bf130 4930 /*
vladvana 0:23d1f73bf130 4931 * @brief Q31 sin_cos function.
vladvana 0:23d1f73bf130 4932 * @param[in] theta scaled input value in degrees
vladvana 0:23d1f73bf130 4933 * @param[out] *pSinVal points to the processed sine output.
vladvana 0:23d1f73bf130 4934 * @param[out] *pCosVal points to the processed cosine output.
vladvana 0:23d1f73bf130 4935 * @return none.
vladvana 0:23d1f73bf130 4936 */
vladvana 0:23d1f73bf130 4937
vladvana 0:23d1f73bf130 4938 void arm_sin_cos_q31(
vladvana 0:23d1f73bf130 4939 q31_t theta,
vladvana 0:23d1f73bf130 4940 q31_t * pSinVal,
vladvana 0:23d1f73bf130 4941 q31_t * pCosVal);
vladvana 0:23d1f73bf130 4942
vladvana 0:23d1f73bf130 4943
vladvana 0:23d1f73bf130 4944 /**
vladvana 0:23d1f73bf130 4945 * @brief Floating-point complex conjugate.
vladvana 0:23d1f73bf130 4946 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 4947 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 4948 * @param[in] numSamples number of complex samples in each vector
vladvana 0:23d1f73bf130 4949 * @return none.
vladvana 0:23d1f73bf130 4950 */
vladvana 0:23d1f73bf130 4951
vladvana 0:23d1f73bf130 4952 void arm_cmplx_conj_f32(
vladvana 0:23d1f73bf130 4953 float32_t * pSrc,
vladvana 0:23d1f73bf130 4954 float32_t * pDst,
vladvana 0:23d1f73bf130 4955 uint32_t numSamples);
vladvana 0:23d1f73bf130 4956
vladvana 0:23d1f73bf130 4957 /**
vladvana 0:23d1f73bf130 4958 * @brief Q31 complex conjugate.
vladvana 0:23d1f73bf130 4959 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 4960 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 4961 * @param[in] numSamples number of complex samples in each vector
vladvana 0:23d1f73bf130 4962 * @return none.
vladvana 0:23d1f73bf130 4963 */
vladvana 0:23d1f73bf130 4964
vladvana 0:23d1f73bf130 4965 void arm_cmplx_conj_q31(
vladvana 0:23d1f73bf130 4966 q31_t * pSrc,
vladvana 0:23d1f73bf130 4967 q31_t * pDst,
vladvana 0:23d1f73bf130 4968 uint32_t numSamples);
vladvana 0:23d1f73bf130 4969
vladvana 0:23d1f73bf130 4970 /**
vladvana 0:23d1f73bf130 4971 * @brief Q15 complex conjugate.
vladvana 0:23d1f73bf130 4972 * @param[in] *pSrc points to the input vector
vladvana 0:23d1f73bf130 4973 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 4974 * @param[in] numSamples number of complex samples in each vector
vladvana 0:23d1f73bf130 4975 * @return none.
vladvana 0:23d1f73bf130 4976 */
vladvana 0:23d1f73bf130 4977
vladvana 0:23d1f73bf130 4978 void arm_cmplx_conj_q15(
vladvana 0:23d1f73bf130 4979 q15_t * pSrc,
vladvana 0:23d1f73bf130 4980 q15_t * pDst,
vladvana 0:23d1f73bf130 4981 uint32_t numSamples);
vladvana 0:23d1f73bf130 4982
vladvana 0:23d1f73bf130 4983
vladvana 0:23d1f73bf130 4984
vladvana 0:23d1f73bf130 4985 /**
vladvana 0:23d1f73bf130 4986 * @brief Floating-point complex magnitude squared
vladvana 0:23d1f73bf130 4987 * @param[in] *pSrc points to the complex input vector
vladvana 0:23d1f73bf130 4988 * @param[out] *pDst points to the real output vector
vladvana 0:23d1f73bf130 4989 * @param[in] numSamples number of complex samples in the input vector
vladvana 0:23d1f73bf130 4990 * @return none.
vladvana 0:23d1f73bf130 4991 */
vladvana 0:23d1f73bf130 4992
vladvana 0:23d1f73bf130 4993 void arm_cmplx_mag_squared_f32(
vladvana 0:23d1f73bf130 4994 float32_t * pSrc,
vladvana 0:23d1f73bf130 4995 float32_t * pDst,
vladvana 0:23d1f73bf130 4996 uint32_t numSamples);
vladvana 0:23d1f73bf130 4997
vladvana 0:23d1f73bf130 4998 /**
vladvana 0:23d1f73bf130 4999 * @brief Q31 complex magnitude squared
vladvana 0:23d1f73bf130 5000 * @param[in] *pSrc points to the complex input vector
vladvana 0:23d1f73bf130 5001 * @param[out] *pDst points to the real output vector
vladvana 0:23d1f73bf130 5002 * @param[in] numSamples number of complex samples in the input vector
vladvana 0:23d1f73bf130 5003 * @return none.
vladvana 0:23d1f73bf130 5004 */
vladvana 0:23d1f73bf130 5005
vladvana 0:23d1f73bf130 5006 void arm_cmplx_mag_squared_q31(
vladvana 0:23d1f73bf130 5007 q31_t * pSrc,
vladvana 0:23d1f73bf130 5008 q31_t * pDst,
vladvana 0:23d1f73bf130 5009 uint32_t numSamples);
vladvana 0:23d1f73bf130 5010
vladvana 0:23d1f73bf130 5011 /**
vladvana 0:23d1f73bf130 5012 * @brief Q15 complex magnitude squared
vladvana 0:23d1f73bf130 5013 * @param[in] *pSrc points to the complex input vector
vladvana 0:23d1f73bf130 5014 * @param[out] *pDst points to the real output vector
vladvana 0:23d1f73bf130 5015 * @param[in] numSamples number of complex samples in the input vector
vladvana 0:23d1f73bf130 5016 * @return none.
vladvana 0:23d1f73bf130 5017 */
vladvana 0:23d1f73bf130 5018
vladvana 0:23d1f73bf130 5019 void arm_cmplx_mag_squared_q15(
vladvana 0:23d1f73bf130 5020 q15_t * pSrc,
vladvana 0:23d1f73bf130 5021 q15_t * pDst,
vladvana 0:23d1f73bf130 5022 uint32_t numSamples);
vladvana 0:23d1f73bf130 5023
vladvana 0:23d1f73bf130 5024
vladvana 0:23d1f73bf130 5025 /**
vladvana 0:23d1f73bf130 5026 * @ingroup groupController
vladvana 0:23d1f73bf130 5027 */
vladvana 0:23d1f73bf130 5028
vladvana 0:23d1f73bf130 5029 /**
vladvana 0:23d1f73bf130 5030 * @defgroup PID PID Motor Control
vladvana 0:23d1f73bf130 5031 *
vladvana 0:23d1f73bf130 5032 * A Proportional Integral Derivative (PID) controller is a generic feedback control
vladvana 0:23d1f73bf130 5033 * loop mechanism widely used in industrial control systems.
vladvana 0:23d1f73bf130 5034 * A PID controller is the most commonly used type of feedback controller.
vladvana 0:23d1f73bf130 5035 *
vladvana 0:23d1f73bf130 5036 * This set of functions implements (PID) controllers
vladvana 0:23d1f73bf130 5037 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
vladvana 0:23d1f73bf130 5038 * of data and each call to the function returns a single processed value.
vladvana 0:23d1f73bf130 5039 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
vladvana 0:23d1f73bf130 5040 * is the input sample value. The functions return the output value.
vladvana 0:23d1f73bf130 5041 *
vladvana 0:23d1f73bf130 5042 * \par Algorithm:
vladvana 0:23d1f73bf130 5043 * <pre>
vladvana 0:23d1f73bf130 5044 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
vladvana 0:23d1f73bf130 5045 * A0 = Kp + Ki + Kd
vladvana 0:23d1f73bf130 5046 * A1 = (-Kp ) - (2 * Kd )
vladvana 0:23d1f73bf130 5047 * A2 = Kd </pre>
vladvana 0:23d1f73bf130 5048 *
vladvana 0:23d1f73bf130 5049 * \par
vladvana 0:23d1f73bf130 5050 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
vladvana 0:23d1f73bf130 5051 *
vladvana 0:23d1f73bf130 5052 * \par
vladvana 0:23d1f73bf130 5053 * \image html PID.gif "Proportional Integral Derivative Controller"
vladvana 0:23d1f73bf130 5054 *
vladvana 0:23d1f73bf130 5055 * \par
vladvana 0:23d1f73bf130 5056 * The PID controller calculates an "error" value as the difference between
vladvana 0:23d1f73bf130 5057 * the measured output and the reference input.
vladvana 0:23d1f73bf130 5058 * The controller attempts to minimize the error by adjusting the process control inputs.
vladvana 0:23d1f73bf130 5059 * The proportional value determines the reaction to the current error,
vladvana 0:23d1f73bf130 5060 * the integral value determines the reaction based on the sum of recent errors,
vladvana 0:23d1f73bf130 5061 * and the derivative value determines the reaction based on the rate at which the error has been changing.
vladvana 0:23d1f73bf130 5062 *
vladvana 0:23d1f73bf130 5063 * \par Instance Structure
vladvana 0:23d1f73bf130 5064 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
vladvana 0:23d1f73bf130 5065 * A separate instance structure must be defined for each PID Controller.
vladvana 0:23d1f73bf130 5066 * There are separate instance structure declarations for each of the 3 supported data types.
vladvana 0:23d1f73bf130 5067 *
vladvana 0:23d1f73bf130 5068 * \par Reset Functions
vladvana 0:23d1f73bf130 5069 * There is also an associated reset function for each data type which clears the state array.
vladvana 0:23d1f73bf130 5070 *
vladvana 0:23d1f73bf130 5071 * \par Initialization Functions
vladvana 0:23d1f73bf130 5072 * There is also an associated initialization function for each data type.
vladvana 0:23d1f73bf130 5073 * The initialization function performs the following operations:
vladvana 0:23d1f73bf130 5074 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
vladvana 0:23d1f73bf130 5075 * - Zeros out the values in the state buffer.
vladvana 0:23d1f73bf130 5076 *
vladvana 0:23d1f73bf130 5077 * \par
vladvana 0:23d1f73bf130 5078 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
vladvana 0:23d1f73bf130 5079 *
vladvana 0:23d1f73bf130 5080 * \par Fixed-Point Behavior
vladvana 0:23d1f73bf130 5081 * Care must be taken when using the fixed-point versions of the PID Controller functions.
vladvana 0:23d1f73bf130 5082 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
vladvana 0:23d1f73bf130 5083 * Refer to the function specific documentation below for usage guidelines.
vladvana 0:23d1f73bf130 5084 */
vladvana 0:23d1f73bf130 5085
vladvana 0:23d1f73bf130 5086 /**
vladvana 0:23d1f73bf130 5087 * @addtogroup PID
vladvana 0:23d1f73bf130 5088 * @{
vladvana 0:23d1f73bf130 5089 */
vladvana 0:23d1f73bf130 5090
vladvana 0:23d1f73bf130 5091 /**
vladvana 0:23d1f73bf130 5092 * @brief Process function for the floating-point PID Control.
vladvana 0:23d1f73bf130 5093 * @param[in,out] *S is an instance of the floating-point PID Control structure
vladvana 0:23d1f73bf130 5094 * @param[in] in input sample to process
vladvana 0:23d1f73bf130 5095 * @return out processed output sample.
vladvana 0:23d1f73bf130 5096 */
vladvana 0:23d1f73bf130 5097
vladvana 0:23d1f73bf130 5098
vladvana 0:23d1f73bf130 5099 static __INLINE float32_t arm_pid_f32(
vladvana 0:23d1f73bf130 5100 arm_pid_instance_f32 * S,
vladvana 0:23d1f73bf130 5101 float32_t in)
vladvana 0:23d1f73bf130 5102 {
vladvana 0:23d1f73bf130 5103 float32_t out;
vladvana 0:23d1f73bf130 5104
vladvana 0:23d1f73bf130 5105 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
vladvana 0:23d1f73bf130 5106 out = (S->A0 * in) +
vladvana 0:23d1f73bf130 5107 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
vladvana 0:23d1f73bf130 5108
vladvana 0:23d1f73bf130 5109 /* Update state */
vladvana 0:23d1f73bf130 5110 S->state[1] = S->state[0];
vladvana 0:23d1f73bf130 5111 S->state[0] = in;
vladvana 0:23d1f73bf130 5112 S->state[2] = out;
vladvana 0:23d1f73bf130 5113
vladvana 0:23d1f73bf130 5114 /* return to application */
vladvana 0:23d1f73bf130 5115 return (out);
vladvana 0:23d1f73bf130 5116
vladvana 0:23d1f73bf130 5117 }
vladvana 0:23d1f73bf130 5118
vladvana 0:23d1f73bf130 5119 /**
vladvana 0:23d1f73bf130 5120 * @brief Process function for the Q31 PID Control.
vladvana 0:23d1f73bf130 5121 * @param[in,out] *S points to an instance of the Q31 PID Control structure
vladvana 0:23d1f73bf130 5122 * @param[in] in input sample to process
vladvana 0:23d1f73bf130 5123 * @return out processed output sample.
vladvana 0:23d1f73bf130 5124 *
vladvana 0:23d1f73bf130 5125 * <b>Scaling and Overflow Behavior:</b>
vladvana 0:23d1f73bf130 5126 * \par
vladvana 0:23d1f73bf130 5127 * The function is implemented using an internal 64-bit accumulator.
vladvana 0:23d1f73bf130 5128 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
vladvana 0:23d1f73bf130 5129 * Thus, if the accumulator result overflows it wraps around rather than clip.
vladvana 0:23d1f73bf130 5130 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
vladvana 0:23d1f73bf130 5131 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
vladvana 0:23d1f73bf130 5132 */
vladvana 0:23d1f73bf130 5133
vladvana 0:23d1f73bf130 5134 static __INLINE q31_t arm_pid_q31(
vladvana 0:23d1f73bf130 5135 arm_pid_instance_q31 * S,
vladvana 0:23d1f73bf130 5136 q31_t in)
vladvana 0:23d1f73bf130 5137 {
vladvana 0:23d1f73bf130 5138 q63_t acc;
vladvana 0:23d1f73bf130 5139 q31_t out;
vladvana 0:23d1f73bf130 5140
vladvana 0:23d1f73bf130 5141 /* acc = A0 * x[n] */
vladvana 0:23d1f73bf130 5142 acc = (q63_t) S->A0 * in;
vladvana 0:23d1f73bf130 5143
vladvana 0:23d1f73bf130 5144 /* acc += A1 * x[n-1] */
vladvana 0:23d1f73bf130 5145 acc += (q63_t) S->A1 * S->state[0];
vladvana 0:23d1f73bf130 5146
vladvana 0:23d1f73bf130 5147 /* acc += A2 * x[n-2] */
vladvana 0:23d1f73bf130 5148 acc += (q63_t) S->A2 * S->state[1];
vladvana 0:23d1f73bf130 5149
vladvana 0:23d1f73bf130 5150 /* convert output to 1.31 format to add y[n-1] */
vladvana 0:23d1f73bf130 5151 out = (q31_t) (acc >> 31u);
vladvana 0:23d1f73bf130 5152
vladvana 0:23d1f73bf130 5153 /* out += y[n-1] */
vladvana 0:23d1f73bf130 5154 out += S->state[2];
vladvana 0:23d1f73bf130 5155
vladvana 0:23d1f73bf130 5156 /* Update state */
vladvana 0:23d1f73bf130 5157 S->state[1] = S->state[0];
vladvana 0:23d1f73bf130 5158 S->state[0] = in;
vladvana 0:23d1f73bf130 5159 S->state[2] = out;
vladvana 0:23d1f73bf130 5160
vladvana 0:23d1f73bf130 5161 /* return to application */
vladvana 0:23d1f73bf130 5162 return (out);
vladvana 0:23d1f73bf130 5163
vladvana 0:23d1f73bf130 5164 }
vladvana 0:23d1f73bf130 5165
vladvana 0:23d1f73bf130 5166 /**
vladvana 0:23d1f73bf130 5167 * @brief Process function for the Q15 PID Control.
vladvana 0:23d1f73bf130 5168 * @param[in,out] *S points to an instance of the Q15 PID Control structure
vladvana 0:23d1f73bf130 5169 * @param[in] in input sample to process
vladvana 0:23d1f73bf130 5170 * @return out processed output sample.
vladvana 0:23d1f73bf130 5171 *
vladvana 0:23d1f73bf130 5172 * <b>Scaling and Overflow Behavior:</b>
vladvana 0:23d1f73bf130 5173 * \par
vladvana 0:23d1f73bf130 5174 * The function is implemented using a 64-bit internal accumulator.
vladvana 0:23d1f73bf130 5175 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
vladvana 0:23d1f73bf130 5176 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
vladvana 0:23d1f73bf130 5177 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
vladvana 0:23d1f73bf130 5178 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
vladvana 0:23d1f73bf130 5179 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
vladvana 0:23d1f73bf130 5180 */
vladvana 0:23d1f73bf130 5181
vladvana 0:23d1f73bf130 5182 static __INLINE q15_t arm_pid_q15(
vladvana 0:23d1f73bf130 5183 arm_pid_instance_q15 * S,
vladvana 0:23d1f73bf130 5184 q15_t in)
vladvana 0:23d1f73bf130 5185 {
vladvana 0:23d1f73bf130 5186 q63_t acc;
vladvana 0:23d1f73bf130 5187 q15_t out;
vladvana 0:23d1f73bf130 5188
vladvana 0:23d1f73bf130 5189 #ifndef ARM_MATH_CM0_FAMILY
vladvana 0:23d1f73bf130 5190 __SIMD32_TYPE *vstate;
vladvana 0:23d1f73bf130 5191
vladvana 0:23d1f73bf130 5192 /* Implementation of PID controller */
vladvana 0:23d1f73bf130 5193
vladvana 0:23d1f73bf130 5194 /* acc = A0 * x[n] */
vladvana 0:23d1f73bf130 5195 acc = (q31_t) __SMUAD(S->A0, in);
vladvana 0:23d1f73bf130 5196
vladvana 0:23d1f73bf130 5197 /* acc += A1 * x[n-1] + A2 * x[n-2] */
vladvana 0:23d1f73bf130 5198 vstate = __SIMD32_CONST(S->state);
vladvana 0:23d1f73bf130 5199 acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
vladvana 0:23d1f73bf130 5200
vladvana 0:23d1f73bf130 5201 #else
vladvana 0:23d1f73bf130 5202 /* acc = A0 * x[n] */
vladvana 0:23d1f73bf130 5203 acc = ((q31_t) S->A0) * in;
vladvana 0:23d1f73bf130 5204
vladvana 0:23d1f73bf130 5205 /* acc += A1 * x[n-1] + A2 * x[n-2] */
vladvana 0:23d1f73bf130 5206 acc += (q31_t) S->A1 * S->state[0];
vladvana 0:23d1f73bf130 5207 acc += (q31_t) S->A2 * S->state[1];
vladvana 0:23d1f73bf130 5208
vladvana 0:23d1f73bf130 5209 #endif
vladvana 0:23d1f73bf130 5210
vladvana 0:23d1f73bf130 5211 /* acc += y[n-1] */
vladvana 0:23d1f73bf130 5212 acc += (q31_t) S->state[2] << 15;
vladvana 0:23d1f73bf130 5213
vladvana 0:23d1f73bf130 5214 /* saturate the output */
vladvana 0:23d1f73bf130 5215 out = (q15_t) (__SSAT((acc >> 15), 16));
vladvana 0:23d1f73bf130 5216
vladvana 0:23d1f73bf130 5217 /* Update state */
vladvana 0:23d1f73bf130 5218 S->state[1] = S->state[0];
vladvana 0:23d1f73bf130 5219 S->state[0] = in;
vladvana 0:23d1f73bf130 5220 S->state[2] = out;
vladvana 0:23d1f73bf130 5221
vladvana 0:23d1f73bf130 5222 /* return to application */
vladvana 0:23d1f73bf130 5223 return (out);
vladvana 0:23d1f73bf130 5224
vladvana 0:23d1f73bf130 5225 }
vladvana 0:23d1f73bf130 5226
vladvana 0:23d1f73bf130 5227 /**
vladvana 0:23d1f73bf130 5228 * @} end of PID group
vladvana 0:23d1f73bf130 5229 */
vladvana 0:23d1f73bf130 5230
vladvana 0:23d1f73bf130 5231
vladvana 0:23d1f73bf130 5232 /**
vladvana 0:23d1f73bf130 5233 * @brief Floating-point matrix inverse.
vladvana 0:23d1f73bf130 5234 * @param[in] *src points to the instance of the input floating-point matrix structure.
vladvana 0:23d1f73bf130 5235 * @param[out] *dst points to the instance of the output floating-point matrix structure.
vladvana 0:23d1f73bf130 5236 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
vladvana 0:23d1f73bf130 5237 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
vladvana 0:23d1f73bf130 5238 */
vladvana 0:23d1f73bf130 5239
vladvana 0:23d1f73bf130 5240 arm_status arm_mat_inverse_f32(
vladvana 0:23d1f73bf130 5241 const arm_matrix_instance_f32 * src,
vladvana 0:23d1f73bf130 5242 arm_matrix_instance_f32 * dst);
vladvana 0:23d1f73bf130 5243
vladvana 0:23d1f73bf130 5244
vladvana 0:23d1f73bf130 5245 /**
vladvana 0:23d1f73bf130 5246 * @brief Floating-point matrix inverse.
vladvana 0:23d1f73bf130 5247 * @param[in] *src points to the instance of the input floating-point matrix structure.
vladvana 0:23d1f73bf130 5248 * @param[out] *dst points to the instance of the output floating-point matrix structure.
vladvana 0:23d1f73bf130 5249 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
vladvana 0:23d1f73bf130 5250 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
vladvana 0:23d1f73bf130 5251 */
vladvana 0:23d1f73bf130 5252
vladvana 0:23d1f73bf130 5253 arm_status arm_mat_inverse_f64(
vladvana 0:23d1f73bf130 5254 const arm_matrix_instance_f64 * src,
vladvana 0:23d1f73bf130 5255 arm_matrix_instance_f64 * dst);
vladvana 0:23d1f73bf130 5256
vladvana 0:23d1f73bf130 5257
vladvana 0:23d1f73bf130 5258
vladvana 0:23d1f73bf130 5259 /**
vladvana 0:23d1f73bf130 5260 * @ingroup groupController
vladvana 0:23d1f73bf130 5261 */
vladvana 0:23d1f73bf130 5262
vladvana 0:23d1f73bf130 5263
vladvana 0:23d1f73bf130 5264 /**
vladvana 0:23d1f73bf130 5265 * @defgroup clarke Vector Clarke Transform
vladvana 0:23d1f73bf130 5266 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
vladvana 0:23d1f73bf130 5267 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
vladvana 0:23d1f73bf130 5268 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
vladvana 0:23d1f73bf130 5269 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
vladvana 0:23d1f73bf130 5270 * \image html clarke.gif Stator current space vector and its components in (a,b).
vladvana 0:23d1f73bf130 5271 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
vladvana 0:23d1f73bf130 5272 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
vladvana 0:23d1f73bf130 5273 *
vladvana 0:23d1f73bf130 5274 * The function operates on a single sample of data and each call to the function returns the processed output.
vladvana 0:23d1f73bf130 5275 * The library provides separate functions for Q31 and floating-point data types.
vladvana 0:23d1f73bf130 5276 * \par Algorithm
vladvana 0:23d1f73bf130 5277 * \image html clarkeFormula.gif
vladvana 0:23d1f73bf130 5278 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
vladvana 0:23d1f73bf130 5279 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
vladvana 0:23d1f73bf130 5280 * \par Fixed-Point Behavior
vladvana 0:23d1f73bf130 5281 * Care must be taken when using the Q31 version of the Clarke transform.
vladvana 0:23d1f73bf130 5282 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
vladvana 0:23d1f73bf130 5283 * Refer to the function specific documentation below for usage guidelines.
vladvana 0:23d1f73bf130 5284 */
vladvana 0:23d1f73bf130 5285
vladvana 0:23d1f73bf130 5286 /**
vladvana 0:23d1f73bf130 5287 * @addtogroup clarke
vladvana 0:23d1f73bf130 5288 * @{
vladvana 0:23d1f73bf130 5289 */
vladvana 0:23d1f73bf130 5290
vladvana 0:23d1f73bf130 5291 /**
vladvana 0:23d1f73bf130 5292 *
vladvana 0:23d1f73bf130 5293 * @brief Floating-point Clarke transform
vladvana 0:23d1f73bf130 5294 * @param[in] Ia input three-phase coordinate <code>a</code>
vladvana 0:23d1f73bf130 5295 * @param[in] Ib input three-phase coordinate <code>b</code>
vladvana 0:23d1f73bf130 5296 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
vladvana 0:23d1f73bf130 5297 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
vladvana 0:23d1f73bf130 5298 * @return none.
vladvana 0:23d1f73bf130 5299 */
vladvana 0:23d1f73bf130 5300
vladvana 0:23d1f73bf130 5301 static __INLINE void arm_clarke_f32(
vladvana 0:23d1f73bf130 5302 float32_t Ia,
vladvana 0:23d1f73bf130 5303 float32_t Ib,
vladvana 0:23d1f73bf130 5304 float32_t * pIalpha,
vladvana 0:23d1f73bf130 5305 float32_t * pIbeta)
vladvana 0:23d1f73bf130 5306 {
vladvana 0:23d1f73bf130 5307 /* Calculate pIalpha using the equation, pIalpha = Ia */
vladvana 0:23d1f73bf130 5308 *pIalpha = Ia;
vladvana 0:23d1f73bf130 5309
vladvana 0:23d1f73bf130 5310 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
vladvana 0:23d1f73bf130 5311 *pIbeta =
vladvana 0:23d1f73bf130 5312 ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
vladvana 0:23d1f73bf130 5313
vladvana 0:23d1f73bf130 5314 }
vladvana 0:23d1f73bf130 5315
vladvana 0:23d1f73bf130 5316 /**
vladvana 0:23d1f73bf130 5317 * @brief Clarke transform for Q31 version
vladvana 0:23d1f73bf130 5318 * @param[in] Ia input three-phase coordinate <code>a</code>
vladvana 0:23d1f73bf130 5319 * @param[in] Ib input three-phase coordinate <code>b</code>
vladvana 0:23d1f73bf130 5320 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
vladvana 0:23d1f73bf130 5321 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
vladvana 0:23d1f73bf130 5322 * @return none.
vladvana 0:23d1f73bf130 5323 *
vladvana 0:23d1f73bf130 5324 * <b>Scaling and Overflow Behavior:</b>
vladvana 0:23d1f73bf130 5325 * \par
vladvana 0:23d1f73bf130 5326 * The function is implemented using an internal 32-bit accumulator.
vladvana 0:23d1f73bf130 5327 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
vladvana 0:23d1f73bf130 5328 * There is saturation on the addition, hence there is no risk of overflow.
vladvana 0:23d1f73bf130 5329 */
vladvana 0:23d1f73bf130 5330
vladvana 0:23d1f73bf130 5331 static __INLINE void arm_clarke_q31(
vladvana 0:23d1f73bf130 5332 q31_t Ia,
vladvana 0:23d1f73bf130 5333 q31_t Ib,
vladvana 0:23d1f73bf130 5334 q31_t * pIalpha,
vladvana 0:23d1f73bf130 5335 q31_t * pIbeta)
vladvana 0:23d1f73bf130 5336 {
vladvana 0:23d1f73bf130 5337 q31_t product1, product2; /* Temporary variables used to store intermediate results */
vladvana 0:23d1f73bf130 5338
vladvana 0:23d1f73bf130 5339 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
vladvana 0:23d1f73bf130 5340 *pIalpha = Ia;
vladvana 0:23d1f73bf130 5341
vladvana 0:23d1f73bf130 5342 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
vladvana 0:23d1f73bf130 5343 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
vladvana 0:23d1f73bf130 5344
vladvana 0:23d1f73bf130 5345 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
vladvana 0:23d1f73bf130 5346 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
vladvana 0:23d1f73bf130 5347
vladvana 0:23d1f73bf130 5348 /* pIbeta is calculated by adding the intermediate products */
vladvana 0:23d1f73bf130 5349 *pIbeta = __QADD(product1, product2);
vladvana 0:23d1f73bf130 5350 }
vladvana 0:23d1f73bf130 5351
vladvana 0:23d1f73bf130 5352 /**
vladvana 0:23d1f73bf130 5353 * @} end of clarke group
vladvana 0:23d1f73bf130 5354 */
vladvana 0:23d1f73bf130 5355
vladvana 0:23d1f73bf130 5356 /**
vladvana 0:23d1f73bf130 5357 * @brief Converts the elements of the Q7 vector to Q31 vector.
vladvana 0:23d1f73bf130 5358 * @param[in] *pSrc input pointer
vladvana 0:23d1f73bf130 5359 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 5360 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 5361 * @return none.
vladvana 0:23d1f73bf130 5362 */
vladvana 0:23d1f73bf130 5363 void arm_q7_to_q31(
vladvana 0:23d1f73bf130 5364 q7_t * pSrc,
vladvana 0:23d1f73bf130 5365 q31_t * pDst,
vladvana 0:23d1f73bf130 5366 uint32_t blockSize);
vladvana 0:23d1f73bf130 5367
vladvana 0:23d1f73bf130 5368
vladvana 0:23d1f73bf130 5369
vladvana 0:23d1f73bf130 5370
vladvana 0:23d1f73bf130 5371 /**
vladvana 0:23d1f73bf130 5372 * @ingroup groupController
vladvana 0:23d1f73bf130 5373 */
vladvana 0:23d1f73bf130 5374
vladvana 0:23d1f73bf130 5375 /**
vladvana 0:23d1f73bf130 5376 * @defgroup inv_clarke Vector Inverse Clarke Transform
vladvana 0:23d1f73bf130 5377 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
vladvana 0:23d1f73bf130 5378 *
vladvana 0:23d1f73bf130 5379 * The function operates on a single sample of data and each call to the function returns the processed output.
vladvana 0:23d1f73bf130 5380 * The library provides separate functions for Q31 and floating-point data types.
vladvana 0:23d1f73bf130 5381 * \par Algorithm
vladvana 0:23d1f73bf130 5382 * \image html clarkeInvFormula.gif
vladvana 0:23d1f73bf130 5383 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
vladvana 0:23d1f73bf130 5384 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
vladvana 0:23d1f73bf130 5385 * \par Fixed-Point Behavior
vladvana 0:23d1f73bf130 5386 * Care must be taken when using the Q31 version of the Clarke transform.
vladvana 0:23d1f73bf130 5387 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
vladvana 0:23d1f73bf130 5388 * Refer to the function specific documentation below for usage guidelines.
vladvana 0:23d1f73bf130 5389 */
vladvana 0:23d1f73bf130 5390
vladvana 0:23d1f73bf130 5391 /**
vladvana 0:23d1f73bf130 5392 * @addtogroup inv_clarke
vladvana 0:23d1f73bf130 5393 * @{
vladvana 0:23d1f73bf130 5394 */
vladvana 0:23d1f73bf130 5395
vladvana 0:23d1f73bf130 5396 /**
vladvana 0:23d1f73bf130 5397 * @brief Floating-point Inverse Clarke transform
vladvana 0:23d1f73bf130 5398 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
vladvana 0:23d1f73bf130 5399 * @param[in] Ibeta input two-phase orthogonal vector axis beta
vladvana 0:23d1f73bf130 5400 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
vladvana 0:23d1f73bf130 5401 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
vladvana 0:23d1f73bf130 5402 * @return none.
vladvana 0:23d1f73bf130 5403 */
vladvana 0:23d1f73bf130 5404
vladvana 0:23d1f73bf130 5405
vladvana 0:23d1f73bf130 5406 static __INLINE void arm_inv_clarke_f32(
vladvana 0:23d1f73bf130 5407 float32_t Ialpha,
vladvana 0:23d1f73bf130 5408 float32_t Ibeta,
vladvana 0:23d1f73bf130 5409 float32_t * pIa,
vladvana 0:23d1f73bf130 5410 float32_t * pIb)
vladvana 0:23d1f73bf130 5411 {
vladvana 0:23d1f73bf130 5412 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
vladvana 0:23d1f73bf130 5413 *pIa = Ialpha;
vladvana 0:23d1f73bf130 5414
vladvana 0:23d1f73bf130 5415 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
vladvana 0:23d1f73bf130 5416 *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
vladvana 0:23d1f73bf130 5417
vladvana 0:23d1f73bf130 5418 }
vladvana 0:23d1f73bf130 5419
vladvana 0:23d1f73bf130 5420 /**
vladvana 0:23d1f73bf130 5421 * @brief Inverse Clarke transform for Q31 version
vladvana 0:23d1f73bf130 5422 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
vladvana 0:23d1f73bf130 5423 * @param[in] Ibeta input two-phase orthogonal vector axis beta
vladvana 0:23d1f73bf130 5424 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
vladvana 0:23d1f73bf130 5425 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
vladvana 0:23d1f73bf130 5426 * @return none.
vladvana 0:23d1f73bf130 5427 *
vladvana 0:23d1f73bf130 5428 * <b>Scaling and Overflow Behavior:</b>
vladvana 0:23d1f73bf130 5429 * \par
vladvana 0:23d1f73bf130 5430 * The function is implemented using an internal 32-bit accumulator.
vladvana 0:23d1f73bf130 5431 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
vladvana 0:23d1f73bf130 5432 * There is saturation on the subtraction, hence there is no risk of overflow.
vladvana 0:23d1f73bf130 5433 */
vladvana 0:23d1f73bf130 5434
vladvana 0:23d1f73bf130 5435 static __INLINE void arm_inv_clarke_q31(
vladvana 0:23d1f73bf130 5436 q31_t Ialpha,
vladvana 0:23d1f73bf130 5437 q31_t Ibeta,
vladvana 0:23d1f73bf130 5438 q31_t * pIa,
vladvana 0:23d1f73bf130 5439 q31_t * pIb)
vladvana 0:23d1f73bf130 5440 {
vladvana 0:23d1f73bf130 5441 q31_t product1, product2; /* Temporary variables used to store intermediate results */
vladvana 0:23d1f73bf130 5442
vladvana 0:23d1f73bf130 5443 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
vladvana 0:23d1f73bf130 5444 *pIa = Ialpha;
vladvana 0:23d1f73bf130 5445
vladvana 0:23d1f73bf130 5446 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
vladvana 0:23d1f73bf130 5447 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
vladvana 0:23d1f73bf130 5448
vladvana 0:23d1f73bf130 5449 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
vladvana 0:23d1f73bf130 5450 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
vladvana 0:23d1f73bf130 5451
vladvana 0:23d1f73bf130 5452 /* pIb is calculated by subtracting the products */
vladvana 0:23d1f73bf130 5453 *pIb = __QSUB(product2, product1);
vladvana 0:23d1f73bf130 5454
vladvana 0:23d1f73bf130 5455 }
vladvana 0:23d1f73bf130 5456
vladvana 0:23d1f73bf130 5457 /**
vladvana 0:23d1f73bf130 5458 * @} end of inv_clarke group
vladvana 0:23d1f73bf130 5459 */
vladvana 0:23d1f73bf130 5460
vladvana 0:23d1f73bf130 5461 /**
vladvana 0:23d1f73bf130 5462 * @brief Converts the elements of the Q7 vector to Q15 vector.
vladvana 0:23d1f73bf130 5463 * @param[in] *pSrc input pointer
vladvana 0:23d1f73bf130 5464 * @param[out] *pDst output pointer
vladvana 0:23d1f73bf130 5465 * @param[in] blockSize number of samples to process
vladvana 0:23d1f73bf130 5466 * @return none.
vladvana 0:23d1f73bf130 5467 */
vladvana 0:23d1f73bf130 5468 void arm_q7_to_q15(
vladvana 0:23d1f73bf130 5469 q7_t * pSrc,
vladvana 0:23d1f73bf130 5470 q15_t * pDst,
vladvana 0:23d1f73bf130 5471 uint32_t blockSize);
vladvana 0:23d1f73bf130 5472
vladvana 0:23d1f73bf130 5473
vladvana 0:23d1f73bf130 5474
vladvana 0:23d1f73bf130 5475 /**
vladvana 0:23d1f73bf130 5476 * @ingroup groupController
vladvana 0:23d1f73bf130 5477 */
vladvana 0:23d1f73bf130 5478
vladvana 0:23d1f73bf130 5479 /**
vladvana 0:23d1f73bf130 5480 * @defgroup park Vector Park Transform
vladvana 0:23d1f73bf130 5481 *
vladvana 0:23d1f73bf130 5482 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
vladvana 0:23d1f73bf130 5483 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
vladvana 0:23d1f73bf130 5484 * from the stationary to the moving reference frame and control the spatial relationship between
vladvana 0:23d1f73bf130 5485 * the stator vector current and rotor flux vector.
vladvana 0:23d1f73bf130 5486 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
vladvana 0:23d1f73bf130 5487 * current vector and the relationship from the two reference frames:
vladvana 0:23d1f73bf130 5488 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
vladvana 0:23d1f73bf130 5489 *
vladvana 0:23d1f73bf130 5490 * The function operates on a single sample of data and each call to the function returns the processed output.
vladvana 0:23d1f73bf130 5491 * The library provides separate functions for Q31 and floating-point data types.
vladvana 0:23d1f73bf130 5492 * \par Algorithm
vladvana 0:23d1f73bf130 5493 * \image html parkFormula.gif
vladvana 0:23d1f73bf130 5494 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
vladvana 0:23d1f73bf130 5495 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
vladvana 0:23d1f73bf130 5496 * cosine and sine values of theta (rotor flux position).
vladvana 0:23d1f73bf130 5497 * \par Fixed-Point Behavior
vladvana 0:23d1f73bf130 5498 * Care must be taken when using the Q31 version of the Park transform.
vladvana 0:23d1f73bf130 5499 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
vladvana 0:23d1f73bf130 5500 * Refer to the function specific documentation below for usage guidelines.
vladvana 0:23d1f73bf130 5501 */
vladvana 0:23d1f73bf130 5502
vladvana 0:23d1f73bf130 5503 /**
vladvana 0:23d1f73bf130 5504 * @addtogroup park
vladvana 0:23d1f73bf130 5505 * @{
vladvana 0:23d1f73bf130 5506 */
vladvana 0:23d1f73bf130 5507
vladvana 0:23d1f73bf130 5508 /**
vladvana 0:23d1f73bf130 5509 * @brief Floating-point Park transform
vladvana 0:23d1f73bf130 5510 * @param[in] Ialpha input two-phase vector coordinate alpha
vladvana 0:23d1f73bf130 5511 * @param[in] Ibeta input two-phase vector coordinate beta
vladvana 0:23d1f73bf130 5512 * @param[out] *pId points to output rotor reference frame d
vladvana 0:23d1f73bf130 5513 * @param[out] *pIq points to output rotor reference frame q
vladvana 0:23d1f73bf130 5514 * @param[in] sinVal sine value of rotation angle theta
vladvana 0:23d1f73bf130 5515 * @param[in] cosVal cosine value of rotation angle theta
vladvana 0:23d1f73bf130 5516 * @return none.
vladvana 0:23d1f73bf130 5517 *
vladvana 0:23d1f73bf130 5518 * The function implements the forward Park transform.
vladvana 0:23d1f73bf130 5519 *
vladvana 0:23d1f73bf130 5520 */
vladvana 0:23d1f73bf130 5521
vladvana 0:23d1f73bf130 5522 static __INLINE void arm_park_f32(
vladvana 0:23d1f73bf130 5523 float32_t Ialpha,
vladvana 0:23d1f73bf130 5524 float32_t Ibeta,
vladvana 0:23d1f73bf130 5525 float32_t * pId,
vladvana 0:23d1f73bf130 5526 float32_t * pIq,
vladvana 0:23d1f73bf130 5527 float32_t sinVal,
vladvana 0:23d1f73bf130 5528 float32_t cosVal)
vladvana 0:23d1f73bf130 5529 {
vladvana 0:23d1f73bf130 5530 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
vladvana 0:23d1f73bf130 5531 *pId = Ialpha * cosVal + Ibeta * sinVal;
vladvana 0:23d1f73bf130 5532
vladvana 0:23d1f73bf130 5533 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
vladvana 0:23d1f73bf130 5534 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
vladvana 0:23d1f73bf130 5535
vladvana 0:23d1f73bf130 5536 }
vladvana 0:23d1f73bf130 5537
vladvana 0:23d1f73bf130 5538 /**
vladvana 0:23d1f73bf130 5539 * @brief Park transform for Q31 version
vladvana 0:23d1f73bf130 5540 * @param[in] Ialpha input two-phase vector coordinate alpha
vladvana 0:23d1f73bf130 5541 * @param[in] Ibeta input two-phase vector coordinate beta
vladvana 0:23d1f73bf130 5542 * @param[out] *pId points to output rotor reference frame d
vladvana 0:23d1f73bf130 5543 * @param[out] *pIq points to output rotor reference frame q
vladvana 0:23d1f73bf130 5544 * @param[in] sinVal sine value of rotation angle theta
vladvana 0:23d1f73bf130 5545 * @param[in] cosVal cosine value of rotation angle theta
vladvana 0:23d1f73bf130 5546 * @return none.
vladvana 0:23d1f73bf130 5547 *
vladvana 0:23d1f73bf130 5548 * <b>Scaling and Overflow Behavior:</b>
vladvana 0:23d1f73bf130 5549 * \par
vladvana 0:23d1f73bf130 5550 * The function is implemented using an internal 32-bit accumulator.
vladvana 0:23d1f73bf130 5551 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
vladvana 0:23d1f73bf130 5552 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
vladvana 0:23d1f73bf130 5553 */
vladvana 0:23d1f73bf130 5554
vladvana 0:23d1f73bf130 5555
vladvana 0:23d1f73bf130 5556 static __INLINE void arm_park_q31(
vladvana 0:23d1f73bf130 5557 q31_t Ialpha,
vladvana 0:23d1f73bf130 5558 q31_t Ibeta,
vladvana 0:23d1f73bf130 5559 q31_t * pId,
vladvana 0:23d1f73bf130 5560 q31_t * pIq,
vladvana 0:23d1f73bf130 5561 q31_t sinVal,
vladvana 0:23d1f73bf130 5562 q31_t cosVal)
vladvana 0:23d1f73bf130 5563 {
vladvana 0:23d1f73bf130 5564 q31_t product1, product2; /* Temporary variables used to store intermediate results */
vladvana 0:23d1f73bf130 5565 q31_t product3, product4; /* Temporary variables used to store intermediate results */
vladvana 0:23d1f73bf130 5566
vladvana 0:23d1f73bf130 5567 /* Intermediate product is calculated by (Ialpha * cosVal) */
vladvana 0:23d1f73bf130 5568 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
vladvana 0:23d1f73bf130 5569
vladvana 0:23d1f73bf130 5570 /* Intermediate product is calculated by (Ibeta * sinVal) */
vladvana 0:23d1f73bf130 5571 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
vladvana 0:23d1f73bf130 5572
vladvana 0:23d1f73bf130 5573
vladvana 0:23d1f73bf130 5574 /* Intermediate product is calculated by (Ialpha * sinVal) */
vladvana 0:23d1f73bf130 5575 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
vladvana 0:23d1f73bf130 5576
vladvana 0:23d1f73bf130 5577 /* Intermediate product is calculated by (Ibeta * cosVal) */
vladvana 0:23d1f73bf130 5578 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
vladvana 0:23d1f73bf130 5579
vladvana 0:23d1f73bf130 5580 /* Calculate pId by adding the two intermediate products 1 and 2 */
vladvana 0:23d1f73bf130 5581 *pId = __QADD(product1, product2);
vladvana 0:23d1f73bf130 5582
vladvana 0:23d1f73bf130 5583 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
vladvana 0:23d1f73bf130 5584 *pIq = __QSUB(product4, product3);
vladvana 0:23d1f73bf130 5585 }
vladvana 0:23d1f73bf130 5586
vladvana 0:23d1f73bf130 5587 /**
vladvana 0:23d1f73bf130 5588 * @} end of park group
vladvana 0:23d1f73bf130 5589 */
vladvana 0:23d1f73bf130 5590
vladvana 0:23d1f73bf130 5591 /**
vladvana 0:23d1f73bf130 5592 * @brief Converts the elements of the Q7 vector to floating-point vector.
vladvana 0:23d1f73bf130 5593 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 5594 * @param[out] *pDst is output pointer
vladvana 0:23d1f73bf130 5595 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 5596 * @return none.
vladvana 0:23d1f73bf130 5597 */
vladvana 0:23d1f73bf130 5598 void arm_q7_to_float(
vladvana 0:23d1f73bf130 5599 q7_t * pSrc,
vladvana 0:23d1f73bf130 5600 float32_t * pDst,
vladvana 0:23d1f73bf130 5601 uint32_t blockSize);
vladvana 0:23d1f73bf130 5602
vladvana 0:23d1f73bf130 5603
vladvana 0:23d1f73bf130 5604 /**
vladvana 0:23d1f73bf130 5605 * @ingroup groupController
vladvana 0:23d1f73bf130 5606 */
vladvana 0:23d1f73bf130 5607
vladvana 0:23d1f73bf130 5608 /**
vladvana 0:23d1f73bf130 5609 * @defgroup inv_park Vector Inverse Park transform
vladvana 0:23d1f73bf130 5610 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
vladvana 0:23d1f73bf130 5611 *
vladvana 0:23d1f73bf130 5612 * The function operates on a single sample of data and each call to the function returns the processed output.
vladvana 0:23d1f73bf130 5613 * The library provides separate functions for Q31 and floating-point data types.
vladvana 0:23d1f73bf130 5614 * \par Algorithm
vladvana 0:23d1f73bf130 5615 * \image html parkInvFormula.gif
vladvana 0:23d1f73bf130 5616 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
vladvana 0:23d1f73bf130 5617 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
vladvana 0:23d1f73bf130 5618 * cosine and sine values of theta (rotor flux position).
vladvana 0:23d1f73bf130 5619 * \par Fixed-Point Behavior
vladvana 0:23d1f73bf130 5620 * Care must be taken when using the Q31 version of the Park transform.
vladvana 0:23d1f73bf130 5621 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
vladvana 0:23d1f73bf130 5622 * Refer to the function specific documentation below for usage guidelines.
vladvana 0:23d1f73bf130 5623 */
vladvana 0:23d1f73bf130 5624
vladvana 0:23d1f73bf130 5625 /**
vladvana 0:23d1f73bf130 5626 * @addtogroup inv_park
vladvana 0:23d1f73bf130 5627 * @{
vladvana 0:23d1f73bf130 5628 */
vladvana 0:23d1f73bf130 5629
vladvana 0:23d1f73bf130 5630 /**
vladvana 0:23d1f73bf130 5631 * @brief Floating-point Inverse Park transform
vladvana 0:23d1f73bf130 5632 * @param[in] Id input coordinate of rotor reference frame d
vladvana 0:23d1f73bf130 5633 * @param[in] Iq input coordinate of rotor reference frame q
vladvana 0:23d1f73bf130 5634 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
vladvana 0:23d1f73bf130 5635 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
vladvana 0:23d1f73bf130 5636 * @param[in] sinVal sine value of rotation angle theta
vladvana 0:23d1f73bf130 5637 * @param[in] cosVal cosine value of rotation angle theta
vladvana 0:23d1f73bf130 5638 * @return none.
vladvana 0:23d1f73bf130 5639 */
vladvana 0:23d1f73bf130 5640
vladvana 0:23d1f73bf130 5641 static __INLINE void arm_inv_park_f32(
vladvana 0:23d1f73bf130 5642 float32_t Id,
vladvana 0:23d1f73bf130 5643 float32_t Iq,
vladvana 0:23d1f73bf130 5644 float32_t * pIalpha,
vladvana 0:23d1f73bf130 5645 float32_t * pIbeta,
vladvana 0:23d1f73bf130 5646 float32_t sinVal,
vladvana 0:23d1f73bf130 5647 float32_t cosVal)
vladvana 0:23d1f73bf130 5648 {
vladvana 0:23d1f73bf130 5649 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
vladvana 0:23d1f73bf130 5650 *pIalpha = Id * cosVal - Iq * sinVal;
vladvana 0:23d1f73bf130 5651
vladvana 0:23d1f73bf130 5652 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
vladvana 0:23d1f73bf130 5653 *pIbeta = Id * sinVal + Iq * cosVal;
vladvana 0:23d1f73bf130 5654
vladvana 0:23d1f73bf130 5655 }
vladvana 0:23d1f73bf130 5656
vladvana 0:23d1f73bf130 5657
vladvana 0:23d1f73bf130 5658 /**
vladvana 0:23d1f73bf130 5659 * @brief Inverse Park transform for Q31 version
vladvana 0:23d1f73bf130 5660 * @param[in] Id input coordinate of rotor reference frame d
vladvana 0:23d1f73bf130 5661 * @param[in] Iq input coordinate of rotor reference frame q
vladvana 0:23d1f73bf130 5662 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
vladvana 0:23d1f73bf130 5663 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
vladvana 0:23d1f73bf130 5664 * @param[in] sinVal sine value of rotation angle theta
vladvana 0:23d1f73bf130 5665 * @param[in] cosVal cosine value of rotation angle theta
vladvana 0:23d1f73bf130 5666 * @return none.
vladvana 0:23d1f73bf130 5667 *
vladvana 0:23d1f73bf130 5668 * <b>Scaling and Overflow Behavior:</b>
vladvana 0:23d1f73bf130 5669 * \par
vladvana 0:23d1f73bf130 5670 * The function is implemented using an internal 32-bit accumulator.
vladvana 0:23d1f73bf130 5671 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
vladvana 0:23d1f73bf130 5672 * There is saturation on the addition, hence there is no risk of overflow.
vladvana 0:23d1f73bf130 5673 */
vladvana 0:23d1f73bf130 5674
vladvana 0:23d1f73bf130 5675
vladvana 0:23d1f73bf130 5676 static __INLINE void arm_inv_park_q31(
vladvana 0:23d1f73bf130 5677 q31_t Id,
vladvana 0:23d1f73bf130 5678 q31_t Iq,
vladvana 0:23d1f73bf130 5679 q31_t * pIalpha,
vladvana 0:23d1f73bf130 5680 q31_t * pIbeta,
vladvana 0:23d1f73bf130 5681 q31_t sinVal,
vladvana 0:23d1f73bf130 5682 q31_t cosVal)
vladvana 0:23d1f73bf130 5683 {
vladvana 0:23d1f73bf130 5684 q31_t product1, product2; /* Temporary variables used to store intermediate results */
vladvana 0:23d1f73bf130 5685 q31_t product3, product4; /* Temporary variables used to store intermediate results */
vladvana 0:23d1f73bf130 5686
vladvana 0:23d1f73bf130 5687 /* Intermediate product is calculated by (Id * cosVal) */
vladvana 0:23d1f73bf130 5688 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
vladvana 0:23d1f73bf130 5689
vladvana 0:23d1f73bf130 5690 /* Intermediate product is calculated by (Iq * sinVal) */
vladvana 0:23d1f73bf130 5691 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
vladvana 0:23d1f73bf130 5692
vladvana 0:23d1f73bf130 5693
vladvana 0:23d1f73bf130 5694 /* Intermediate product is calculated by (Id * sinVal) */
vladvana 0:23d1f73bf130 5695 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
vladvana 0:23d1f73bf130 5696
vladvana 0:23d1f73bf130 5697 /* Intermediate product is calculated by (Iq * cosVal) */
vladvana 0:23d1f73bf130 5698 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
vladvana 0:23d1f73bf130 5699
vladvana 0:23d1f73bf130 5700 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
vladvana 0:23d1f73bf130 5701 *pIalpha = __QSUB(product1, product2);
vladvana 0:23d1f73bf130 5702
vladvana 0:23d1f73bf130 5703 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
vladvana 0:23d1f73bf130 5704 *pIbeta = __QADD(product4, product3);
vladvana 0:23d1f73bf130 5705
vladvana 0:23d1f73bf130 5706 }
vladvana 0:23d1f73bf130 5707
vladvana 0:23d1f73bf130 5708 /**
vladvana 0:23d1f73bf130 5709 * @} end of Inverse park group
vladvana 0:23d1f73bf130 5710 */
vladvana 0:23d1f73bf130 5711
vladvana 0:23d1f73bf130 5712
vladvana 0:23d1f73bf130 5713 /**
vladvana 0:23d1f73bf130 5714 * @brief Converts the elements of the Q31 vector to floating-point vector.
vladvana 0:23d1f73bf130 5715 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 5716 * @param[out] *pDst is output pointer
vladvana 0:23d1f73bf130 5717 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 5718 * @return none.
vladvana 0:23d1f73bf130 5719 */
vladvana 0:23d1f73bf130 5720 void arm_q31_to_float(
vladvana 0:23d1f73bf130 5721 q31_t * pSrc,
vladvana 0:23d1f73bf130 5722 float32_t * pDst,
vladvana 0:23d1f73bf130 5723 uint32_t blockSize);
vladvana 0:23d1f73bf130 5724
vladvana 0:23d1f73bf130 5725 /**
vladvana 0:23d1f73bf130 5726 * @ingroup groupInterpolation
vladvana 0:23d1f73bf130 5727 */
vladvana 0:23d1f73bf130 5728
vladvana 0:23d1f73bf130 5729 /**
vladvana 0:23d1f73bf130 5730 * @defgroup LinearInterpolate Linear Interpolation
vladvana 0:23d1f73bf130 5731 *
vladvana 0:23d1f73bf130 5732 * Linear interpolation is a method of curve fitting using linear polynomials.
vladvana 0:23d1f73bf130 5733 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
vladvana 0:23d1f73bf130 5734 *
vladvana 0:23d1f73bf130 5735 * \par
vladvana 0:23d1f73bf130 5736 * \image html LinearInterp.gif "Linear interpolation"
vladvana 0:23d1f73bf130 5737 *
vladvana 0:23d1f73bf130 5738 * \par
vladvana 0:23d1f73bf130 5739 * A Linear Interpolate function calculates an output value(y), for the input(x)
vladvana 0:23d1f73bf130 5740 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
vladvana 0:23d1f73bf130 5741 *
vladvana 0:23d1f73bf130 5742 * \par Algorithm:
vladvana 0:23d1f73bf130 5743 * <pre>
vladvana 0:23d1f73bf130 5744 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
vladvana 0:23d1f73bf130 5745 * where x0, x1 are nearest values of input x
vladvana 0:23d1f73bf130 5746 * y0, y1 are nearest values to output y
vladvana 0:23d1f73bf130 5747 * </pre>
vladvana 0:23d1f73bf130 5748 *
vladvana 0:23d1f73bf130 5749 * \par
vladvana 0:23d1f73bf130 5750 * This set of functions implements Linear interpolation process
vladvana 0:23d1f73bf130 5751 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
vladvana 0:23d1f73bf130 5752 * sample of data and each call to the function returns a single processed value.
vladvana 0:23d1f73bf130 5753 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
vladvana 0:23d1f73bf130 5754 * <code>x</code> is the input sample value. The functions returns the output value.
vladvana 0:23d1f73bf130 5755 *
vladvana 0:23d1f73bf130 5756 * \par
vladvana 0:23d1f73bf130 5757 * if x is outside of the table boundary, Linear interpolation returns first value of the table
vladvana 0:23d1f73bf130 5758 * if x is below input range and returns last value of table if x is above range.
vladvana 0:23d1f73bf130 5759 */
vladvana 0:23d1f73bf130 5760
vladvana 0:23d1f73bf130 5761 /**
vladvana 0:23d1f73bf130 5762 * @addtogroup LinearInterpolate
vladvana 0:23d1f73bf130 5763 * @{
vladvana 0:23d1f73bf130 5764 */
vladvana 0:23d1f73bf130 5765
vladvana 0:23d1f73bf130 5766 /**
vladvana 0:23d1f73bf130 5767 * @brief Process function for the floating-point Linear Interpolation Function.
vladvana 0:23d1f73bf130 5768 * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
vladvana 0:23d1f73bf130 5769 * @param[in] x input sample to process
vladvana 0:23d1f73bf130 5770 * @return y processed output sample.
vladvana 0:23d1f73bf130 5771 *
vladvana 0:23d1f73bf130 5772 */
vladvana 0:23d1f73bf130 5773
vladvana 0:23d1f73bf130 5774 static __INLINE float32_t arm_linear_interp_f32(
vladvana 0:23d1f73bf130 5775 arm_linear_interp_instance_f32 * S,
vladvana 0:23d1f73bf130 5776 float32_t x)
vladvana 0:23d1f73bf130 5777 {
vladvana 0:23d1f73bf130 5778
vladvana 0:23d1f73bf130 5779 float32_t y;
vladvana 0:23d1f73bf130 5780 float32_t x0, x1; /* Nearest input values */
vladvana 0:23d1f73bf130 5781 float32_t y0, y1; /* Nearest output values */
vladvana 0:23d1f73bf130 5782 float32_t xSpacing = S->xSpacing; /* spacing between input values */
vladvana 0:23d1f73bf130 5783 int32_t i; /* Index variable */
vladvana 0:23d1f73bf130 5784 float32_t *pYData = S->pYData; /* pointer to output table */
vladvana 0:23d1f73bf130 5785
vladvana 0:23d1f73bf130 5786 /* Calculation of index */
vladvana 0:23d1f73bf130 5787 i = (int32_t) ((x - S->x1) / xSpacing);
vladvana 0:23d1f73bf130 5788
vladvana 0:23d1f73bf130 5789 if(i < 0)
vladvana 0:23d1f73bf130 5790 {
vladvana 0:23d1f73bf130 5791 /* Iniatilize output for below specified range as least output value of table */
vladvana 0:23d1f73bf130 5792 y = pYData[0];
vladvana 0:23d1f73bf130 5793 }
vladvana 0:23d1f73bf130 5794 else if((uint32_t)i >= S->nValues)
vladvana 0:23d1f73bf130 5795 {
vladvana 0:23d1f73bf130 5796 /* Iniatilize output for above specified range as last output value of table */
vladvana 0:23d1f73bf130 5797 y = pYData[S->nValues - 1];
vladvana 0:23d1f73bf130 5798 }
vladvana 0:23d1f73bf130 5799 else
vladvana 0:23d1f73bf130 5800 {
vladvana 0:23d1f73bf130 5801 /* Calculation of nearest input values */
vladvana 0:23d1f73bf130 5802 x0 = S->x1 + i * xSpacing;
vladvana 0:23d1f73bf130 5803 x1 = S->x1 + (i + 1) * xSpacing;
vladvana 0:23d1f73bf130 5804
vladvana 0:23d1f73bf130 5805 /* Read of nearest output values */
vladvana 0:23d1f73bf130 5806 y0 = pYData[i];
vladvana 0:23d1f73bf130 5807 y1 = pYData[i + 1];
vladvana 0:23d1f73bf130 5808
vladvana 0:23d1f73bf130 5809 /* Calculation of output */
vladvana 0:23d1f73bf130 5810 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
vladvana 0:23d1f73bf130 5811
vladvana 0:23d1f73bf130 5812 }
vladvana 0:23d1f73bf130 5813
vladvana 0:23d1f73bf130 5814 /* returns output value */
vladvana 0:23d1f73bf130 5815 return (y);
vladvana 0:23d1f73bf130 5816 }
vladvana 0:23d1f73bf130 5817
vladvana 0:23d1f73bf130 5818 /**
vladvana 0:23d1f73bf130 5819 *
vladvana 0:23d1f73bf130 5820 * @brief Process function for the Q31 Linear Interpolation Function.
vladvana 0:23d1f73bf130 5821 * @param[in] *pYData pointer to Q31 Linear Interpolation table
vladvana 0:23d1f73bf130 5822 * @param[in] x input sample to process
vladvana 0:23d1f73bf130 5823 * @param[in] nValues number of table values
vladvana 0:23d1f73bf130 5824 * @return y processed output sample.
vladvana 0:23d1f73bf130 5825 *
vladvana 0:23d1f73bf130 5826 * \par
vladvana 0:23d1f73bf130 5827 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
vladvana 0:23d1f73bf130 5828 * This function can support maximum of table size 2^12.
vladvana 0:23d1f73bf130 5829 *
vladvana 0:23d1f73bf130 5830 */
vladvana 0:23d1f73bf130 5831
vladvana 0:23d1f73bf130 5832
vladvana 0:23d1f73bf130 5833 static __INLINE q31_t arm_linear_interp_q31(
vladvana 0:23d1f73bf130 5834 q31_t * pYData,
vladvana 0:23d1f73bf130 5835 q31_t x,
vladvana 0:23d1f73bf130 5836 uint32_t nValues)
vladvana 0:23d1f73bf130 5837 {
vladvana 0:23d1f73bf130 5838 q31_t y; /* output */
vladvana 0:23d1f73bf130 5839 q31_t y0, y1; /* Nearest output values */
vladvana 0:23d1f73bf130 5840 q31_t fract; /* fractional part */
vladvana 0:23d1f73bf130 5841 int32_t index; /* Index to read nearest output values */
vladvana 0:23d1f73bf130 5842
vladvana 0:23d1f73bf130 5843 /* Input is in 12.20 format */
vladvana 0:23d1f73bf130 5844 /* 12 bits for the table index */
vladvana 0:23d1f73bf130 5845 /* Index value calculation */
vladvana 0:23d1f73bf130 5846 index = ((x & 0xFFF00000) >> 20);
vladvana 0:23d1f73bf130 5847
vladvana 0:23d1f73bf130 5848 if(index >= (int32_t)(nValues - 1))
vladvana 0:23d1f73bf130 5849 {
vladvana 0:23d1f73bf130 5850 return (pYData[nValues - 1]);
vladvana 0:23d1f73bf130 5851 }
vladvana 0:23d1f73bf130 5852 else if(index < 0)
vladvana 0:23d1f73bf130 5853 {
vladvana 0:23d1f73bf130 5854 return (pYData[0]);
vladvana 0:23d1f73bf130 5855 }
vladvana 0:23d1f73bf130 5856 else
vladvana 0:23d1f73bf130 5857 {
vladvana 0:23d1f73bf130 5858
vladvana 0:23d1f73bf130 5859 /* 20 bits for the fractional part */
vladvana 0:23d1f73bf130 5860 /* shift left by 11 to keep fract in 1.31 format */
vladvana 0:23d1f73bf130 5861 fract = (x & 0x000FFFFF) << 11;
vladvana 0:23d1f73bf130 5862
vladvana 0:23d1f73bf130 5863 /* Read two nearest output values from the index in 1.31(q31) format */
vladvana 0:23d1f73bf130 5864 y0 = pYData[index];
vladvana 0:23d1f73bf130 5865 y1 = pYData[index + 1u];
vladvana 0:23d1f73bf130 5866
vladvana 0:23d1f73bf130 5867 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
vladvana 0:23d1f73bf130 5868 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
vladvana 0:23d1f73bf130 5869
vladvana 0:23d1f73bf130 5870 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
vladvana 0:23d1f73bf130 5871 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
vladvana 0:23d1f73bf130 5872
vladvana 0:23d1f73bf130 5873 /* Convert y to 1.31 format */
vladvana 0:23d1f73bf130 5874 return (y << 1u);
vladvana 0:23d1f73bf130 5875
vladvana 0:23d1f73bf130 5876 }
vladvana 0:23d1f73bf130 5877
vladvana 0:23d1f73bf130 5878 }
vladvana 0:23d1f73bf130 5879
vladvana 0:23d1f73bf130 5880 /**
vladvana 0:23d1f73bf130 5881 *
vladvana 0:23d1f73bf130 5882 * @brief Process function for the Q15 Linear Interpolation Function.
vladvana 0:23d1f73bf130 5883 * @param[in] *pYData pointer to Q15 Linear Interpolation table
vladvana 0:23d1f73bf130 5884 * @param[in] x input sample to process
vladvana 0:23d1f73bf130 5885 * @param[in] nValues number of table values
vladvana 0:23d1f73bf130 5886 * @return y processed output sample.
vladvana 0:23d1f73bf130 5887 *
vladvana 0:23d1f73bf130 5888 * \par
vladvana 0:23d1f73bf130 5889 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
vladvana 0:23d1f73bf130 5890 * This function can support maximum of table size 2^12.
vladvana 0:23d1f73bf130 5891 *
vladvana 0:23d1f73bf130 5892 */
vladvana 0:23d1f73bf130 5893
vladvana 0:23d1f73bf130 5894
vladvana 0:23d1f73bf130 5895 static __INLINE q15_t arm_linear_interp_q15(
vladvana 0:23d1f73bf130 5896 q15_t * pYData,
vladvana 0:23d1f73bf130 5897 q31_t x,
vladvana 0:23d1f73bf130 5898 uint32_t nValues)
vladvana 0:23d1f73bf130 5899 {
vladvana 0:23d1f73bf130 5900 q63_t y; /* output */
vladvana 0:23d1f73bf130 5901 q15_t y0, y1; /* Nearest output values */
vladvana 0:23d1f73bf130 5902 q31_t fract; /* fractional part */
vladvana 0:23d1f73bf130 5903 int32_t index; /* Index to read nearest output values */
vladvana 0:23d1f73bf130 5904
vladvana 0:23d1f73bf130 5905 /* Input is in 12.20 format */
vladvana 0:23d1f73bf130 5906 /* 12 bits for the table index */
vladvana 0:23d1f73bf130 5907 /* Index value calculation */
vladvana 0:23d1f73bf130 5908 index = ((x & 0xFFF00000) >> 20u);
vladvana 0:23d1f73bf130 5909
vladvana 0:23d1f73bf130 5910 if(index >= (int32_t)(nValues - 1))
vladvana 0:23d1f73bf130 5911 {
vladvana 0:23d1f73bf130 5912 return (pYData[nValues - 1]);
vladvana 0:23d1f73bf130 5913 }
vladvana 0:23d1f73bf130 5914 else if(index < 0)
vladvana 0:23d1f73bf130 5915 {
vladvana 0:23d1f73bf130 5916 return (pYData[0]);
vladvana 0:23d1f73bf130 5917 }
vladvana 0:23d1f73bf130 5918 else
vladvana 0:23d1f73bf130 5919 {
vladvana 0:23d1f73bf130 5920 /* 20 bits for the fractional part */
vladvana 0:23d1f73bf130 5921 /* fract is in 12.20 format */
vladvana 0:23d1f73bf130 5922 fract = (x & 0x000FFFFF);
vladvana 0:23d1f73bf130 5923
vladvana 0:23d1f73bf130 5924 /* Read two nearest output values from the index */
vladvana 0:23d1f73bf130 5925 y0 = pYData[index];
vladvana 0:23d1f73bf130 5926 y1 = pYData[index + 1u];
vladvana 0:23d1f73bf130 5927
vladvana 0:23d1f73bf130 5928 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
vladvana 0:23d1f73bf130 5929 y = ((q63_t) y0 * (0xFFFFF - fract));
vladvana 0:23d1f73bf130 5930
vladvana 0:23d1f73bf130 5931 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
vladvana 0:23d1f73bf130 5932 y += ((q63_t) y1 * (fract));
vladvana 0:23d1f73bf130 5933
vladvana 0:23d1f73bf130 5934 /* convert y to 1.15 format */
vladvana 0:23d1f73bf130 5935 return (y >> 20);
vladvana 0:23d1f73bf130 5936 }
vladvana 0:23d1f73bf130 5937
vladvana 0:23d1f73bf130 5938
vladvana 0:23d1f73bf130 5939 }
vladvana 0:23d1f73bf130 5940
vladvana 0:23d1f73bf130 5941 /**
vladvana 0:23d1f73bf130 5942 *
vladvana 0:23d1f73bf130 5943 * @brief Process function for the Q7 Linear Interpolation Function.
vladvana 0:23d1f73bf130 5944 * @param[in] *pYData pointer to Q7 Linear Interpolation table
vladvana 0:23d1f73bf130 5945 * @param[in] x input sample to process
vladvana 0:23d1f73bf130 5946 * @param[in] nValues number of table values
vladvana 0:23d1f73bf130 5947 * @return y processed output sample.
vladvana 0:23d1f73bf130 5948 *
vladvana 0:23d1f73bf130 5949 * \par
vladvana 0:23d1f73bf130 5950 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
vladvana 0:23d1f73bf130 5951 * This function can support maximum of table size 2^12.
vladvana 0:23d1f73bf130 5952 */
vladvana 0:23d1f73bf130 5953
vladvana 0:23d1f73bf130 5954
vladvana 0:23d1f73bf130 5955 static __INLINE q7_t arm_linear_interp_q7(
vladvana 0:23d1f73bf130 5956 q7_t * pYData,
vladvana 0:23d1f73bf130 5957 q31_t x,
vladvana 0:23d1f73bf130 5958 uint32_t nValues)
vladvana 0:23d1f73bf130 5959 {
vladvana 0:23d1f73bf130 5960 q31_t y; /* output */
vladvana 0:23d1f73bf130 5961 q7_t y0, y1; /* Nearest output values */
vladvana 0:23d1f73bf130 5962 q31_t fract; /* fractional part */
vladvana 0:23d1f73bf130 5963 uint32_t index; /* Index to read nearest output values */
vladvana 0:23d1f73bf130 5964
vladvana 0:23d1f73bf130 5965 /* Input is in 12.20 format */
vladvana 0:23d1f73bf130 5966 /* 12 bits for the table index */
vladvana 0:23d1f73bf130 5967 /* Index value calculation */
vladvana 0:23d1f73bf130 5968 if (x < 0)
vladvana 0:23d1f73bf130 5969 {
vladvana 0:23d1f73bf130 5970 return (pYData[0]);
vladvana 0:23d1f73bf130 5971 }
vladvana 0:23d1f73bf130 5972 index = (x >> 20) & 0xfff;
vladvana 0:23d1f73bf130 5973
vladvana 0:23d1f73bf130 5974
vladvana 0:23d1f73bf130 5975 if(index >= (nValues - 1))
vladvana 0:23d1f73bf130 5976 {
vladvana 0:23d1f73bf130 5977 return (pYData[nValues - 1]);
vladvana 0:23d1f73bf130 5978 }
vladvana 0:23d1f73bf130 5979 else
vladvana 0:23d1f73bf130 5980 {
vladvana 0:23d1f73bf130 5981
vladvana 0:23d1f73bf130 5982 /* 20 bits for the fractional part */
vladvana 0:23d1f73bf130 5983 /* fract is in 12.20 format */
vladvana 0:23d1f73bf130 5984 fract = (x & 0x000FFFFF);
vladvana 0:23d1f73bf130 5985
vladvana 0:23d1f73bf130 5986 /* Read two nearest output values from the index and are in 1.7(q7) format */
vladvana 0:23d1f73bf130 5987 y0 = pYData[index];
vladvana 0:23d1f73bf130 5988 y1 = pYData[index + 1u];
vladvana 0:23d1f73bf130 5989
vladvana 0:23d1f73bf130 5990 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
vladvana 0:23d1f73bf130 5991 y = ((y0 * (0xFFFFF - fract)));
vladvana 0:23d1f73bf130 5992
vladvana 0:23d1f73bf130 5993 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
vladvana 0:23d1f73bf130 5994 y += (y1 * fract);
vladvana 0:23d1f73bf130 5995
vladvana 0:23d1f73bf130 5996 /* convert y to 1.7(q7) format */
vladvana 0:23d1f73bf130 5997 return (y >> 20u);
vladvana 0:23d1f73bf130 5998
vladvana 0:23d1f73bf130 5999 }
vladvana 0:23d1f73bf130 6000
vladvana 0:23d1f73bf130 6001 }
vladvana 0:23d1f73bf130 6002 /**
vladvana 0:23d1f73bf130 6003 * @} end of LinearInterpolate group
vladvana 0:23d1f73bf130 6004 */
vladvana 0:23d1f73bf130 6005
vladvana 0:23d1f73bf130 6006 /**
vladvana 0:23d1f73bf130 6007 * @brief Fast approximation to the trigonometric sine function for floating-point data.
vladvana 0:23d1f73bf130 6008 * @param[in] x input value in radians.
vladvana 0:23d1f73bf130 6009 * @return sin(x).
vladvana 0:23d1f73bf130 6010 */
vladvana 0:23d1f73bf130 6011
vladvana 0:23d1f73bf130 6012 float32_t arm_sin_f32(
vladvana 0:23d1f73bf130 6013 float32_t x);
vladvana 0:23d1f73bf130 6014
vladvana 0:23d1f73bf130 6015 /**
vladvana 0:23d1f73bf130 6016 * @brief Fast approximation to the trigonometric sine function for Q31 data.
vladvana 0:23d1f73bf130 6017 * @param[in] x Scaled input value in radians.
vladvana 0:23d1f73bf130 6018 * @return sin(x).
vladvana 0:23d1f73bf130 6019 */
vladvana 0:23d1f73bf130 6020
vladvana 0:23d1f73bf130 6021 q31_t arm_sin_q31(
vladvana 0:23d1f73bf130 6022 q31_t x);
vladvana 0:23d1f73bf130 6023
vladvana 0:23d1f73bf130 6024 /**
vladvana 0:23d1f73bf130 6025 * @brief Fast approximation to the trigonometric sine function for Q15 data.
vladvana 0:23d1f73bf130 6026 * @param[in] x Scaled input value in radians.
vladvana 0:23d1f73bf130 6027 * @return sin(x).
vladvana 0:23d1f73bf130 6028 */
vladvana 0:23d1f73bf130 6029
vladvana 0:23d1f73bf130 6030 q15_t arm_sin_q15(
vladvana 0:23d1f73bf130 6031 q15_t x);
vladvana 0:23d1f73bf130 6032
vladvana 0:23d1f73bf130 6033 /**
vladvana 0:23d1f73bf130 6034 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
vladvana 0:23d1f73bf130 6035 * @param[in] x input value in radians.
vladvana 0:23d1f73bf130 6036 * @return cos(x).
vladvana 0:23d1f73bf130 6037 */
vladvana 0:23d1f73bf130 6038
vladvana 0:23d1f73bf130 6039 float32_t arm_cos_f32(
vladvana 0:23d1f73bf130 6040 float32_t x);
vladvana 0:23d1f73bf130 6041
vladvana 0:23d1f73bf130 6042 /**
vladvana 0:23d1f73bf130 6043 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
vladvana 0:23d1f73bf130 6044 * @param[in] x Scaled input value in radians.
vladvana 0:23d1f73bf130 6045 * @return cos(x).
vladvana 0:23d1f73bf130 6046 */
vladvana 0:23d1f73bf130 6047
vladvana 0:23d1f73bf130 6048 q31_t arm_cos_q31(
vladvana 0:23d1f73bf130 6049 q31_t x);
vladvana 0:23d1f73bf130 6050
vladvana 0:23d1f73bf130 6051 /**
vladvana 0:23d1f73bf130 6052 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
vladvana 0:23d1f73bf130 6053 * @param[in] x Scaled input value in radians.
vladvana 0:23d1f73bf130 6054 * @return cos(x).
vladvana 0:23d1f73bf130 6055 */
vladvana 0:23d1f73bf130 6056
vladvana 0:23d1f73bf130 6057 q15_t arm_cos_q15(
vladvana 0:23d1f73bf130 6058 q15_t x);
vladvana 0:23d1f73bf130 6059
vladvana 0:23d1f73bf130 6060
vladvana 0:23d1f73bf130 6061 /**
vladvana 0:23d1f73bf130 6062 * @ingroup groupFastMath
vladvana 0:23d1f73bf130 6063 */
vladvana 0:23d1f73bf130 6064
vladvana 0:23d1f73bf130 6065
vladvana 0:23d1f73bf130 6066 /**
vladvana 0:23d1f73bf130 6067 * @defgroup SQRT Square Root
vladvana 0:23d1f73bf130 6068 *
vladvana 0:23d1f73bf130 6069 * Computes the square root of a number.
vladvana 0:23d1f73bf130 6070 * There are separate functions for Q15, Q31, and floating-point data types.
vladvana 0:23d1f73bf130 6071 * The square root function is computed using the Newton-Raphson algorithm.
vladvana 0:23d1f73bf130 6072 * This is an iterative algorithm of the form:
vladvana 0:23d1f73bf130 6073 * <pre>
vladvana 0:23d1f73bf130 6074 * x1 = x0 - f(x0)/f'(x0)
vladvana 0:23d1f73bf130 6075 * </pre>
vladvana 0:23d1f73bf130 6076 * where <code>x1</code> is the current estimate,
vladvana 0:23d1f73bf130 6077 * <code>x0</code> is the previous estimate, and
vladvana 0:23d1f73bf130 6078 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
vladvana 0:23d1f73bf130 6079 * For the square root function, the algorithm reduces to:
vladvana 0:23d1f73bf130 6080 * <pre>
vladvana 0:23d1f73bf130 6081 * x0 = in/2 [initial guess]
vladvana 0:23d1f73bf130 6082 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
vladvana 0:23d1f73bf130 6083 * </pre>
vladvana 0:23d1f73bf130 6084 */
vladvana 0:23d1f73bf130 6085
vladvana 0:23d1f73bf130 6086
vladvana 0:23d1f73bf130 6087 /**
vladvana 0:23d1f73bf130 6088 * @addtogroup SQRT
vladvana 0:23d1f73bf130 6089 * @{
vladvana 0:23d1f73bf130 6090 */
vladvana 0:23d1f73bf130 6091
vladvana 0:23d1f73bf130 6092 /**
vladvana 0:23d1f73bf130 6093 * @brief Floating-point square root function.
vladvana 0:23d1f73bf130 6094 * @param[in] in input value.
vladvana 0:23d1f73bf130 6095 * @param[out] *pOut square root of input value.
vladvana 0:23d1f73bf130 6096 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
vladvana 0:23d1f73bf130 6097 * <code>in</code> is negative value and returns zero output for negative values.
vladvana 0:23d1f73bf130 6098 */
vladvana 0:23d1f73bf130 6099
vladvana 0:23d1f73bf130 6100 static __INLINE arm_status arm_sqrt_f32(
vladvana 0:23d1f73bf130 6101 float32_t in,
vladvana 0:23d1f73bf130 6102 float32_t * pOut)
vladvana 0:23d1f73bf130 6103 {
vladvana 0:23d1f73bf130 6104 if(in >= 0.0f)
vladvana 0:23d1f73bf130 6105 {
vladvana 0:23d1f73bf130 6106
vladvana 0:23d1f73bf130 6107 // #if __FPU_USED
vladvana 0:23d1f73bf130 6108 #if (__FPU_USED == 1) && defined ( __CC_ARM )
vladvana 0:23d1f73bf130 6109 *pOut = __sqrtf(in);
vladvana 0:23d1f73bf130 6110 #else
vladvana 0:23d1f73bf130 6111 *pOut = sqrtf(in);
vladvana 0:23d1f73bf130 6112 #endif
vladvana 0:23d1f73bf130 6113
vladvana 0:23d1f73bf130 6114 return (ARM_MATH_SUCCESS);
vladvana 0:23d1f73bf130 6115 }
vladvana 0:23d1f73bf130 6116 else
vladvana 0:23d1f73bf130 6117 {
vladvana 0:23d1f73bf130 6118 *pOut = 0.0f;
vladvana 0:23d1f73bf130 6119 return (ARM_MATH_ARGUMENT_ERROR);
vladvana 0:23d1f73bf130 6120 }
vladvana 0:23d1f73bf130 6121
vladvana 0:23d1f73bf130 6122 }
vladvana 0:23d1f73bf130 6123
vladvana 0:23d1f73bf130 6124
vladvana 0:23d1f73bf130 6125 /**
vladvana 0:23d1f73bf130 6126 * @brief Q31 square root function.
vladvana 0:23d1f73bf130 6127 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
vladvana 0:23d1f73bf130 6128 * @param[out] *pOut square root of input value.
vladvana 0:23d1f73bf130 6129 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
vladvana 0:23d1f73bf130 6130 * <code>in</code> is negative value and returns zero output for negative values.
vladvana 0:23d1f73bf130 6131 */
vladvana 0:23d1f73bf130 6132 arm_status arm_sqrt_q31(
vladvana 0:23d1f73bf130 6133 q31_t in,
vladvana 0:23d1f73bf130 6134 q31_t * pOut);
vladvana 0:23d1f73bf130 6135
vladvana 0:23d1f73bf130 6136 /**
vladvana 0:23d1f73bf130 6137 * @brief Q15 square root function.
vladvana 0:23d1f73bf130 6138 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
vladvana 0:23d1f73bf130 6139 * @param[out] *pOut square root of input value.
vladvana 0:23d1f73bf130 6140 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
vladvana 0:23d1f73bf130 6141 * <code>in</code> is negative value and returns zero output for negative values.
vladvana 0:23d1f73bf130 6142 */
vladvana 0:23d1f73bf130 6143 arm_status arm_sqrt_q15(
vladvana 0:23d1f73bf130 6144 q15_t in,
vladvana 0:23d1f73bf130 6145 q15_t * pOut);
vladvana 0:23d1f73bf130 6146
vladvana 0:23d1f73bf130 6147 /**
vladvana 0:23d1f73bf130 6148 * @} end of SQRT group
vladvana 0:23d1f73bf130 6149 */
vladvana 0:23d1f73bf130 6150
vladvana 0:23d1f73bf130 6151
vladvana 0:23d1f73bf130 6152
vladvana 0:23d1f73bf130 6153
vladvana 0:23d1f73bf130 6154
vladvana 0:23d1f73bf130 6155
vladvana 0:23d1f73bf130 6156 /**
vladvana 0:23d1f73bf130 6157 * @brief floating-point Circular write function.
vladvana 0:23d1f73bf130 6158 */
vladvana 0:23d1f73bf130 6159
vladvana 0:23d1f73bf130 6160 static __INLINE void arm_circularWrite_f32(
vladvana 0:23d1f73bf130 6161 int32_t * circBuffer,
vladvana 0:23d1f73bf130 6162 int32_t L,
vladvana 0:23d1f73bf130 6163 uint16_t * writeOffset,
vladvana 0:23d1f73bf130 6164 int32_t bufferInc,
vladvana 0:23d1f73bf130 6165 const int32_t * src,
vladvana 0:23d1f73bf130 6166 int32_t srcInc,
vladvana 0:23d1f73bf130 6167 uint32_t blockSize)
vladvana 0:23d1f73bf130 6168 {
vladvana 0:23d1f73bf130 6169 uint32_t i = 0u;
vladvana 0:23d1f73bf130 6170 int32_t wOffset;
vladvana 0:23d1f73bf130 6171
vladvana 0:23d1f73bf130 6172 /* Copy the value of Index pointer that points
vladvana 0:23d1f73bf130 6173 * to the current location where the input samples to be copied */
vladvana 0:23d1f73bf130 6174 wOffset = *writeOffset;
vladvana 0:23d1f73bf130 6175
vladvana 0:23d1f73bf130 6176 /* Loop over the blockSize */
vladvana 0:23d1f73bf130 6177 i = blockSize;
vladvana 0:23d1f73bf130 6178
vladvana 0:23d1f73bf130 6179 while(i > 0u)
vladvana 0:23d1f73bf130 6180 {
vladvana 0:23d1f73bf130 6181 /* copy the input sample to the circular buffer */
vladvana 0:23d1f73bf130 6182 circBuffer[wOffset] = *src;
vladvana 0:23d1f73bf130 6183
vladvana 0:23d1f73bf130 6184 /* Update the input pointer */
vladvana 0:23d1f73bf130 6185 src += srcInc;
vladvana 0:23d1f73bf130 6186
vladvana 0:23d1f73bf130 6187 /* Circularly update wOffset. Watch out for positive and negative value */
vladvana 0:23d1f73bf130 6188 wOffset += bufferInc;
vladvana 0:23d1f73bf130 6189 if(wOffset >= L)
vladvana 0:23d1f73bf130 6190 wOffset -= L;
vladvana 0:23d1f73bf130 6191
vladvana 0:23d1f73bf130 6192 /* Decrement the loop counter */
vladvana 0:23d1f73bf130 6193 i--;
vladvana 0:23d1f73bf130 6194 }
vladvana 0:23d1f73bf130 6195
vladvana 0:23d1f73bf130 6196 /* Update the index pointer */
vladvana 0:23d1f73bf130 6197 *writeOffset = wOffset;
vladvana 0:23d1f73bf130 6198 }
vladvana 0:23d1f73bf130 6199
vladvana 0:23d1f73bf130 6200
vladvana 0:23d1f73bf130 6201
vladvana 0:23d1f73bf130 6202 /**
vladvana 0:23d1f73bf130 6203 * @brief floating-point Circular Read function.
vladvana 0:23d1f73bf130 6204 */
vladvana 0:23d1f73bf130 6205 static __INLINE void arm_circularRead_f32(
vladvana 0:23d1f73bf130 6206 int32_t * circBuffer,
vladvana 0:23d1f73bf130 6207 int32_t L,
vladvana 0:23d1f73bf130 6208 int32_t * readOffset,
vladvana 0:23d1f73bf130 6209 int32_t bufferInc,
vladvana 0:23d1f73bf130 6210 int32_t * dst,
vladvana 0:23d1f73bf130 6211 int32_t * dst_base,
vladvana 0:23d1f73bf130 6212 int32_t dst_length,
vladvana 0:23d1f73bf130 6213 int32_t dstInc,
vladvana 0:23d1f73bf130 6214 uint32_t blockSize)
vladvana 0:23d1f73bf130 6215 {
vladvana 0:23d1f73bf130 6216 uint32_t i = 0u;
vladvana 0:23d1f73bf130 6217 int32_t rOffset, dst_end;
vladvana 0:23d1f73bf130 6218
vladvana 0:23d1f73bf130 6219 /* Copy the value of Index pointer that points
vladvana 0:23d1f73bf130 6220 * to the current location from where the input samples to be read */
vladvana 0:23d1f73bf130 6221 rOffset = *readOffset;
vladvana 0:23d1f73bf130 6222 dst_end = (int32_t) (dst_base + dst_length);
vladvana 0:23d1f73bf130 6223
vladvana 0:23d1f73bf130 6224 /* Loop over the blockSize */
vladvana 0:23d1f73bf130 6225 i = blockSize;
vladvana 0:23d1f73bf130 6226
vladvana 0:23d1f73bf130 6227 while(i > 0u)
vladvana 0:23d1f73bf130 6228 {
vladvana 0:23d1f73bf130 6229 /* copy the sample from the circular buffer to the destination buffer */
vladvana 0:23d1f73bf130 6230 *dst = circBuffer[rOffset];
vladvana 0:23d1f73bf130 6231
vladvana 0:23d1f73bf130 6232 /* Update the input pointer */
vladvana 0:23d1f73bf130 6233 dst += dstInc;
vladvana 0:23d1f73bf130 6234
vladvana 0:23d1f73bf130 6235 if(dst == (int32_t *) dst_end)
vladvana 0:23d1f73bf130 6236 {
vladvana 0:23d1f73bf130 6237 dst = dst_base;
vladvana 0:23d1f73bf130 6238 }
vladvana 0:23d1f73bf130 6239
vladvana 0:23d1f73bf130 6240 /* Circularly update rOffset. Watch out for positive and negative value */
vladvana 0:23d1f73bf130 6241 rOffset += bufferInc;
vladvana 0:23d1f73bf130 6242
vladvana 0:23d1f73bf130 6243 if(rOffset >= L)
vladvana 0:23d1f73bf130 6244 {
vladvana 0:23d1f73bf130 6245 rOffset -= L;
vladvana 0:23d1f73bf130 6246 }
vladvana 0:23d1f73bf130 6247
vladvana 0:23d1f73bf130 6248 /* Decrement the loop counter */
vladvana 0:23d1f73bf130 6249 i--;
vladvana 0:23d1f73bf130 6250 }
vladvana 0:23d1f73bf130 6251
vladvana 0:23d1f73bf130 6252 /* Update the index pointer */
vladvana 0:23d1f73bf130 6253 *readOffset = rOffset;
vladvana 0:23d1f73bf130 6254 }
vladvana 0:23d1f73bf130 6255
vladvana 0:23d1f73bf130 6256 /**
vladvana 0:23d1f73bf130 6257 * @brief Q15 Circular write function.
vladvana 0:23d1f73bf130 6258 */
vladvana 0:23d1f73bf130 6259
vladvana 0:23d1f73bf130 6260 static __INLINE void arm_circularWrite_q15(
vladvana 0:23d1f73bf130 6261 q15_t * circBuffer,
vladvana 0:23d1f73bf130 6262 int32_t L,
vladvana 0:23d1f73bf130 6263 uint16_t * writeOffset,
vladvana 0:23d1f73bf130 6264 int32_t bufferInc,
vladvana 0:23d1f73bf130 6265 const q15_t * src,
vladvana 0:23d1f73bf130 6266 int32_t srcInc,
vladvana 0:23d1f73bf130 6267 uint32_t blockSize)
vladvana 0:23d1f73bf130 6268 {
vladvana 0:23d1f73bf130 6269 uint32_t i = 0u;
vladvana 0:23d1f73bf130 6270 int32_t wOffset;
vladvana 0:23d1f73bf130 6271
vladvana 0:23d1f73bf130 6272 /* Copy the value of Index pointer that points
vladvana 0:23d1f73bf130 6273 * to the current location where the input samples to be copied */
vladvana 0:23d1f73bf130 6274 wOffset = *writeOffset;
vladvana 0:23d1f73bf130 6275
vladvana 0:23d1f73bf130 6276 /* Loop over the blockSize */
vladvana 0:23d1f73bf130 6277 i = blockSize;
vladvana 0:23d1f73bf130 6278
vladvana 0:23d1f73bf130 6279 while(i > 0u)
vladvana 0:23d1f73bf130 6280 {
vladvana 0:23d1f73bf130 6281 /* copy the input sample to the circular buffer */
vladvana 0:23d1f73bf130 6282 circBuffer[wOffset] = *src;
vladvana 0:23d1f73bf130 6283
vladvana 0:23d1f73bf130 6284 /* Update the input pointer */
vladvana 0:23d1f73bf130 6285 src += srcInc;
vladvana 0:23d1f73bf130 6286
vladvana 0:23d1f73bf130 6287 /* Circularly update wOffset. Watch out for positive and negative value */
vladvana 0:23d1f73bf130 6288 wOffset += bufferInc;
vladvana 0:23d1f73bf130 6289 if(wOffset >= L)
vladvana 0:23d1f73bf130 6290 wOffset -= L;
vladvana 0:23d1f73bf130 6291
vladvana 0:23d1f73bf130 6292 /* Decrement the loop counter */
vladvana 0:23d1f73bf130 6293 i--;
vladvana 0:23d1f73bf130 6294 }
vladvana 0:23d1f73bf130 6295
vladvana 0:23d1f73bf130 6296 /* Update the index pointer */
vladvana 0:23d1f73bf130 6297 *writeOffset = wOffset;
vladvana 0:23d1f73bf130 6298 }
vladvana 0:23d1f73bf130 6299
vladvana 0:23d1f73bf130 6300
vladvana 0:23d1f73bf130 6301
vladvana 0:23d1f73bf130 6302 /**
vladvana 0:23d1f73bf130 6303 * @brief Q15 Circular Read function.
vladvana 0:23d1f73bf130 6304 */
vladvana 0:23d1f73bf130 6305 static __INLINE void arm_circularRead_q15(
vladvana 0:23d1f73bf130 6306 q15_t * circBuffer,
vladvana 0:23d1f73bf130 6307 int32_t L,
vladvana 0:23d1f73bf130 6308 int32_t * readOffset,
vladvana 0:23d1f73bf130 6309 int32_t bufferInc,
vladvana 0:23d1f73bf130 6310 q15_t * dst,
vladvana 0:23d1f73bf130 6311 q15_t * dst_base,
vladvana 0:23d1f73bf130 6312 int32_t dst_length,
vladvana 0:23d1f73bf130 6313 int32_t dstInc,
vladvana 0:23d1f73bf130 6314 uint32_t blockSize)
vladvana 0:23d1f73bf130 6315 {
vladvana 0:23d1f73bf130 6316 uint32_t i = 0;
vladvana 0:23d1f73bf130 6317 int32_t rOffset, dst_end;
vladvana 0:23d1f73bf130 6318
vladvana 0:23d1f73bf130 6319 /* Copy the value of Index pointer that points
vladvana 0:23d1f73bf130 6320 * to the current location from where the input samples to be read */
vladvana 0:23d1f73bf130 6321 rOffset = *readOffset;
vladvana 0:23d1f73bf130 6322
vladvana 0:23d1f73bf130 6323 dst_end = (int32_t) (dst_base + dst_length);
vladvana 0:23d1f73bf130 6324
vladvana 0:23d1f73bf130 6325 /* Loop over the blockSize */
vladvana 0:23d1f73bf130 6326 i = blockSize;
vladvana 0:23d1f73bf130 6327
vladvana 0:23d1f73bf130 6328 while(i > 0u)
vladvana 0:23d1f73bf130 6329 {
vladvana 0:23d1f73bf130 6330 /* copy the sample from the circular buffer to the destination buffer */
vladvana 0:23d1f73bf130 6331 *dst = circBuffer[rOffset];
vladvana 0:23d1f73bf130 6332
vladvana 0:23d1f73bf130 6333 /* Update the input pointer */
vladvana 0:23d1f73bf130 6334 dst += dstInc;
vladvana 0:23d1f73bf130 6335
vladvana 0:23d1f73bf130 6336 if(dst == (q15_t *) dst_end)
vladvana 0:23d1f73bf130 6337 {
vladvana 0:23d1f73bf130 6338 dst = dst_base;
vladvana 0:23d1f73bf130 6339 }
vladvana 0:23d1f73bf130 6340
vladvana 0:23d1f73bf130 6341 /* Circularly update wOffset. Watch out for positive and negative value */
vladvana 0:23d1f73bf130 6342 rOffset += bufferInc;
vladvana 0:23d1f73bf130 6343
vladvana 0:23d1f73bf130 6344 if(rOffset >= L)
vladvana 0:23d1f73bf130 6345 {
vladvana 0:23d1f73bf130 6346 rOffset -= L;
vladvana 0:23d1f73bf130 6347 }
vladvana 0:23d1f73bf130 6348
vladvana 0:23d1f73bf130 6349 /* Decrement the loop counter */
vladvana 0:23d1f73bf130 6350 i--;
vladvana 0:23d1f73bf130 6351 }
vladvana 0:23d1f73bf130 6352
vladvana 0:23d1f73bf130 6353 /* Update the index pointer */
vladvana 0:23d1f73bf130 6354 *readOffset = rOffset;
vladvana 0:23d1f73bf130 6355 }
vladvana 0:23d1f73bf130 6356
vladvana 0:23d1f73bf130 6357
vladvana 0:23d1f73bf130 6358 /**
vladvana 0:23d1f73bf130 6359 * @brief Q7 Circular write function.
vladvana 0:23d1f73bf130 6360 */
vladvana 0:23d1f73bf130 6361
vladvana 0:23d1f73bf130 6362 static __INLINE void arm_circularWrite_q7(
vladvana 0:23d1f73bf130 6363 q7_t * circBuffer,
vladvana 0:23d1f73bf130 6364 int32_t L,
vladvana 0:23d1f73bf130 6365 uint16_t * writeOffset,
vladvana 0:23d1f73bf130 6366 int32_t bufferInc,
vladvana 0:23d1f73bf130 6367 const q7_t * src,
vladvana 0:23d1f73bf130 6368 int32_t srcInc,
vladvana 0:23d1f73bf130 6369 uint32_t blockSize)
vladvana 0:23d1f73bf130 6370 {
vladvana 0:23d1f73bf130 6371 uint32_t i = 0u;
vladvana 0:23d1f73bf130 6372 int32_t wOffset;
vladvana 0:23d1f73bf130 6373
vladvana 0:23d1f73bf130 6374 /* Copy the value of Index pointer that points
vladvana 0:23d1f73bf130 6375 * to the current location where the input samples to be copied */
vladvana 0:23d1f73bf130 6376 wOffset = *writeOffset;
vladvana 0:23d1f73bf130 6377
vladvana 0:23d1f73bf130 6378 /* Loop over the blockSize */
vladvana 0:23d1f73bf130 6379 i = blockSize;
vladvana 0:23d1f73bf130 6380
vladvana 0:23d1f73bf130 6381 while(i > 0u)
vladvana 0:23d1f73bf130 6382 {
vladvana 0:23d1f73bf130 6383 /* copy the input sample to the circular buffer */
vladvana 0:23d1f73bf130 6384 circBuffer[wOffset] = *src;
vladvana 0:23d1f73bf130 6385
vladvana 0:23d1f73bf130 6386 /* Update the input pointer */
vladvana 0:23d1f73bf130 6387 src += srcInc;
vladvana 0:23d1f73bf130 6388
vladvana 0:23d1f73bf130 6389 /* Circularly update wOffset. Watch out for positive and negative value */
vladvana 0:23d1f73bf130 6390 wOffset += bufferInc;
vladvana 0:23d1f73bf130 6391 if(wOffset >= L)
vladvana 0:23d1f73bf130 6392 wOffset -= L;
vladvana 0:23d1f73bf130 6393
vladvana 0:23d1f73bf130 6394 /* Decrement the loop counter */
vladvana 0:23d1f73bf130 6395 i--;
vladvana 0:23d1f73bf130 6396 }
vladvana 0:23d1f73bf130 6397
vladvana 0:23d1f73bf130 6398 /* Update the index pointer */
vladvana 0:23d1f73bf130 6399 *writeOffset = wOffset;
vladvana 0:23d1f73bf130 6400 }
vladvana 0:23d1f73bf130 6401
vladvana 0:23d1f73bf130 6402
vladvana 0:23d1f73bf130 6403
vladvana 0:23d1f73bf130 6404 /**
vladvana 0:23d1f73bf130 6405 * @brief Q7 Circular Read function.
vladvana 0:23d1f73bf130 6406 */
vladvana 0:23d1f73bf130 6407 static __INLINE void arm_circularRead_q7(
vladvana 0:23d1f73bf130 6408 q7_t * circBuffer,
vladvana 0:23d1f73bf130 6409 int32_t L,
vladvana 0:23d1f73bf130 6410 int32_t * readOffset,
vladvana 0:23d1f73bf130 6411 int32_t bufferInc,
vladvana 0:23d1f73bf130 6412 q7_t * dst,
vladvana 0:23d1f73bf130 6413 q7_t * dst_base,
vladvana 0:23d1f73bf130 6414 int32_t dst_length,
vladvana 0:23d1f73bf130 6415 int32_t dstInc,
vladvana 0:23d1f73bf130 6416 uint32_t blockSize)
vladvana 0:23d1f73bf130 6417 {
vladvana 0:23d1f73bf130 6418 uint32_t i = 0;
vladvana 0:23d1f73bf130 6419 int32_t rOffset, dst_end;
vladvana 0:23d1f73bf130 6420
vladvana 0:23d1f73bf130 6421 /* Copy the value of Index pointer that points
vladvana 0:23d1f73bf130 6422 * to the current location from where the input samples to be read */
vladvana 0:23d1f73bf130 6423 rOffset = *readOffset;
vladvana 0:23d1f73bf130 6424
vladvana 0:23d1f73bf130 6425 dst_end = (int32_t) (dst_base + dst_length);
vladvana 0:23d1f73bf130 6426
vladvana 0:23d1f73bf130 6427 /* Loop over the blockSize */
vladvana 0:23d1f73bf130 6428 i = blockSize;
vladvana 0:23d1f73bf130 6429
vladvana 0:23d1f73bf130 6430 while(i > 0u)
vladvana 0:23d1f73bf130 6431 {
vladvana 0:23d1f73bf130 6432 /* copy the sample from the circular buffer to the destination buffer */
vladvana 0:23d1f73bf130 6433 *dst = circBuffer[rOffset];
vladvana 0:23d1f73bf130 6434
vladvana 0:23d1f73bf130 6435 /* Update the input pointer */
vladvana 0:23d1f73bf130 6436 dst += dstInc;
vladvana 0:23d1f73bf130 6437
vladvana 0:23d1f73bf130 6438 if(dst == (q7_t *) dst_end)
vladvana 0:23d1f73bf130 6439 {
vladvana 0:23d1f73bf130 6440 dst = dst_base;
vladvana 0:23d1f73bf130 6441 }
vladvana 0:23d1f73bf130 6442
vladvana 0:23d1f73bf130 6443 /* Circularly update rOffset. Watch out for positive and negative value */
vladvana 0:23d1f73bf130 6444 rOffset += bufferInc;
vladvana 0:23d1f73bf130 6445
vladvana 0:23d1f73bf130 6446 if(rOffset >= L)
vladvana 0:23d1f73bf130 6447 {
vladvana 0:23d1f73bf130 6448 rOffset -= L;
vladvana 0:23d1f73bf130 6449 }
vladvana 0:23d1f73bf130 6450
vladvana 0:23d1f73bf130 6451 /* Decrement the loop counter */
vladvana 0:23d1f73bf130 6452 i--;
vladvana 0:23d1f73bf130 6453 }
vladvana 0:23d1f73bf130 6454
vladvana 0:23d1f73bf130 6455 /* Update the index pointer */
vladvana 0:23d1f73bf130 6456 *readOffset = rOffset;
vladvana 0:23d1f73bf130 6457 }
vladvana 0:23d1f73bf130 6458
vladvana 0:23d1f73bf130 6459
vladvana 0:23d1f73bf130 6460 /**
vladvana 0:23d1f73bf130 6461 * @brief Sum of the squares of the elements of a Q31 vector.
vladvana 0:23d1f73bf130 6462 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6463 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6464 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6465 * @return none.
vladvana 0:23d1f73bf130 6466 */
vladvana 0:23d1f73bf130 6467
vladvana 0:23d1f73bf130 6468 void arm_power_q31(
vladvana 0:23d1f73bf130 6469 q31_t * pSrc,
vladvana 0:23d1f73bf130 6470 uint32_t blockSize,
vladvana 0:23d1f73bf130 6471 q63_t * pResult);
vladvana 0:23d1f73bf130 6472
vladvana 0:23d1f73bf130 6473 /**
vladvana 0:23d1f73bf130 6474 * @brief Sum of the squares of the elements of a floating-point vector.
vladvana 0:23d1f73bf130 6475 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6476 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6477 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6478 * @return none.
vladvana 0:23d1f73bf130 6479 */
vladvana 0:23d1f73bf130 6480
vladvana 0:23d1f73bf130 6481 void arm_power_f32(
vladvana 0:23d1f73bf130 6482 float32_t * pSrc,
vladvana 0:23d1f73bf130 6483 uint32_t blockSize,
vladvana 0:23d1f73bf130 6484 float32_t * pResult);
vladvana 0:23d1f73bf130 6485
vladvana 0:23d1f73bf130 6486 /**
vladvana 0:23d1f73bf130 6487 * @brief Sum of the squares of the elements of a Q15 vector.
vladvana 0:23d1f73bf130 6488 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6489 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6490 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6491 * @return none.
vladvana 0:23d1f73bf130 6492 */
vladvana 0:23d1f73bf130 6493
vladvana 0:23d1f73bf130 6494 void arm_power_q15(
vladvana 0:23d1f73bf130 6495 q15_t * pSrc,
vladvana 0:23d1f73bf130 6496 uint32_t blockSize,
vladvana 0:23d1f73bf130 6497 q63_t * pResult);
vladvana 0:23d1f73bf130 6498
vladvana 0:23d1f73bf130 6499 /**
vladvana 0:23d1f73bf130 6500 * @brief Sum of the squares of the elements of a Q7 vector.
vladvana 0:23d1f73bf130 6501 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6502 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6503 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6504 * @return none.
vladvana 0:23d1f73bf130 6505 */
vladvana 0:23d1f73bf130 6506
vladvana 0:23d1f73bf130 6507 void arm_power_q7(
vladvana 0:23d1f73bf130 6508 q7_t * pSrc,
vladvana 0:23d1f73bf130 6509 uint32_t blockSize,
vladvana 0:23d1f73bf130 6510 q31_t * pResult);
vladvana 0:23d1f73bf130 6511
vladvana 0:23d1f73bf130 6512 /**
vladvana 0:23d1f73bf130 6513 * @brief Mean value of a Q7 vector.
vladvana 0:23d1f73bf130 6514 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6515 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6516 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6517 * @return none.
vladvana 0:23d1f73bf130 6518 */
vladvana 0:23d1f73bf130 6519
vladvana 0:23d1f73bf130 6520 void arm_mean_q7(
vladvana 0:23d1f73bf130 6521 q7_t * pSrc,
vladvana 0:23d1f73bf130 6522 uint32_t blockSize,
vladvana 0:23d1f73bf130 6523 q7_t * pResult);
vladvana 0:23d1f73bf130 6524
vladvana 0:23d1f73bf130 6525 /**
vladvana 0:23d1f73bf130 6526 * @brief Mean value of a Q15 vector.
vladvana 0:23d1f73bf130 6527 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6528 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6529 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6530 * @return none.
vladvana 0:23d1f73bf130 6531 */
vladvana 0:23d1f73bf130 6532 void arm_mean_q15(
vladvana 0:23d1f73bf130 6533 q15_t * pSrc,
vladvana 0:23d1f73bf130 6534 uint32_t blockSize,
vladvana 0:23d1f73bf130 6535 q15_t * pResult);
vladvana 0:23d1f73bf130 6536
vladvana 0:23d1f73bf130 6537 /**
vladvana 0:23d1f73bf130 6538 * @brief Mean value of a Q31 vector.
vladvana 0:23d1f73bf130 6539 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6540 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6541 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6542 * @return none.
vladvana 0:23d1f73bf130 6543 */
vladvana 0:23d1f73bf130 6544 void arm_mean_q31(
vladvana 0:23d1f73bf130 6545 q31_t * pSrc,
vladvana 0:23d1f73bf130 6546 uint32_t blockSize,
vladvana 0:23d1f73bf130 6547 q31_t * pResult);
vladvana 0:23d1f73bf130 6548
vladvana 0:23d1f73bf130 6549 /**
vladvana 0:23d1f73bf130 6550 * @brief Mean value of a floating-point vector.
vladvana 0:23d1f73bf130 6551 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6552 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6553 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6554 * @return none.
vladvana 0:23d1f73bf130 6555 */
vladvana 0:23d1f73bf130 6556 void arm_mean_f32(
vladvana 0:23d1f73bf130 6557 float32_t * pSrc,
vladvana 0:23d1f73bf130 6558 uint32_t blockSize,
vladvana 0:23d1f73bf130 6559 float32_t * pResult);
vladvana 0:23d1f73bf130 6560
vladvana 0:23d1f73bf130 6561 /**
vladvana 0:23d1f73bf130 6562 * @brief Variance of the elements of a floating-point vector.
vladvana 0:23d1f73bf130 6563 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6564 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6565 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6566 * @return none.
vladvana 0:23d1f73bf130 6567 */
vladvana 0:23d1f73bf130 6568
vladvana 0:23d1f73bf130 6569 void arm_var_f32(
vladvana 0:23d1f73bf130 6570 float32_t * pSrc,
vladvana 0:23d1f73bf130 6571 uint32_t blockSize,
vladvana 0:23d1f73bf130 6572 float32_t * pResult);
vladvana 0:23d1f73bf130 6573
vladvana 0:23d1f73bf130 6574 /**
vladvana 0:23d1f73bf130 6575 * @brief Variance of the elements of a Q31 vector.
vladvana 0:23d1f73bf130 6576 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6577 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6578 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6579 * @return none.
vladvana 0:23d1f73bf130 6580 */
vladvana 0:23d1f73bf130 6581
vladvana 0:23d1f73bf130 6582 void arm_var_q31(
vladvana 0:23d1f73bf130 6583 q31_t * pSrc,
vladvana 0:23d1f73bf130 6584 uint32_t blockSize,
vladvana 0:23d1f73bf130 6585 q31_t * pResult);
vladvana 0:23d1f73bf130 6586
vladvana 0:23d1f73bf130 6587 /**
vladvana 0:23d1f73bf130 6588 * @brief Variance of the elements of a Q15 vector.
vladvana 0:23d1f73bf130 6589 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6590 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6591 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6592 * @return none.
vladvana 0:23d1f73bf130 6593 */
vladvana 0:23d1f73bf130 6594
vladvana 0:23d1f73bf130 6595 void arm_var_q15(
vladvana 0:23d1f73bf130 6596 q15_t * pSrc,
vladvana 0:23d1f73bf130 6597 uint32_t blockSize,
vladvana 0:23d1f73bf130 6598 q15_t * pResult);
vladvana 0:23d1f73bf130 6599
vladvana 0:23d1f73bf130 6600 /**
vladvana 0:23d1f73bf130 6601 * @brief Root Mean Square of the elements of a floating-point vector.
vladvana 0:23d1f73bf130 6602 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6603 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6604 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6605 * @return none.
vladvana 0:23d1f73bf130 6606 */
vladvana 0:23d1f73bf130 6607
vladvana 0:23d1f73bf130 6608 void arm_rms_f32(
vladvana 0:23d1f73bf130 6609 float32_t * pSrc,
vladvana 0:23d1f73bf130 6610 uint32_t blockSize,
vladvana 0:23d1f73bf130 6611 float32_t * pResult);
vladvana 0:23d1f73bf130 6612
vladvana 0:23d1f73bf130 6613 /**
vladvana 0:23d1f73bf130 6614 * @brief Root Mean Square of the elements of a Q31 vector.
vladvana 0:23d1f73bf130 6615 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6616 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6617 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6618 * @return none.
vladvana 0:23d1f73bf130 6619 */
vladvana 0:23d1f73bf130 6620
vladvana 0:23d1f73bf130 6621 void arm_rms_q31(
vladvana 0:23d1f73bf130 6622 q31_t * pSrc,
vladvana 0:23d1f73bf130 6623 uint32_t blockSize,
vladvana 0:23d1f73bf130 6624 q31_t * pResult);
vladvana 0:23d1f73bf130 6625
vladvana 0:23d1f73bf130 6626 /**
vladvana 0:23d1f73bf130 6627 * @brief Root Mean Square of the elements of a Q15 vector.
vladvana 0:23d1f73bf130 6628 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6629 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6630 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6631 * @return none.
vladvana 0:23d1f73bf130 6632 */
vladvana 0:23d1f73bf130 6633
vladvana 0:23d1f73bf130 6634 void arm_rms_q15(
vladvana 0:23d1f73bf130 6635 q15_t * pSrc,
vladvana 0:23d1f73bf130 6636 uint32_t blockSize,
vladvana 0:23d1f73bf130 6637 q15_t * pResult);
vladvana 0:23d1f73bf130 6638
vladvana 0:23d1f73bf130 6639 /**
vladvana 0:23d1f73bf130 6640 * @brief Standard deviation of the elements of a floating-point vector.
vladvana 0:23d1f73bf130 6641 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6642 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6643 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6644 * @return none.
vladvana 0:23d1f73bf130 6645 */
vladvana 0:23d1f73bf130 6646
vladvana 0:23d1f73bf130 6647 void arm_std_f32(
vladvana 0:23d1f73bf130 6648 float32_t * pSrc,
vladvana 0:23d1f73bf130 6649 uint32_t blockSize,
vladvana 0:23d1f73bf130 6650 float32_t * pResult);
vladvana 0:23d1f73bf130 6651
vladvana 0:23d1f73bf130 6652 /**
vladvana 0:23d1f73bf130 6653 * @brief Standard deviation of the elements of a Q31 vector.
vladvana 0:23d1f73bf130 6654 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6655 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6656 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6657 * @return none.
vladvana 0:23d1f73bf130 6658 */
vladvana 0:23d1f73bf130 6659
vladvana 0:23d1f73bf130 6660 void arm_std_q31(
vladvana 0:23d1f73bf130 6661 q31_t * pSrc,
vladvana 0:23d1f73bf130 6662 uint32_t blockSize,
vladvana 0:23d1f73bf130 6663 q31_t * pResult);
vladvana 0:23d1f73bf130 6664
vladvana 0:23d1f73bf130 6665 /**
vladvana 0:23d1f73bf130 6666 * @brief Standard deviation of the elements of a Q15 vector.
vladvana 0:23d1f73bf130 6667 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6668 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6669 * @param[out] *pResult is output value.
vladvana 0:23d1f73bf130 6670 * @return none.
vladvana 0:23d1f73bf130 6671 */
vladvana 0:23d1f73bf130 6672
vladvana 0:23d1f73bf130 6673 void arm_std_q15(
vladvana 0:23d1f73bf130 6674 q15_t * pSrc,
vladvana 0:23d1f73bf130 6675 uint32_t blockSize,
vladvana 0:23d1f73bf130 6676 q15_t * pResult);
vladvana 0:23d1f73bf130 6677
vladvana 0:23d1f73bf130 6678 /**
vladvana 0:23d1f73bf130 6679 * @brief Floating-point complex magnitude
vladvana 0:23d1f73bf130 6680 * @param[in] *pSrc points to the complex input vector
vladvana 0:23d1f73bf130 6681 * @param[out] *pDst points to the real output vector
vladvana 0:23d1f73bf130 6682 * @param[in] numSamples number of complex samples in the input vector
vladvana 0:23d1f73bf130 6683 * @return none.
vladvana 0:23d1f73bf130 6684 */
vladvana 0:23d1f73bf130 6685
vladvana 0:23d1f73bf130 6686 void arm_cmplx_mag_f32(
vladvana 0:23d1f73bf130 6687 float32_t * pSrc,
vladvana 0:23d1f73bf130 6688 float32_t * pDst,
vladvana 0:23d1f73bf130 6689 uint32_t numSamples);
vladvana 0:23d1f73bf130 6690
vladvana 0:23d1f73bf130 6691 /**
vladvana 0:23d1f73bf130 6692 * @brief Q31 complex magnitude
vladvana 0:23d1f73bf130 6693 * @param[in] *pSrc points to the complex input vector
vladvana 0:23d1f73bf130 6694 * @param[out] *pDst points to the real output vector
vladvana 0:23d1f73bf130 6695 * @param[in] numSamples number of complex samples in the input vector
vladvana 0:23d1f73bf130 6696 * @return none.
vladvana 0:23d1f73bf130 6697 */
vladvana 0:23d1f73bf130 6698
vladvana 0:23d1f73bf130 6699 void arm_cmplx_mag_q31(
vladvana 0:23d1f73bf130 6700 q31_t * pSrc,
vladvana 0:23d1f73bf130 6701 q31_t * pDst,
vladvana 0:23d1f73bf130 6702 uint32_t numSamples);
vladvana 0:23d1f73bf130 6703
vladvana 0:23d1f73bf130 6704 /**
vladvana 0:23d1f73bf130 6705 * @brief Q15 complex magnitude
vladvana 0:23d1f73bf130 6706 * @param[in] *pSrc points to the complex input vector
vladvana 0:23d1f73bf130 6707 * @param[out] *pDst points to the real output vector
vladvana 0:23d1f73bf130 6708 * @param[in] numSamples number of complex samples in the input vector
vladvana 0:23d1f73bf130 6709 * @return none.
vladvana 0:23d1f73bf130 6710 */
vladvana 0:23d1f73bf130 6711
vladvana 0:23d1f73bf130 6712 void arm_cmplx_mag_q15(
vladvana 0:23d1f73bf130 6713 q15_t * pSrc,
vladvana 0:23d1f73bf130 6714 q15_t * pDst,
vladvana 0:23d1f73bf130 6715 uint32_t numSamples);
vladvana 0:23d1f73bf130 6716
vladvana 0:23d1f73bf130 6717 /**
vladvana 0:23d1f73bf130 6718 * @brief Q15 complex dot product
vladvana 0:23d1f73bf130 6719 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 6720 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 6721 * @param[in] numSamples number of complex samples in each vector
vladvana 0:23d1f73bf130 6722 * @param[out] *realResult real part of the result returned here
vladvana 0:23d1f73bf130 6723 * @param[out] *imagResult imaginary part of the result returned here
vladvana 0:23d1f73bf130 6724 * @return none.
vladvana 0:23d1f73bf130 6725 */
vladvana 0:23d1f73bf130 6726
vladvana 0:23d1f73bf130 6727 void arm_cmplx_dot_prod_q15(
vladvana 0:23d1f73bf130 6728 q15_t * pSrcA,
vladvana 0:23d1f73bf130 6729 q15_t * pSrcB,
vladvana 0:23d1f73bf130 6730 uint32_t numSamples,
vladvana 0:23d1f73bf130 6731 q31_t * realResult,
vladvana 0:23d1f73bf130 6732 q31_t * imagResult);
vladvana 0:23d1f73bf130 6733
vladvana 0:23d1f73bf130 6734 /**
vladvana 0:23d1f73bf130 6735 * @brief Q31 complex dot product
vladvana 0:23d1f73bf130 6736 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 6737 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 6738 * @param[in] numSamples number of complex samples in each vector
vladvana 0:23d1f73bf130 6739 * @param[out] *realResult real part of the result returned here
vladvana 0:23d1f73bf130 6740 * @param[out] *imagResult imaginary part of the result returned here
vladvana 0:23d1f73bf130 6741 * @return none.
vladvana 0:23d1f73bf130 6742 */
vladvana 0:23d1f73bf130 6743
vladvana 0:23d1f73bf130 6744 void arm_cmplx_dot_prod_q31(
vladvana 0:23d1f73bf130 6745 q31_t * pSrcA,
vladvana 0:23d1f73bf130 6746 q31_t * pSrcB,
vladvana 0:23d1f73bf130 6747 uint32_t numSamples,
vladvana 0:23d1f73bf130 6748 q63_t * realResult,
vladvana 0:23d1f73bf130 6749 q63_t * imagResult);
vladvana 0:23d1f73bf130 6750
vladvana 0:23d1f73bf130 6751 /**
vladvana 0:23d1f73bf130 6752 * @brief Floating-point complex dot product
vladvana 0:23d1f73bf130 6753 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 6754 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 6755 * @param[in] numSamples number of complex samples in each vector
vladvana 0:23d1f73bf130 6756 * @param[out] *realResult real part of the result returned here
vladvana 0:23d1f73bf130 6757 * @param[out] *imagResult imaginary part of the result returned here
vladvana 0:23d1f73bf130 6758 * @return none.
vladvana 0:23d1f73bf130 6759 */
vladvana 0:23d1f73bf130 6760
vladvana 0:23d1f73bf130 6761 void arm_cmplx_dot_prod_f32(
vladvana 0:23d1f73bf130 6762 float32_t * pSrcA,
vladvana 0:23d1f73bf130 6763 float32_t * pSrcB,
vladvana 0:23d1f73bf130 6764 uint32_t numSamples,
vladvana 0:23d1f73bf130 6765 float32_t * realResult,
vladvana 0:23d1f73bf130 6766 float32_t * imagResult);
vladvana 0:23d1f73bf130 6767
vladvana 0:23d1f73bf130 6768 /**
vladvana 0:23d1f73bf130 6769 * @brief Q15 complex-by-real multiplication
vladvana 0:23d1f73bf130 6770 * @param[in] *pSrcCmplx points to the complex input vector
vladvana 0:23d1f73bf130 6771 * @param[in] *pSrcReal points to the real input vector
vladvana 0:23d1f73bf130 6772 * @param[out] *pCmplxDst points to the complex output vector
vladvana 0:23d1f73bf130 6773 * @param[in] numSamples number of samples in each vector
vladvana 0:23d1f73bf130 6774 * @return none.
vladvana 0:23d1f73bf130 6775 */
vladvana 0:23d1f73bf130 6776
vladvana 0:23d1f73bf130 6777 void arm_cmplx_mult_real_q15(
vladvana 0:23d1f73bf130 6778 q15_t * pSrcCmplx,
vladvana 0:23d1f73bf130 6779 q15_t * pSrcReal,
vladvana 0:23d1f73bf130 6780 q15_t * pCmplxDst,
vladvana 0:23d1f73bf130 6781 uint32_t numSamples);
vladvana 0:23d1f73bf130 6782
vladvana 0:23d1f73bf130 6783 /**
vladvana 0:23d1f73bf130 6784 * @brief Q31 complex-by-real multiplication
vladvana 0:23d1f73bf130 6785 * @param[in] *pSrcCmplx points to the complex input vector
vladvana 0:23d1f73bf130 6786 * @param[in] *pSrcReal points to the real input vector
vladvana 0:23d1f73bf130 6787 * @param[out] *pCmplxDst points to the complex output vector
vladvana 0:23d1f73bf130 6788 * @param[in] numSamples number of samples in each vector
vladvana 0:23d1f73bf130 6789 * @return none.
vladvana 0:23d1f73bf130 6790 */
vladvana 0:23d1f73bf130 6791
vladvana 0:23d1f73bf130 6792 void arm_cmplx_mult_real_q31(
vladvana 0:23d1f73bf130 6793 q31_t * pSrcCmplx,
vladvana 0:23d1f73bf130 6794 q31_t * pSrcReal,
vladvana 0:23d1f73bf130 6795 q31_t * pCmplxDst,
vladvana 0:23d1f73bf130 6796 uint32_t numSamples);
vladvana 0:23d1f73bf130 6797
vladvana 0:23d1f73bf130 6798 /**
vladvana 0:23d1f73bf130 6799 * @brief Floating-point complex-by-real multiplication
vladvana 0:23d1f73bf130 6800 * @param[in] *pSrcCmplx points to the complex input vector
vladvana 0:23d1f73bf130 6801 * @param[in] *pSrcReal points to the real input vector
vladvana 0:23d1f73bf130 6802 * @param[out] *pCmplxDst points to the complex output vector
vladvana 0:23d1f73bf130 6803 * @param[in] numSamples number of samples in each vector
vladvana 0:23d1f73bf130 6804 * @return none.
vladvana 0:23d1f73bf130 6805 */
vladvana 0:23d1f73bf130 6806
vladvana 0:23d1f73bf130 6807 void arm_cmplx_mult_real_f32(
vladvana 0:23d1f73bf130 6808 float32_t * pSrcCmplx,
vladvana 0:23d1f73bf130 6809 float32_t * pSrcReal,
vladvana 0:23d1f73bf130 6810 float32_t * pCmplxDst,
vladvana 0:23d1f73bf130 6811 uint32_t numSamples);
vladvana 0:23d1f73bf130 6812
vladvana 0:23d1f73bf130 6813 /**
vladvana 0:23d1f73bf130 6814 * @brief Minimum value of a Q7 vector.
vladvana 0:23d1f73bf130 6815 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6816 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6817 * @param[out] *result is output pointer
vladvana 0:23d1f73bf130 6818 * @param[in] index is the array index of the minimum value in the input buffer.
vladvana 0:23d1f73bf130 6819 * @return none.
vladvana 0:23d1f73bf130 6820 */
vladvana 0:23d1f73bf130 6821
vladvana 0:23d1f73bf130 6822 void arm_min_q7(
vladvana 0:23d1f73bf130 6823 q7_t * pSrc,
vladvana 0:23d1f73bf130 6824 uint32_t blockSize,
vladvana 0:23d1f73bf130 6825 q7_t * result,
vladvana 0:23d1f73bf130 6826 uint32_t * index);
vladvana 0:23d1f73bf130 6827
vladvana 0:23d1f73bf130 6828 /**
vladvana 0:23d1f73bf130 6829 * @brief Minimum value of a Q15 vector.
vladvana 0:23d1f73bf130 6830 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6831 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6832 * @param[out] *pResult is output pointer
vladvana 0:23d1f73bf130 6833 * @param[in] *pIndex is the array index of the minimum value in the input buffer.
vladvana 0:23d1f73bf130 6834 * @return none.
vladvana 0:23d1f73bf130 6835 */
vladvana 0:23d1f73bf130 6836
vladvana 0:23d1f73bf130 6837 void arm_min_q15(
vladvana 0:23d1f73bf130 6838 q15_t * pSrc,
vladvana 0:23d1f73bf130 6839 uint32_t blockSize,
vladvana 0:23d1f73bf130 6840 q15_t * pResult,
vladvana 0:23d1f73bf130 6841 uint32_t * pIndex);
vladvana 0:23d1f73bf130 6842
vladvana 0:23d1f73bf130 6843 /**
vladvana 0:23d1f73bf130 6844 * @brief Minimum value of a Q31 vector.
vladvana 0:23d1f73bf130 6845 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6846 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6847 * @param[out] *pResult is output pointer
vladvana 0:23d1f73bf130 6848 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
vladvana 0:23d1f73bf130 6849 * @return none.
vladvana 0:23d1f73bf130 6850 */
vladvana 0:23d1f73bf130 6851 void arm_min_q31(
vladvana 0:23d1f73bf130 6852 q31_t * pSrc,
vladvana 0:23d1f73bf130 6853 uint32_t blockSize,
vladvana 0:23d1f73bf130 6854 q31_t * pResult,
vladvana 0:23d1f73bf130 6855 uint32_t * pIndex);
vladvana 0:23d1f73bf130 6856
vladvana 0:23d1f73bf130 6857 /**
vladvana 0:23d1f73bf130 6858 * @brief Minimum value of a floating-point vector.
vladvana 0:23d1f73bf130 6859 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 6860 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 6861 * @param[out] *pResult is output pointer
vladvana 0:23d1f73bf130 6862 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
vladvana 0:23d1f73bf130 6863 * @return none.
vladvana 0:23d1f73bf130 6864 */
vladvana 0:23d1f73bf130 6865
vladvana 0:23d1f73bf130 6866 void arm_min_f32(
vladvana 0:23d1f73bf130 6867 float32_t * pSrc,
vladvana 0:23d1f73bf130 6868 uint32_t blockSize,
vladvana 0:23d1f73bf130 6869 float32_t * pResult,
vladvana 0:23d1f73bf130 6870 uint32_t * pIndex);
vladvana 0:23d1f73bf130 6871
vladvana 0:23d1f73bf130 6872 /**
vladvana 0:23d1f73bf130 6873 * @brief Maximum value of a Q7 vector.
vladvana 0:23d1f73bf130 6874 * @param[in] *pSrc points to the input buffer
vladvana 0:23d1f73bf130 6875 * @param[in] blockSize length of the input vector
vladvana 0:23d1f73bf130 6876 * @param[out] *pResult maximum value returned here
vladvana 0:23d1f73bf130 6877 * @param[out] *pIndex index of maximum value returned here
vladvana 0:23d1f73bf130 6878 * @return none.
vladvana 0:23d1f73bf130 6879 */
vladvana 0:23d1f73bf130 6880
vladvana 0:23d1f73bf130 6881 void arm_max_q7(
vladvana 0:23d1f73bf130 6882 q7_t * pSrc,
vladvana 0:23d1f73bf130 6883 uint32_t blockSize,
vladvana 0:23d1f73bf130 6884 q7_t * pResult,
vladvana 0:23d1f73bf130 6885 uint32_t * pIndex);
vladvana 0:23d1f73bf130 6886
vladvana 0:23d1f73bf130 6887 /**
vladvana 0:23d1f73bf130 6888 * @brief Maximum value of a Q15 vector.
vladvana 0:23d1f73bf130 6889 * @param[in] *pSrc points to the input buffer
vladvana 0:23d1f73bf130 6890 * @param[in] blockSize length of the input vector
vladvana 0:23d1f73bf130 6891 * @param[out] *pResult maximum value returned here
vladvana 0:23d1f73bf130 6892 * @param[out] *pIndex index of maximum value returned here
vladvana 0:23d1f73bf130 6893 * @return none.
vladvana 0:23d1f73bf130 6894 */
vladvana 0:23d1f73bf130 6895
vladvana 0:23d1f73bf130 6896 void arm_max_q15(
vladvana 0:23d1f73bf130 6897 q15_t * pSrc,
vladvana 0:23d1f73bf130 6898 uint32_t blockSize,
vladvana 0:23d1f73bf130 6899 q15_t * pResult,
vladvana 0:23d1f73bf130 6900 uint32_t * pIndex);
vladvana 0:23d1f73bf130 6901
vladvana 0:23d1f73bf130 6902 /**
vladvana 0:23d1f73bf130 6903 * @brief Maximum value of a Q31 vector.
vladvana 0:23d1f73bf130 6904 * @param[in] *pSrc points to the input buffer
vladvana 0:23d1f73bf130 6905 * @param[in] blockSize length of the input vector
vladvana 0:23d1f73bf130 6906 * @param[out] *pResult maximum value returned here
vladvana 0:23d1f73bf130 6907 * @param[out] *pIndex index of maximum value returned here
vladvana 0:23d1f73bf130 6908 * @return none.
vladvana 0:23d1f73bf130 6909 */
vladvana 0:23d1f73bf130 6910
vladvana 0:23d1f73bf130 6911 void arm_max_q31(
vladvana 0:23d1f73bf130 6912 q31_t * pSrc,
vladvana 0:23d1f73bf130 6913 uint32_t blockSize,
vladvana 0:23d1f73bf130 6914 q31_t * pResult,
vladvana 0:23d1f73bf130 6915 uint32_t * pIndex);
vladvana 0:23d1f73bf130 6916
vladvana 0:23d1f73bf130 6917 /**
vladvana 0:23d1f73bf130 6918 * @brief Maximum value of a floating-point vector.
vladvana 0:23d1f73bf130 6919 * @param[in] *pSrc points to the input buffer
vladvana 0:23d1f73bf130 6920 * @param[in] blockSize length of the input vector
vladvana 0:23d1f73bf130 6921 * @param[out] *pResult maximum value returned here
vladvana 0:23d1f73bf130 6922 * @param[out] *pIndex index of maximum value returned here
vladvana 0:23d1f73bf130 6923 * @return none.
vladvana 0:23d1f73bf130 6924 */
vladvana 0:23d1f73bf130 6925
vladvana 0:23d1f73bf130 6926 void arm_max_f32(
vladvana 0:23d1f73bf130 6927 float32_t * pSrc,
vladvana 0:23d1f73bf130 6928 uint32_t blockSize,
vladvana 0:23d1f73bf130 6929 float32_t * pResult,
vladvana 0:23d1f73bf130 6930 uint32_t * pIndex);
vladvana 0:23d1f73bf130 6931
vladvana 0:23d1f73bf130 6932 /**
vladvana 0:23d1f73bf130 6933 * @brief Q15 complex-by-complex multiplication
vladvana 0:23d1f73bf130 6934 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 6935 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 6936 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 6937 * @param[in] numSamples number of complex samples in each vector
vladvana 0:23d1f73bf130 6938 * @return none.
vladvana 0:23d1f73bf130 6939 */
vladvana 0:23d1f73bf130 6940
vladvana 0:23d1f73bf130 6941 void arm_cmplx_mult_cmplx_q15(
vladvana 0:23d1f73bf130 6942 q15_t * pSrcA,
vladvana 0:23d1f73bf130 6943 q15_t * pSrcB,
vladvana 0:23d1f73bf130 6944 q15_t * pDst,
vladvana 0:23d1f73bf130 6945 uint32_t numSamples);
vladvana 0:23d1f73bf130 6946
vladvana 0:23d1f73bf130 6947 /**
vladvana 0:23d1f73bf130 6948 * @brief Q31 complex-by-complex multiplication
vladvana 0:23d1f73bf130 6949 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 6950 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 6951 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 6952 * @param[in] numSamples number of complex samples in each vector
vladvana 0:23d1f73bf130 6953 * @return none.
vladvana 0:23d1f73bf130 6954 */
vladvana 0:23d1f73bf130 6955
vladvana 0:23d1f73bf130 6956 void arm_cmplx_mult_cmplx_q31(
vladvana 0:23d1f73bf130 6957 q31_t * pSrcA,
vladvana 0:23d1f73bf130 6958 q31_t * pSrcB,
vladvana 0:23d1f73bf130 6959 q31_t * pDst,
vladvana 0:23d1f73bf130 6960 uint32_t numSamples);
vladvana 0:23d1f73bf130 6961
vladvana 0:23d1f73bf130 6962 /**
vladvana 0:23d1f73bf130 6963 * @brief Floating-point complex-by-complex multiplication
vladvana 0:23d1f73bf130 6964 * @param[in] *pSrcA points to the first input vector
vladvana 0:23d1f73bf130 6965 * @param[in] *pSrcB points to the second input vector
vladvana 0:23d1f73bf130 6966 * @param[out] *pDst points to the output vector
vladvana 0:23d1f73bf130 6967 * @param[in] numSamples number of complex samples in each vector
vladvana 0:23d1f73bf130 6968 * @return none.
vladvana 0:23d1f73bf130 6969 */
vladvana 0:23d1f73bf130 6970
vladvana 0:23d1f73bf130 6971 void arm_cmplx_mult_cmplx_f32(
vladvana 0:23d1f73bf130 6972 float32_t * pSrcA,
vladvana 0:23d1f73bf130 6973 float32_t * pSrcB,
vladvana 0:23d1f73bf130 6974 float32_t * pDst,
vladvana 0:23d1f73bf130 6975 uint32_t numSamples);
vladvana 0:23d1f73bf130 6976
vladvana 0:23d1f73bf130 6977 /**
vladvana 0:23d1f73bf130 6978 * @brief Converts the elements of the floating-point vector to Q31 vector.
vladvana 0:23d1f73bf130 6979 * @param[in] *pSrc points to the floating-point input vector
vladvana 0:23d1f73bf130 6980 * @param[out] *pDst points to the Q31 output vector
vladvana 0:23d1f73bf130 6981 * @param[in] blockSize length of the input vector
vladvana 0:23d1f73bf130 6982 * @return none.
vladvana 0:23d1f73bf130 6983 */
vladvana 0:23d1f73bf130 6984 void arm_float_to_q31(
vladvana 0:23d1f73bf130 6985 float32_t * pSrc,
vladvana 0:23d1f73bf130 6986 q31_t * pDst,
vladvana 0:23d1f73bf130 6987 uint32_t blockSize);
vladvana 0:23d1f73bf130 6988
vladvana 0:23d1f73bf130 6989 /**
vladvana 0:23d1f73bf130 6990 * @brief Converts the elements of the floating-point vector to Q15 vector.
vladvana 0:23d1f73bf130 6991 * @param[in] *pSrc points to the floating-point input vector
vladvana 0:23d1f73bf130 6992 * @param[out] *pDst points to the Q15 output vector
vladvana 0:23d1f73bf130 6993 * @param[in] blockSize length of the input vector
vladvana 0:23d1f73bf130 6994 * @return none
vladvana 0:23d1f73bf130 6995 */
vladvana 0:23d1f73bf130 6996 void arm_float_to_q15(
vladvana 0:23d1f73bf130 6997 float32_t * pSrc,
vladvana 0:23d1f73bf130 6998 q15_t * pDst,
vladvana 0:23d1f73bf130 6999 uint32_t blockSize);
vladvana 0:23d1f73bf130 7000
vladvana 0:23d1f73bf130 7001 /**
vladvana 0:23d1f73bf130 7002 * @brief Converts the elements of the floating-point vector to Q7 vector.
vladvana 0:23d1f73bf130 7003 * @param[in] *pSrc points to the floating-point input vector
vladvana 0:23d1f73bf130 7004 * @param[out] *pDst points to the Q7 output vector
vladvana 0:23d1f73bf130 7005 * @param[in] blockSize length of the input vector
vladvana 0:23d1f73bf130 7006 * @return none
vladvana 0:23d1f73bf130 7007 */
vladvana 0:23d1f73bf130 7008 void arm_float_to_q7(
vladvana 0:23d1f73bf130 7009 float32_t * pSrc,
vladvana 0:23d1f73bf130 7010 q7_t * pDst,
vladvana 0:23d1f73bf130 7011 uint32_t blockSize);
vladvana 0:23d1f73bf130 7012
vladvana 0:23d1f73bf130 7013
vladvana 0:23d1f73bf130 7014 /**
vladvana 0:23d1f73bf130 7015 * @brief Converts the elements of the Q31 vector to Q15 vector.
vladvana 0:23d1f73bf130 7016 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 7017 * @param[out] *pDst is output pointer
vladvana 0:23d1f73bf130 7018 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 7019 * @return none.
vladvana 0:23d1f73bf130 7020 */
vladvana 0:23d1f73bf130 7021 void arm_q31_to_q15(
vladvana 0:23d1f73bf130 7022 q31_t * pSrc,
vladvana 0:23d1f73bf130 7023 q15_t * pDst,
vladvana 0:23d1f73bf130 7024 uint32_t blockSize);
vladvana 0:23d1f73bf130 7025
vladvana 0:23d1f73bf130 7026 /**
vladvana 0:23d1f73bf130 7027 * @brief Converts the elements of the Q31 vector to Q7 vector.
vladvana 0:23d1f73bf130 7028 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 7029 * @param[out] *pDst is output pointer
vladvana 0:23d1f73bf130 7030 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 7031 * @return none.
vladvana 0:23d1f73bf130 7032 */
vladvana 0:23d1f73bf130 7033 void arm_q31_to_q7(
vladvana 0:23d1f73bf130 7034 q31_t * pSrc,
vladvana 0:23d1f73bf130 7035 q7_t * pDst,
vladvana 0:23d1f73bf130 7036 uint32_t blockSize);
vladvana 0:23d1f73bf130 7037
vladvana 0:23d1f73bf130 7038 /**
vladvana 0:23d1f73bf130 7039 * @brief Converts the elements of the Q15 vector to floating-point vector.
vladvana 0:23d1f73bf130 7040 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 7041 * @param[out] *pDst is output pointer
vladvana 0:23d1f73bf130 7042 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 7043 * @return none.
vladvana 0:23d1f73bf130 7044 */
vladvana 0:23d1f73bf130 7045 void arm_q15_to_float(
vladvana 0:23d1f73bf130 7046 q15_t * pSrc,
vladvana 0:23d1f73bf130 7047 float32_t * pDst,
vladvana 0:23d1f73bf130 7048 uint32_t blockSize);
vladvana 0:23d1f73bf130 7049
vladvana 0:23d1f73bf130 7050
vladvana 0:23d1f73bf130 7051 /**
vladvana 0:23d1f73bf130 7052 * @brief Converts the elements of the Q15 vector to Q31 vector.
vladvana 0:23d1f73bf130 7053 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 7054 * @param[out] *pDst is output pointer
vladvana 0:23d1f73bf130 7055 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 7056 * @return none.
vladvana 0:23d1f73bf130 7057 */
vladvana 0:23d1f73bf130 7058 void arm_q15_to_q31(
vladvana 0:23d1f73bf130 7059 q15_t * pSrc,
vladvana 0:23d1f73bf130 7060 q31_t * pDst,
vladvana 0:23d1f73bf130 7061 uint32_t blockSize);
vladvana 0:23d1f73bf130 7062
vladvana 0:23d1f73bf130 7063
vladvana 0:23d1f73bf130 7064 /**
vladvana 0:23d1f73bf130 7065 * @brief Converts the elements of the Q15 vector to Q7 vector.
vladvana 0:23d1f73bf130 7066 * @param[in] *pSrc is input pointer
vladvana 0:23d1f73bf130 7067 * @param[out] *pDst is output pointer
vladvana 0:23d1f73bf130 7068 * @param[in] blockSize is the number of samples to process
vladvana 0:23d1f73bf130 7069 * @return none.
vladvana 0:23d1f73bf130 7070 */
vladvana 0:23d1f73bf130 7071 void arm_q15_to_q7(
vladvana 0:23d1f73bf130 7072 q15_t * pSrc,
vladvana 0:23d1f73bf130 7073 q7_t * pDst,
vladvana 0:23d1f73bf130 7074 uint32_t blockSize);
vladvana 0:23d1f73bf130 7075
vladvana 0:23d1f73bf130 7076
vladvana 0:23d1f73bf130 7077 /**
vladvana 0:23d1f73bf130 7078 * @ingroup groupInterpolation
vladvana 0:23d1f73bf130 7079 */
vladvana 0:23d1f73bf130 7080
vladvana 0:23d1f73bf130 7081 /**
vladvana 0:23d1f73bf130 7082 * @defgroup BilinearInterpolate Bilinear Interpolation
vladvana 0:23d1f73bf130 7083 *
vladvana 0:23d1f73bf130 7084 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
vladvana 0:23d1f73bf130 7085 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
vladvana 0:23d1f73bf130 7086 * determines values between the grid points.
vladvana 0:23d1f73bf130 7087 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
vladvana 0:23d1f73bf130 7088 * Bilinear interpolation is often used in image processing to rescale images.
vladvana 0:23d1f73bf130 7089 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
vladvana 0:23d1f73bf130 7090 *
vladvana 0:23d1f73bf130 7091 * <b>Algorithm</b>
vladvana 0:23d1f73bf130 7092 * \par
vladvana 0:23d1f73bf130 7093 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
vladvana 0:23d1f73bf130 7094 * For floating-point, the instance structure is defined as:
vladvana 0:23d1f73bf130 7095 * <pre>
vladvana 0:23d1f73bf130 7096 * typedef struct
vladvana 0:23d1f73bf130 7097 * {
vladvana 0:23d1f73bf130 7098 * uint16_t numRows;
vladvana 0:23d1f73bf130 7099 * uint16_t numCols;
vladvana 0:23d1f73bf130 7100 * float32_t *pData;
vladvana 0:23d1f73bf130 7101 * } arm_bilinear_interp_instance_f32;
vladvana 0:23d1f73bf130 7102 * </pre>
vladvana 0:23d1f73bf130 7103 *
vladvana 0:23d1f73bf130 7104 * \par
vladvana 0:23d1f73bf130 7105 * where <code>numRows</code> specifies the number of rows in the table;
vladvana 0:23d1f73bf130 7106 * <code>numCols</code> specifies the number of columns in the table;
vladvana 0:23d1f73bf130 7107 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
vladvana 0:23d1f73bf130 7108 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
vladvana 0:23d1f73bf130 7109 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
vladvana 0:23d1f73bf130 7110 *
vladvana 0:23d1f73bf130 7111 * \par
vladvana 0:23d1f73bf130 7112 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
vladvana 0:23d1f73bf130 7113 * <pre>
vladvana 0:23d1f73bf130 7114 * XF = floor(x)
vladvana 0:23d1f73bf130 7115 * YF = floor(y)
vladvana 0:23d1f73bf130 7116 * </pre>
vladvana 0:23d1f73bf130 7117 * \par
vladvana 0:23d1f73bf130 7118 * The interpolated output point is computed as:
vladvana 0:23d1f73bf130 7119 * <pre>
vladvana 0:23d1f73bf130 7120 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
vladvana 0:23d1f73bf130 7121 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
vladvana 0:23d1f73bf130 7122 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
vladvana 0:23d1f73bf130 7123 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
vladvana 0:23d1f73bf130 7124 * </pre>
vladvana 0:23d1f73bf130 7125 * Note that the coordinates (x, y) contain integer and fractional components.
vladvana 0:23d1f73bf130 7126 * The integer components specify which portion of the table to use while the
vladvana 0:23d1f73bf130 7127 * fractional components control the interpolation processor.
vladvana 0:23d1f73bf130 7128 *
vladvana 0:23d1f73bf130 7129 * \par
vladvana 0:23d1f73bf130 7130 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
vladvana 0:23d1f73bf130 7131 */
vladvana 0:23d1f73bf130 7132
vladvana 0:23d1f73bf130 7133 /**
vladvana 0:23d1f73bf130 7134 * @addtogroup BilinearInterpolate
vladvana 0:23d1f73bf130 7135 * @{
vladvana 0:23d1f73bf130 7136 */
vladvana 0:23d1f73bf130 7137
vladvana 0:23d1f73bf130 7138 /**
vladvana 0:23d1f73bf130 7139 *
vladvana 0:23d1f73bf130 7140 * @brief Floating-point bilinear interpolation.
vladvana 0:23d1f73bf130 7141 * @param[in,out] *S points to an instance of the interpolation structure.
vladvana 0:23d1f73bf130 7142 * @param[in] X interpolation coordinate.
vladvana 0:23d1f73bf130 7143 * @param[in] Y interpolation coordinate.
vladvana 0:23d1f73bf130 7144 * @return out interpolated value.
vladvana 0:23d1f73bf130 7145 */
vladvana 0:23d1f73bf130 7146
vladvana 0:23d1f73bf130 7147
vladvana 0:23d1f73bf130 7148 static __INLINE float32_t arm_bilinear_interp_f32(
vladvana 0:23d1f73bf130 7149 const arm_bilinear_interp_instance_f32 * S,
vladvana 0:23d1f73bf130 7150 float32_t X,
vladvana 0:23d1f73bf130 7151 float32_t Y)
vladvana 0:23d1f73bf130 7152 {
vladvana 0:23d1f73bf130 7153 float32_t out;
vladvana 0:23d1f73bf130 7154 float32_t f00, f01, f10, f11;
vladvana 0:23d1f73bf130 7155 float32_t *pData = S->pData;
vladvana 0:23d1f73bf130 7156 int32_t xIndex, yIndex, index;
vladvana 0:23d1f73bf130 7157 float32_t xdiff, ydiff;
vladvana 0:23d1f73bf130 7158 float32_t b1, b2, b3, b4;
vladvana 0:23d1f73bf130 7159
vladvana 0:23d1f73bf130 7160 xIndex = (int32_t) X;
vladvana 0:23d1f73bf130 7161 yIndex = (int32_t) Y;
vladvana 0:23d1f73bf130 7162
vladvana 0:23d1f73bf130 7163 /* Care taken for table outside boundary */
vladvana 0:23d1f73bf130 7164 /* Returns zero output when values are outside table boundary */
vladvana 0:23d1f73bf130 7165 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
vladvana 0:23d1f73bf130 7166 || yIndex > (S->numCols - 1))
vladvana 0:23d1f73bf130 7167 {
vladvana 0:23d1f73bf130 7168 return (0);
vladvana 0:23d1f73bf130 7169 }
vladvana 0:23d1f73bf130 7170
vladvana 0:23d1f73bf130 7171 /* Calculation of index for two nearest points in X-direction */
vladvana 0:23d1f73bf130 7172 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
vladvana 0:23d1f73bf130 7173
vladvana 0:23d1f73bf130 7174
vladvana 0:23d1f73bf130 7175 /* Read two nearest points in X-direction */
vladvana 0:23d1f73bf130 7176 f00 = pData[index];
vladvana 0:23d1f73bf130 7177 f01 = pData[index + 1];
vladvana 0:23d1f73bf130 7178
vladvana 0:23d1f73bf130 7179 /* Calculation of index for two nearest points in Y-direction */
vladvana 0:23d1f73bf130 7180 index = (xIndex - 1) + (yIndex) * S->numCols;
vladvana 0:23d1f73bf130 7181
vladvana 0:23d1f73bf130 7182
vladvana 0:23d1f73bf130 7183 /* Read two nearest points in Y-direction */
vladvana 0:23d1f73bf130 7184 f10 = pData[index];
vladvana 0:23d1f73bf130 7185 f11 = pData[index + 1];
vladvana 0:23d1f73bf130 7186
vladvana 0:23d1f73bf130 7187 /* Calculation of intermediate values */
vladvana 0:23d1f73bf130 7188 b1 = f00;
vladvana 0:23d1f73bf130 7189 b2 = f01 - f00;
vladvana 0:23d1f73bf130 7190 b3 = f10 - f00;
vladvana 0:23d1f73bf130 7191 b4 = f00 - f01 - f10 + f11;
vladvana 0:23d1f73bf130 7192
vladvana 0:23d1f73bf130 7193 /* Calculation of fractional part in X */
vladvana 0:23d1f73bf130 7194 xdiff = X - xIndex;
vladvana 0:23d1f73bf130 7195
vladvana 0:23d1f73bf130 7196 /* Calculation of fractional part in Y */
vladvana 0:23d1f73bf130 7197 ydiff = Y - yIndex;
vladvana 0:23d1f73bf130 7198
vladvana 0:23d1f73bf130 7199 /* Calculation of bi-linear interpolated output */
vladvana 0:23d1f73bf130 7200 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
vladvana 0:23d1f73bf130 7201
vladvana 0:23d1f73bf130 7202 /* return to application */
vladvana 0:23d1f73bf130 7203 return (out);
vladvana 0:23d1f73bf130 7204
vladvana 0:23d1f73bf130 7205 }
vladvana 0:23d1f73bf130 7206
vladvana 0:23d1f73bf130 7207 /**
vladvana 0:23d1f73bf130 7208 *
vladvana 0:23d1f73bf130 7209 * @brief Q31 bilinear interpolation.
vladvana 0:23d1f73bf130 7210 * @param[in,out] *S points to an instance of the interpolation structure.
vladvana 0:23d1f73bf130 7211 * @param[in] X interpolation coordinate in 12.20 format.
vladvana 0:23d1f73bf130 7212 * @param[in] Y interpolation coordinate in 12.20 format.
vladvana 0:23d1f73bf130 7213 * @return out interpolated value.
vladvana 0:23d1f73bf130 7214 */
vladvana 0:23d1f73bf130 7215
vladvana 0:23d1f73bf130 7216 static __INLINE q31_t arm_bilinear_interp_q31(
vladvana 0:23d1f73bf130 7217 arm_bilinear_interp_instance_q31 * S,
vladvana 0:23d1f73bf130 7218 q31_t X,
vladvana 0:23d1f73bf130 7219 q31_t Y)
vladvana 0:23d1f73bf130 7220 {
vladvana 0:23d1f73bf130 7221 q31_t out; /* Temporary output */
vladvana 0:23d1f73bf130 7222 q31_t acc = 0; /* output */
vladvana 0:23d1f73bf130 7223 q31_t xfract, yfract; /* X, Y fractional parts */
vladvana 0:23d1f73bf130 7224 q31_t x1, x2, y1, y2; /* Nearest output values */
vladvana 0:23d1f73bf130 7225 int32_t rI, cI; /* Row and column indices */
vladvana 0:23d1f73bf130 7226 q31_t *pYData = S->pData; /* pointer to output table values */
vladvana 0:23d1f73bf130 7227 uint32_t nCols = S->numCols; /* num of rows */
vladvana 0:23d1f73bf130 7228
vladvana 0:23d1f73bf130 7229
vladvana 0:23d1f73bf130 7230 /* Input is in 12.20 format */
vladvana 0:23d1f73bf130 7231 /* 12 bits for the table index */
vladvana 0:23d1f73bf130 7232 /* Index value calculation */
vladvana 0:23d1f73bf130 7233 rI = ((X & 0xFFF00000) >> 20u);
vladvana 0:23d1f73bf130 7234
vladvana 0:23d1f73bf130 7235 /* Input is in 12.20 format */
vladvana 0:23d1f73bf130 7236 /* 12 bits for the table index */
vladvana 0:23d1f73bf130 7237 /* Index value calculation */
vladvana 0:23d1f73bf130 7238 cI = ((Y & 0xFFF00000) >> 20u);
vladvana 0:23d1f73bf130 7239
vladvana 0:23d1f73bf130 7240 /* Care taken for table outside boundary */
vladvana 0:23d1f73bf130 7241 /* Returns zero output when values are outside table boundary */
vladvana 0:23d1f73bf130 7242 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
vladvana 0:23d1f73bf130 7243 {
vladvana 0:23d1f73bf130 7244 return (0);
vladvana 0:23d1f73bf130 7245 }
vladvana 0:23d1f73bf130 7246
vladvana 0:23d1f73bf130 7247 /* 20 bits for the fractional part */
vladvana 0:23d1f73bf130 7248 /* shift left xfract by 11 to keep 1.31 format */
vladvana 0:23d1f73bf130 7249 xfract = (X & 0x000FFFFF) << 11u;
vladvana 0:23d1f73bf130 7250
vladvana 0:23d1f73bf130 7251 /* Read two nearest output values from the index */
vladvana 0:23d1f73bf130 7252 x1 = pYData[(rI) + nCols * (cI)];
vladvana 0:23d1f73bf130 7253 x2 = pYData[(rI) + nCols * (cI) + 1u];
vladvana 0:23d1f73bf130 7254
vladvana 0:23d1f73bf130 7255 /* 20 bits for the fractional part */
vladvana 0:23d1f73bf130 7256 /* shift left yfract by 11 to keep 1.31 format */
vladvana 0:23d1f73bf130 7257 yfract = (Y & 0x000FFFFF) << 11u;
vladvana 0:23d1f73bf130 7258
vladvana 0:23d1f73bf130 7259 /* Read two nearest output values from the index */
vladvana 0:23d1f73bf130 7260 y1 = pYData[(rI) + nCols * (cI + 1)];
vladvana 0:23d1f73bf130 7261 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
vladvana 0:23d1f73bf130 7262
vladvana 0:23d1f73bf130 7263 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
vladvana 0:23d1f73bf130 7264 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
vladvana 0:23d1f73bf130 7265 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
vladvana 0:23d1f73bf130 7266
vladvana 0:23d1f73bf130 7267 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
vladvana 0:23d1f73bf130 7268 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
vladvana 0:23d1f73bf130 7269 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
vladvana 0:23d1f73bf130 7270
vladvana 0:23d1f73bf130 7271 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
vladvana 0:23d1f73bf130 7272 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
vladvana 0:23d1f73bf130 7273 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
vladvana 0:23d1f73bf130 7274
vladvana 0:23d1f73bf130 7275 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
vladvana 0:23d1f73bf130 7276 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
vladvana 0:23d1f73bf130 7277 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
vladvana 0:23d1f73bf130 7278
vladvana 0:23d1f73bf130 7279 /* Convert acc to 1.31(q31) format */
vladvana 0:23d1f73bf130 7280 return (acc << 2u);
vladvana 0:23d1f73bf130 7281
vladvana 0:23d1f73bf130 7282 }
vladvana 0:23d1f73bf130 7283
vladvana 0:23d1f73bf130 7284 /**
vladvana 0:23d1f73bf130 7285 * @brief Q15 bilinear interpolation.
vladvana 0:23d1f73bf130 7286 * @param[in,out] *S points to an instance of the interpolation structure.
vladvana 0:23d1f73bf130 7287 * @param[in] X interpolation coordinate in 12.20 format.
vladvana 0:23d1f73bf130 7288 * @param[in] Y interpolation coordinate in 12.20 format.
vladvana 0:23d1f73bf130 7289 * @return out interpolated value.
vladvana 0:23d1f73bf130 7290 */
vladvana 0:23d1f73bf130 7291
vladvana 0:23d1f73bf130 7292 static __INLINE q15_t arm_bilinear_interp_q15(
vladvana 0:23d1f73bf130 7293 arm_bilinear_interp_instance_q15 * S,
vladvana 0:23d1f73bf130 7294 q31_t X,
vladvana 0:23d1f73bf130 7295 q31_t Y)
vladvana 0:23d1f73bf130 7296 {
vladvana 0:23d1f73bf130 7297 q63_t acc = 0; /* output */
vladvana 0:23d1f73bf130 7298 q31_t out; /* Temporary output */
vladvana 0:23d1f73bf130 7299 q15_t x1, x2, y1, y2; /* Nearest output values */
vladvana 0:23d1f73bf130 7300 q31_t xfract, yfract; /* X, Y fractional parts */
vladvana 0:23d1f73bf130 7301 int32_t rI, cI; /* Row and column indices */
vladvana 0:23d1f73bf130 7302 q15_t *pYData = S->pData; /* pointer to output table values */
vladvana 0:23d1f73bf130 7303 uint32_t nCols = S->numCols; /* num of rows */
vladvana 0:23d1f73bf130 7304
vladvana 0:23d1f73bf130 7305 /* Input is in 12.20 format */
vladvana 0:23d1f73bf130 7306 /* 12 bits for the table index */
vladvana 0:23d1f73bf130 7307 /* Index value calculation */
vladvana 0:23d1f73bf130 7308 rI = ((X & 0xFFF00000) >> 20);
vladvana 0:23d1f73bf130 7309
vladvana 0:23d1f73bf130 7310 /* Input is in 12.20 format */
vladvana 0:23d1f73bf130 7311 /* 12 bits for the table index */
vladvana 0:23d1f73bf130 7312 /* Index value calculation */
vladvana 0:23d1f73bf130 7313 cI = ((Y & 0xFFF00000) >> 20);
vladvana 0:23d1f73bf130 7314
vladvana 0:23d1f73bf130 7315 /* Care taken for table outside boundary */
vladvana 0:23d1f73bf130 7316 /* Returns zero output when values are outside table boundary */
vladvana 0:23d1f73bf130 7317 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
vladvana 0:23d1f73bf130 7318 {
vladvana 0:23d1f73bf130 7319 return (0);
vladvana 0:23d1f73bf130 7320 }
vladvana 0:23d1f73bf130 7321
vladvana 0:23d1f73bf130 7322 /* 20 bits for the fractional part */
vladvana 0:23d1f73bf130 7323 /* xfract should be in 12.20 format */
vladvana 0:23d1f73bf130 7324 xfract = (X & 0x000FFFFF);
vladvana 0:23d1f73bf130 7325
vladvana 0:23d1f73bf130 7326 /* Read two nearest output values from the index */
vladvana 0:23d1f73bf130 7327 x1 = pYData[(rI) + nCols * (cI)];
vladvana 0:23d1f73bf130 7328 x2 = pYData[(rI) + nCols * (cI) + 1u];
vladvana 0:23d1f73bf130 7329
vladvana 0:23d1f73bf130 7330
vladvana 0:23d1f73bf130 7331 /* 20 bits for the fractional part */
vladvana 0:23d1f73bf130 7332 /* yfract should be in 12.20 format */
vladvana 0:23d1f73bf130 7333 yfract = (Y & 0x000FFFFF);
vladvana 0:23d1f73bf130 7334
vladvana 0:23d1f73bf130 7335 /* Read two nearest output values from the index */
vladvana 0:23d1f73bf130 7336 y1 = pYData[(rI) + nCols * (cI + 1)];
vladvana 0:23d1f73bf130 7337 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
vladvana 0:23d1f73bf130 7338
vladvana 0:23d1f73bf130 7339 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
vladvana 0:23d1f73bf130 7340
vladvana 0:23d1f73bf130 7341 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
vladvana 0:23d1f73bf130 7342 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
vladvana 0:23d1f73bf130 7343 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
vladvana 0:23d1f73bf130 7344 acc = ((q63_t) out * (0xFFFFF - yfract));
vladvana 0:23d1f73bf130 7345
vladvana 0:23d1f73bf130 7346 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
vladvana 0:23d1f73bf130 7347 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
vladvana 0:23d1f73bf130 7348 acc += ((q63_t) out * (xfract));
vladvana 0:23d1f73bf130 7349
vladvana 0:23d1f73bf130 7350 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
vladvana 0:23d1f73bf130 7351 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
vladvana 0:23d1f73bf130 7352 acc += ((q63_t) out * (yfract));
vladvana 0:23d1f73bf130 7353
vladvana 0:23d1f73bf130 7354 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
vladvana 0:23d1f73bf130 7355 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
vladvana 0:23d1f73bf130 7356 acc += ((q63_t) out * (yfract));
vladvana 0:23d1f73bf130 7357
vladvana 0:23d1f73bf130 7358 /* acc is in 13.51 format and down shift acc by 36 times */
vladvana 0:23d1f73bf130 7359 /* Convert out to 1.15 format */
vladvana 0:23d1f73bf130 7360 return (acc >> 36);
vladvana 0:23d1f73bf130 7361
vladvana 0:23d1f73bf130 7362 }
vladvana 0:23d1f73bf130 7363
vladvana 0:23d1f73bf130 7364 /**
vladvana 0:23d1f73bf130 7365 * @brief Q7 bilinear interpolation.
vladvana 0:23d1f73bf130 7366 * @param[in,out] *S points to an instance of the interpolation structure.
vladvana 0:23d1f73bf130 7367 * @param[in] X interpolation coordinate in 12.20 format.
vladvana 0:23d1f73bf130 7368 * @param[in] Y interpolation coordinate in 12.20 format.
vladvana 0:23d1f73bf130 7369 * @return out interpolated value.
vladvana 0:23d1f73bf130 7370 */
vladvana 0:23d1f73bf130 7371
vladvana 0:23d1f73bf130 7372 static __INLINE q7_t arm_bilinear_interp_q7(
vladvana 0:23d1f73bf130 7373 arm_bilinear_interp_instance_q7 * S,
vladvana 0:23d1f73bf130 7374 q31_t X,
vladvana 0:23d1f73bf130 7375 q31_t Y)
vladvana 0:23d1f73bf130 7376 {
vladvana 0:23d1f73bf130 7377 q63_t acc = 0; /* output */
vladvana 0:23d1f73bf130 7378 q31_t out; /* Temporary output */
vladvana 0:23d1f73bf130 7379 q31_t xfract, yfract; /* X, Y fractional parts */
vladvana 0:23d1f73bf130 7380 q7_t x1, x2, y1, y2; /* Nearest output values */
vladvana 0:23d1f73bf130 7381 int32_t rI, cI; /* Row and column indices */
vladvana 0:23d1f73bf130 7382 q7_t *pYData = S->pData; /* pointer to output table values */
vladvana 0:23d1f73bf130 7383 uint32_t nCols = S->numCols; /* num of rows */
vladvana 0:23d1f73bf130 7384
vladvana 0:23d1f73bf130 7385 /* Input is in 12.20 format */
vladvana 0:23d1f73bf130 7386 /* 12 bits for the table index */
vladvana 0:23d1f73bf130 7387 /* Index value calculation */
vladvana 0:23d1f73bf130 7388 rI = ((X & 0xFFF00000) >> 20);
vladvana 0:23d1f73bf130 7389
vladvana 0:23d1f73bf130 7390 /* Input is in 12.20 format */
vladvana 0:23d1f73bf130 7391 /* 12 bits for the table index */
vladvana 0:23d1f73bf130 7392 /* Index value calculation */
vladvana 0:23d1f73bf130 7393 cI = ((Y & 0xFFF00000) >> 20);
vladvana 0:23d1f73bf130 7394
vladvana 0:23d1f73bf130 7395 /* Care taken for table outside boundary */
vladvana 0:23d1f73bf130 7396 /* Returns zero output when values are outside table boundary */
vladvana 0:23d1f73bf130 7397 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
vladvana 0:23d1f73bf130 7398 {
vladvana 0:23d1f73bf130 7399 return (0);
vladvana 0:23d1f73bf130 7400 }
vladvana 0:23d1f73bf130 7401
vladvana 0:23d1f73bf130 7402 /* 20 bits for the fractional part */
vladvana 0:23d1f73bf130 7403 /* xfract should be in 12.20 format */
vladvana 0:23d1f73bf130 7404 xfract = (X & 0x000FFFFF);
vladvana 0:23d1f73bf130 7405
vladvana 0:23d1f73bf130 7406 /* Read two nearest output values from the index */
vladvana 0:23d1f73bf130 7407 x1 = pYData[(rI) + nCols * (cI)];
vladvana 0:23d1f73bf130 7408 x2 = pYData[(rI) + nCols * (cI) + 1u];
vladvana 0:23d1f73bf130 7409
vladvana 0:23d1f73bf130 7410
vladvana 0:23d1f73bf130 7411 /* 20 bits for the fractional part */
vladvana 0:23d1f73bf130 7412 /* yfract should be in 12.20 format */
vladvana 0:23d1f73bf130 7413 yfract = (Y & 0x000FFFFF);
vladvana 0:23d1f73bf130 7414
vladvana 0:23d1f73bf130 7415 /* Read two nearest output values from the index */
vladvana 0:23d1f73bf130 7416 y1 = pYData[(rI) + nCols * (cI + 1)];
vladvana 0:23d1f73bf130 7417 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
vladvana 0:23d1f73bf130 7418
vladvana 0:23d1f73bf130 7419 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
vladvana 0:23d1f73bf130 7420 out = ((x1 * (0xFFFFF - xfract)));
vladvana 0:23d1f73bf130 7421 acc = (((q63_t) out * (0xFFFFF - yfract)));
vladvana 0:23d1f73bf130 7422
vladvana 0:23d1f73bf130 7423 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
vladvana 0:23d1f73bf130 7424 out = ((x2 * (0xFFFFF - yfract)));
vladvana 0:23d1f73bf130 7425 acc += (((q63_t) out * (xfract)));
vladvana 0:23d1f73bf130 7426
vladvana 0:23d1f73bf130 7427 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
vladvana 0:23d1f73bf130 7428 out = ((y1 * (0xFFFFF - xfract)));
vladvana 0:23d1f73bf130 7429 acc += (((q63_t) out * (yfract)));
vladvana 0:23d1f73bf130 7430
vladvana 0:23d1f73bf130 7431 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
vladvana 0:23d1f73bf130 7432 out = ((y2 * (yfract)));
vladvana 0:23d1f73bf130 7433 acc += (((q63_t) out * (xfract)));
vladvana 0:23d1f73bf130 7434
vladvana 0:23d1f73bf130 7435 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
vladvana 0:23d1f73bf130 7436 return (acc >> 40);
vladvana 0:23d1f73bf130 7437
vladvana 0:23d1f73bf130 7438 }
vladvana 0:23d1f73bf130 7439
vladvana 0:23d1f73bf130 7440 /**
vladvana 0:23d1f73bf130 7441 * @} end of BilinearInterpolate group
vladvana 0:23d1f73bf130 7442 */
vladvana 0:23d1f73bf130 7443
vladvana 0:23d1f73bf130 7444
vladvana 0:23d1f73bf130 7445 //SMMLAR
vladvana 0:23d1f73bf130 7446 #define multAcc_32x32_keep32_R(a, x, y) \
vladvana 0:23d1f73bf130 7447 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
vladvana 0:23d1f73bf130 7448
vladvana 0:23d1f73bf130 7449 //SMMLSR
vladvana 0:23d1f73bf130 7450 #define multSub_32x32_keep32_R(a, x, y) \
vladvana 0:23d1f73bf130 7451 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
vladvana 0:23d1f73bf130 7452
vladvana 0:23d1f73bf130 7453 //SMMULR
vladvana 0:23d1f73bf130 7454 #define mult_32x32_keep32_R(a, x, y) \
vladvana 0:23d1f73bf130 7455 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
vladvana 0:23d1f73bf130 7456
vladvana 0:23d1f73bf130 7457 //SMMLA
vladvana 0:23d1f73bf130 7458 #define multAcc_32x32_keep32(a, x, y) \
vladvana 0:23d1f73bf130 7459 a += (q31_t) (((q63_t) x * y) >> 32)
vladvana 0:23d1f73bf130 7460
vladvana 0:23d1f73bf130 7461 //SMMLS
vladvana 0:23d1f73bf130 7462 #define multSub_32x32_keep32(a, x, y) \
vladvana 0:23d1f73bf130 7463 a -= (q31_t) (((q63_t) x * y) >> 32)
vladvana 0:23d1f73bf130 7464
vladvana 0:23d1f73bf130 7465 //SMMUL
vladvana 0:23d1f73bf130 7466 #define mult_32x32_keep32(a, x, y) \
vladvana 0:23d1f73bf130 7467 a = (q31_t) (((q63_t) x * y ) >> 32)
vladvana 0:23d1f73bf130 7468
vladvana 0:23d1f73bf130 7469
vladvana 0:23d1f73bf130 7470 #if defined ( __CC_ARM ) //Keil
vladvana 0:23d1f73bf130 7471
vladvana 0:23d1f73bf130 7472 //Enter low optimization region - place directly above function definition
vladvana 0:23d1f73bf130 7473 #ifdef ARM_MATH_CM4
vladvana 0:23d1f73bf130 7474 #define LOW_OPTIMIZATION_ENTER \
vladvana 0:23d1f73bf130 7475 _Pragma ("push") \
vladvana 0:23d1f73bf130 7476 _Pragma ("O1")
vladvana 0:23d1f73bf130 7477 #else
vladvana 0:23d1f73bf130 7478 #define LOW_OPTIMIZATION_ENTER
vladvana 0:23d1f73bf130 7479 #endif
vladvana 0:23d1f73bf130 7480
vladvana 0:23d1f73bf130 7481 //Exit low optimization region - place directly after end of function definition
vladvana 0:23d1f73bf130 7482 #ifdef ARM_MATH_CM4
vladvana 0:23d1f73bf130 7483 #define LOW_OPTIMIZATION_EXIT \
vladvana 0:23d1f73bf130 7484 _Pragma ("pop")
vladvana 0:23d1f73bf130 7485 #else
vladvana 0:23d1f73bf130 7486 #define LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7487 #endif
vladvana 0:23d1f73bf130 7488
vladvana 0:23d1f73bf130 7489 //Enter low optimization region - place directly above function definition
vladvana 0:23d1f73bf130 7490 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
vladvana 0:23d1f73bf130 7491
vladvana 0:23d1f73bf130 7492 //Exit low optimization region - place directly after end of function definition
vladvana 0:23d1f73bf130 7493 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7494
vladvana 0:23d1f73bf130 7495 #elif defined(__ICCARM__) //IAR
vladvana 0:23d1f73bf130 7496
vladvana 0:23d1f73bf130 7497 //Enter low optimization region - place directly above function definition
vladvana 0:23d1f73bf130 7498 #ifdef ARM_MATH_CM4
vladvana 0:23d1f73bf130 7499 #define LOW_OPTIMIZATION_ENTER \
vladvana 0:23d1f73bf130 7500 _Pragma ("optimize=low")
vladvana 0:23d1f73bf130 7501 #else
vladvana 0:23d1f73bf130 7502 #define LOW_OPTIMIZATION_ENTER
vladvana 0:23d1f73bf130 7503 #endif
vladvana 0:23d1f73bf130 7504
vladvana 0:23d1f73bf130 7505 //Exit low optimization region - place directly after end of function definition
vladvana 0:23d1f73bf130 7506 #define LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7507
vladvana 0:23d1f73bf130 7508 //Enter low optimization region - place directly above function definition
vladvana 0:23d1f73bf130 7509 #ifdef ARM_MATH_CM4
vladvana 0:23d1f73bf130 7510 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
vladvana 0:23d1f73bf130 7511 _Pragma ("optimize=low")
vladvana 0:23d1f73bf130 7512 #else
vladvana 0:23d1f73bf130 7513 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
vladvana 0:23d1f73bf130 7514 #endif
vladvana 0:23d1f73bf130 7515
vladvana 0:23d1f73bf130 7516 //Exit low optimization region - place directly after end of function definition
vladvana 0:23d1f73bf130 7517 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7518
vladvana 0:23d1f73bf130 7519 #elif defined(__GNUC__)
vladvana 0:23d1f73bf130 7520
vladvana 0:23d1f73bf130 7521 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
vladvana 0:23d1f73bf130 7522
vladvana 0:23d1f73bf130 7523 #define LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7524
vladvana 0:23d1f73bf130 7525 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
vladvana 0:23d1f73bf130 7526
vladvana 0:23d1f73bf130 7527 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7528
vladvana 0:23d1f73bf130 7529 #elif defined(__CSMC__) // Cosmic
vladvana 0:23d1f73bf130 7530
vladvana 0:23d1f73bf130 7531 #define LOW_OPTIMIZATION_ENTER
vladvana 0:23d1f73bf130 7532 #define LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7533 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
vladvana 0:23d1f73bf130 7534 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7535
vladvana 0:23d1f73bf130 7536 #elif defined(__TASKING__) // TASKING
vladvana 0:23d1f73bf130 7537
vladvana 0:23d1f73bf130 7538 #define LOW_OPTIMIZATION_ENTER
vladvana 0:23d1f73bf130 7539 #define LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7540 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
vladvana 0:23d1f73bf130 7541 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
vladvana 0:23d1f73bf130 7542
vladvana 0:23d1f73bf130 7543 #endif
vladvana 0:23d1f73bf130 7544
vladvana 0:23d1f73bf130 7545
vladvana 0:23d1f73bf130 7546 #ifdef __cplusplus
vladvana 0:23d1f73bf130 7547 }
vladvana 0:23d1f73bf130 7548 #endif
vladvana 0:23d1f73bf130 7549
vladvana 0:23d1f73bf130 7550
vladvana 0:23d1f73bf130 7551 #endif /* _ARM_MATH_H */
vladvana 0:23d1f73bf130 7552
vladvana 0:23d1f73bf130 7553 /**
vladvana 0:23d1f73bf130 7554 *
vladvana 0:23d1f73bf130 7555 * End of file.
vladvana 0:23d1f73bf130 7556 */