cya_u
Fork of CyaSSL-forEncrypt by
ssl.c
- Committer:
- toddouska
- Date:
- 2011-02-05
- Revision:
- 0:5045d2638c29
File content as of revision 0:5045d2638c29:
/* ssl.c * * Copyright (C) 2006-2009 Sawtooth Consulting Ltd. * * This file is part of CyaSSL. * * CyaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * CyaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include "ssl.h" #include "cyassl_int.h" #include "cyassl_error.h" #include "coding.h" #ifdef OPENSSL_EXTRA /* openssl headers begin */ #include "evp.h" #include "hmac.h" #include "crypto.h" #include "des.h" /* openssl headers end, cyassl internal headers next */ #include "ctc_hmac.h" #include "random.h" #include "des3.h" #include "ctc_md4.h" #include "coding.h" #endif #ifdef HAVE_ERRNO_H #include <errno.h> #endif #define TRUE 1 #define FALSE 0 #ifndef min static INLINE word32 min(word32 a, word32 b) { return a > b ? b : a; } #endif /* min */ SSL_CTX* SSL_CTX_new(SSL_METHOD* method) { SSL_CTX* ctx = (SSL_CTX*) XMALLOC(sizeof(SSL_CTX), 0, DYNAMIC_TYPE_CTX); if (ctx) InitSSL_Ctx(ctx, method); return ctx; } void SSL_CTX_free(SSL_CTX* ctx) { if (ctx) FreeSSL_Ctx(ctx); } SSL* SSL_new(SSL_CTX* ctx) { SSL* ssl = (SSL*) XMALLOC(sizeof(SSL), ctx->heap, DYNAMIC_TYPE_SSL); if (ssl) if (InitSSL(ssl, ctx) < 0) { FreeSSL(ssl); ssl = 0; } return ssl; } void SSL_free(SSL* ssl) { CYASSL_ENTER("SSL_free"); if (ssl) FreeSSL(ssl); CYASSL_LEAVE("SSL_free", 0); } int SSL_set_fd(SSL* ssl, int fd) { ssl->rfd = fd; /* not used directly to allow IO callbacks */ ssl->wfd = fd; ssl->IOCB_ReadCtx = &ssl->rfd; ssl->IOCB_WriteCtx = &ssl->wfd; return SSL_SUCCESS; } int SSL_get_fd(const SSL* ssl) { return ssl->rfd; } int CyaSSL_negotiate(SSL* ssl) { int err = -1; #ifndef NO_CYASSL_SERVER if (ssl->options.side == SERVER_END) err = SSL_accept(ssl); #endif #ifndef NO_CYASSL_CLIENT if (ssl->options.side == CLIENT_END) err = SSL_connect(ssl); #endif if (err == SSL_SUCCESS) return 0; else return err; } int SSL_write(SSL* ssl, const void* buffer, int sz) { int ret; CYASSL_ENTER("SSL_write()"); #ifdef HAVE_ERRNO_H errno = 0; #endif ret = SendData(ssl, buffer, sz); CYASSL_LEAVE("SSL_write()", ret); if (ret < 0) return SSL_FATAL_ERROR; else return ret; } int SSL_read(SSL* ssl, void* buffer, int sz) { int ret; CYASSL_ENTER("SSL_read()"); #ifdef HAVE_ERRNO_H errno = 0; #endif ret = ReceiveData(ssl, (byte*)buffer, min(sz, OUTPUT_RECORD_SIZE)); CYASSL_LEAVE("SSL_read()", ret); if (ret < 0) return SSL_FATAL_ERROR; else return ret; } int SSL_shutdown(SSL* ssl) { CYASSL_ENTER("SSL_shutdown()"); if (ssl->options.quietShutdown) { CYASSL_MSG("quiet shutdown, no close notify sent"); return 0; } /* try to send close notify, not an error if can't */ if (!ssl->options.isClosed && !ssl->options.connReset && !ssl->options.sentNotify) { ssl->error = SendAlert(ssl, alert_warning, close_notify); if (ssl->error < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.sentNotify = 1; /* don't send close_notify twice */ } CYASSL_LEAVE("SSL_shutdown()", ssl->error); ssl->error = SSL_ERROR_SYSCALL; /* simulate OpenSSL behavior */ return 0; } int SSL_get_error(SSL* ssl, int dummy) { if (ssl->error == WANT_READ) return SSL_ERROR_WANT_READ; /* convert to OpenSSL type */ else if (ssl->error == WANT_WRITE) return SSL_ERROR_WANT_WRITE; /* convert to OpenSSL type */ else if (ssl->error == ZERO_RETURN) return SSL_ERROR_ZERO_RETURN; /* convert to OpenSSL type */ return ssl->error; } int SSL_want_read(SSL* ssl) { if (ssl->error == WANT_READ) return 1; return 0; } int SSL_want_write(SSL* ssl) { if (ssl->error == WANT_WRITE) return 1; return 0; } char* ERR_error_string(unsigned long errNumber, char* buffer) { static char* msg = "Please supply a buffer for error string"; if (buffer) { SetErrorString(errNumber, buffer); return buffer; } return msg; } void ERR_error_string_n(unsigned long e, char* buf, size_t len) { if (len) ERR_error_string(e, buf); } #ifndef NO_FILESYSTEM void ERR_print_errors_fp(FILE* fp, int err) { char buffer[MAX_ERROR_SZ + 1]; SetErrorString(err, buffer); fprintf(fp, "%s", buffer); } #endif int SSL_pending(SSL* ssl) { return ssl->buffers.clearOutputBuffer.length; } /* owns der */ static int AddCA(SSL_CTX* ctx, buffer der) { word32 ret; DecodedCert cert; Signer* signer = 0; InitDecodedCert(&cert, der.buffer, ctx->heap); ret = ParseCert(&cert, der.length, CA_TYPE, ctx->verifyPeer, 0); if (ret == 0) { /* take over signer parts */ signer = MakeSigner(ctx->heap); if (!signer) ret = MEMORY_ERROR; else { signer->keyOID = cert.keyOID; signer->publicKey = cert.publicKey; signer->pubKeySize = cert.pubKeySize; signer->name = cert.subjectCN; XMEMCPY(signer->hash, cert.subjectHash, SHA_DIGEST_SIZE); cert.publicKey = 0; /* don't free here */ cert.subjectCN = 0; signer->next = ctx->caList; ctx->caList = signer; /* takes ownership */ } } FreeDecodedCert(&cert); XFREE(der.buffer, ctx->heap, DYNAMIC_TYPE_CA); if (ret == 0) return SSL_SUCCESS; return ret; } #ifndef NO_SESSION_CACHE /* basic config gives a cache with 33 sessions, adequate for clients and embedded servers BIG_SESSION_CACHE allows 1055 sessions, adequate for servers that aren't under heavy load, basically allows 200 new sessions per minute HUGE_SESSION_CACHE yields 65,791 sessions, for servers under heavy load, allows over 13,000 new sessions per minute or over 200 new sessions per second */ #ifdef HUGE_SESSION_CACHE #define SESSIONS_PER_ROW 11 #define SESSION_ROWS 5981 #elif defined(BIG_SESSION_CACHE) #define SESSIONS_PER_ROW 5 #define SESSION_ROWS 211 #else #define SESSIONS_PER_ROW 3 #define SESSION_ROWS 11 #endif typedef struct SessionRow { int nextIdx; /* where to place next one */ int totalCount; /* sessions ever on this row */ SSL_SESSION Sessions[SESSIONS_PER_ROW]; } SessionRow; static SessionRow SessionCache[SESSION_ROWS]; static CyaSSL_Mutex mutex; /* SessionCache mutex */ #endif /* NO_SESSION_CACHE */ static int PemToDer(const unsigned char* buff, long sz, int type, buffer* der, void* heap, EncryptedInfo* info) { char header[PEM_LINE_LEN]; char footer[PEM_LINE_LEN]; char* headerEnd; char* footerEnd; long neededSz; int pkcs8 = 0; int dynamicType; if (type == CERT_TYPE || type == CA_TYPE) { XSTRNCPY(header, "-----BEGIN CERTIFICATE-----", sizeof(header)); XSTRNCPY(footer, "-----END CERTIFICATE-----", sizeof(footer)); dynamicType = (type == CA_TYPE) ? DYNAMIC_TYPE_CA : DYNAMIC_TYPE_CERT; } else { XSTRNCPY(header, "-----BEGIN RSA PRIVATE KEY-----", sizeof(header)); XSTRNCPY(footer, "-----END RSA PRIVATE KEY-----", sizeof(footer)); dynamicType = DYNAMIC_TYPE_KEY; } /* find header */ headerEnd = XSTRSTR((char*)buff, header); if (!headerEnd && type == PRIVATEKEY_TYPE) { /* may be pkcs8 */ XSTRNCPY(header, "-----BEGIN PRIVATE KEY-----", sizeof(header)); XSTRNCPY(footer, "-----END PRIVATE KEY-----", sizeof(footer)); headerEnd = XSTRSTR((char*)buff, header); if (headerEnd) pkcs8 = 1; /* else maybe encrypted "-----BEGIN ENCRYPTED PRIVATE KEY-----" */ } if (!headerEnd) return SSL_BAD_FILE; headerEnd += XSTRLEN(header); /* get next line */ if (headerEnd[0] == '\n') headerEnd++; else if (headerEnd[1] == '\n') headerEnd += 2; else return SSL_BAD_FILE; #ifdef OPENSSL_EXTRA { /* remove encrypted header if there */ char encHeader[] = "Proc-Type"; char* line = XSTRSTR((char*)buff, encHeader); if (line) { char* newline; char* finish; char* start = XSTRSTR(line, "DES"); if (!start) start = XSTRSTR(line, "AES"); if (!start) return SSL_BAD_FILE; if (!info) return SSL_BAD_FILE; finish = XSTRSTR(start, ","); if (start && finish && (start < finish)) { newline = XSTRSTR(finish, "\r"); XMEMCPY(info->name, start, finish - start); info->name[finish - start] = 0; XMEMCPY(info->iv, finish + 1, sizeof(info->iv)); if (!newline) newline = XSTRSTR(finish, "\n"); if (newline && (newline > finish)) { info->ivSz = (word32)(newline - (finish + 1)); info->set = 1; } else return SSL_BAD_FILE; } else return SSL_BAD_FILE; /* eat blank line */ while (*newline == '\r' || *newline == '\n') newline++; headerEnd = newline; } } #endif /* OPENSSL_EXTRA */ /* find footer */ footerEnd = XSTRSTR((char*)buff, footer); if (!footerEnd) return SSL_BAD_FILE; /* set up der buffer */ neededSz = (long)(footerEnd - headerEnd); if (neededSz > sz || neededSz < 0) return SSL_BAD_FILE; der->buffer = (byte*) XMALLOC(neededSz, heap, dynamicType); if (!der->buffer) return MEMORY_ERROR; der->length = neededSz; if (Base64Decode((byte*)headerEnd, neededSz, der->buffer, &der->length) < 0) return SSL_BAD_FILE; if (pkcs8) return ToTraditional(der->buffer, der->length); /* not full support yet if (pkcs8Enc) return ToTraditionalEnc(der->buffer, der->length); */ return 0; } static int ProcessBuffer(SSL_CTX* ctx, const unsigned char* buff, long sz, int format, int type) { EncryptedInfo info; buffer der; /* holds DER or RAW (for NTRU */ int dynamicType; info.set = 0; der.buffer = 0; if (format != SSL_FILETYPE_ASN1 && format != SSL_FILETYPE_PEM && format != SSL_FILETYPE_RAW) return SSL_BAD_FILETYPE; if (type == CA_TYPE) dynamicType = DYNAMIC_TYPE_CA; else if (type == CERT_TYPE) dynamicType = DYNAMIC_TYPE_CERT; else dynamicType = DYNAMIC_TYPE_KEY; if (format == SSL_FILETYPE_PEM) { if (PemToDer(buff, sz, type, &der, ctx->heap, &info) < 0) { XFREE(der.buffer, ctx->heap, dynamicType); return SSL_BAD_FILE; } } else { /* ASN1 (DER) or RAW (NTRU) */ der.buffer = (byte*) XMALLOC(sz, ctx->heap, dynamicType); if (!der.buffer) return MEMORY_ERROR; XMEMCPY(der.buffer, buff, sz); der.length = sz; } #ifdef OPENSSL_EXTRA if (info.set) { /* decrypt */ char password[80]; int passwordSz; byte key[AES_256_KEY_SIZE]; byte iv[AES_IV_SIZE]; if (!ctx->passwd_cb) return -1; /* use file's salt for key derivation, hex decode first */ if (Base16Decode(info.iv, info.ivSz, info.iv, &info.ivSz) != 0) return -1; passwordSz = ctx->passwd_cb(password, sizeof(password), 0, ctx->userdata); if (EVP_BytesToKey(info.name, "MD5", info.iv, (byte*)password, passwordSz, 1, key, iv) <= 0) return -1; if (XSTRNCMP(info.name, "DES-CBC", 7) == 0) { Des des; Des_SetKey(&des, key, info.iv, DES_DECRYPTION); Des_CbcDecrypt(&des, der.buffer, der.buffer, der.length); } else if (XSTRNCMP(info.name, "DES-EDE3-CBC", 13) == 0) { Des3 des; Des3_SetKey(&des, key, info.iv, DES_DECRYPTION); Des3_CbcDecrypt(&des, der.buffer, der.buffer, der.length); } else if (XSTRNCMP(info.name, "AES-128-CBC", 13) == 0) { Aes aes; AesSetKey(&aes, key, AES_128_KEY_SIZE, info.iv, AES_DECRYPTION); AesCbcDecrypt(&aes, der.buffer, der.buffer, der.length); } else if (XSTRNCMP(info.name, "AES-192-CBC", 13) == 0) { Aes aes; AesSetKey(&aes, key, AES_192_KEY_SIZE, info.iv, AES_DECRYPTION); AesCbcDecrypt(&aes, der.buffer, der.buffer, der.length); } else if (XSTRNCMP(info.name, "AES-256-CBC", 13) == 0) { Aes aes; AesSetKey(&aes, key, AES_256_KEY_SIZE, info.iv, AES_DECRYPTION); AesCbcDecrypt(&aes, der.buffer, der.buffer, der.length); } else return SSL_BAD_FILE; } #endif /* OPENSSL_EXTRA */ if (type == CA_TYPE) return AddCA(ctx, der); /* takes der over */ else if (type == CERT_TYPE) { if (ctx->certificate.buffer) XFREE(ctx->certificate.buffer, ctx->heap, dynamicType); ctx->certificate = der; /* takes der over */ } else if (type == PRIVATEKEY_TYPE) { if (ctx->privateKey.buffer) XFREE(ctx->privateKey.buffer, ctx->heap, dynamicType); ctx->privateKey = der; /* takes der over */ } else { XFREE(der.buffer, ctx->heap, dynamicType); return SSL_BAD_CERTTYPE; } if (type == PRIVATEKEY_TYPE && format != SSL_FILETYPE_RAW) { /* make sure RSA key can be used */ RsaKey key; word32 idx = 0; InitRsaKey(&key, 0); if (RsaPrivateKeyDecode(der.buffer, &idx, &key, der.length) != 0) { FreeRsaKey(&key); return SSL_BAD_FILE; } FreeRsaKey(&key); } return SSL_SUCCESS; } #ifndef NO_FILESYSTEM #ifndef MICRIUM #define XFILE FILE #define XFOPEN fopen #define XFSEEK fseek #define XFTELL ftell #define XREWIND rewind #define XFREAD fread #define XFCLOSE fclose #define XSEEK_END SEEK_END #else #include <fs.h> #define XFILE FS_FILE #define XFOPEN fs_fopen #define XFSEEK fs_fseek #define XFTELL fs_ftell #define XREWIND fs_rewind #define XFREAD fs_fread #define XFCLOSE fs_fclose #define XSEEK_END FS_SEEK_END #endif static int ProcessFile(SSL_CTX* ctx, const char* fname, int format, int type) { byte staticBuffer[FILE_BUFFER_SIZE]; byte* buffer = staticBuffer; int dynamic = 0; int ret; long sz = 0; XFILE* file = XFOPEN(fname, "rb"); if (!file) return SSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > sizeof(staticBuffer)) { buffer = (byte*) XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE); if (buffer == NULL) { XFCLOSE(file); return SSL_BAD_FILE; } dynamic = 1; } if ( (ret = XFREAD(buffer, sz, 1, file)) < 0) ret = SSL_BAD_FILE; else ret = ProcessBuffer(ctx, buffer, sz, format, type); XFCLOSE(file); if (dynamic) XFREE(buffer, ctx->heap, DYNAMIC_TYPE_FILE); return ret; } /* just one for now TODO: add dir support from path */ int SSL_CTX_load_verify_locations(SSL_CTX* ctx, const char* file, const char* path) { if (ProcessFile(ctx, file, SSL_FILETYPE_PEM, CA_TYPE) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } #ifdef CYASSL_DER_LOAD /* Add format parameter to allow DER load of CA files */ int CyaSSL_CTX_load_verify_locations(SSL_CTX* ctx, const char* file, int format) { if (ProcessFile(ctx, file, format, CA_TYPE) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } #endif /* CYASSL_DER_LOAD */ #ifdef CYASSL_CERT_GEN /* load pem cert from file into der buffer, return der size or error */ int CyaSSL_PemCertToDer(const char* fileName, unsigned char* derBuf, int derSz) { byte staticBuffer[FILE_BUFFER_SIZE]; byte* fileBuf = staticBuffer; int dynamic = 0; int ret; long sz = 0; XFILE* file = XFOPEN(fileName, "rb"); EncryptedInfo info; buffer converted; converted.buffer = 0; if (!file) return SSL_BAD_FILE; XFSEEK(file, 0, XSEEK_END); sz = XFTELL(file); XREWIND(file); if (sz > sizeof(staticBuffer)) { fileBuf = (byte*) XMALLOC(sz, 0, DYNAMIC_TYPE_FILE); if (fileBuf == NULL) { XFCLOSE(file); return SSL_BAD_FILE; } dynamic = 1; } if ( (ret = XFREAD(fileBuf, sz, 1, file)) < 0) ret = SSL_BAD_FILE; else ret = PemToDer(fileBuf, sz, CA_TYPE, &converted, 0, &info); if (ret == 0) { if (converted.length < derSz) { memcpy(derBuf, converted.buffer, converted.length); ret = converted.length; } else ret = BUFFER_E; } XFREE(converted.buffer, 0, DYNAMIC_TYPE_CA); if (dynamic) XFREE(fileBuf, 0, DYNAMIC_TYPE_FILE); XFCLOSE(file); return ret; } #endif /* CYASSL_CERT_GEN */ int SSL_CTX_use_certificate_file(SSL_CTX* ctx, const char* file, int format) { if (ProcessFile(ctx, file, format, CERT_TYPE) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } int SSL_CTX_use_PrivateKey_file(SSL_CTX* ctx, const char* file, int format) { if (ProcessFile(ctx, file, format, PRIVATEKEY_TYPE) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } int SSL_CTX_use_certificate_chain_file(SSL_CTX* ctx, const char* file) { /* add first to ctx, all tested implementations support this */ if (ProcessFile(ctx, file, SSL_FILETYPE_PEM, CERT_TYPE) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } #ifdef HAVE_NTRU int CyaSSL_CTX_use_NTRUPrivateKey_file(SSL_CTX* ctx, const char* file) { if (ProcessFile(ctx, file, SSL_FILETYPE_RAW, PRIVATEKEY_TYPE) == SSL_SUCCESS) { ctx->haveNTRU = 1; return SSL_SUCCESS; } return SSL_FAILURE; } #endif /* HAVE_NTRU */ #ifdef OPENSSL_EXTRA int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX* ctx,const char* file,int format) { if (ProcessFile(ctx, file, format, PRIVATEKEY_TYPE) == SSL_SUCCESS) return SSL_SUCCESS; return SSL_FAILURE; } #endif /* OPENSSL_EXTRA */ #endif /* NO_FILESYSTEM */ void SSL_CTX_set_verify(SSL_CTX* ctx, int mode, VerifyCallback vc) { if (mode & SSL_VERIFY_PEER) { ctx->verifyPeer = 1; ctx->verifyNone = 0; /* in case perviously set */ } if (mode == SSL_VERIFY_NONE) { ctx->verifyNone = 1; ctx->verifyPeer = 0; /* in case previously set */ } if (mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) ctx->failNoCert = 1; ctx->verifyCallback = vc; } #ifndef NO_SESSION_CACHE SSL_SESSION* SSL_get_session(SSL* ssl) { return GetSession(ssl, 0); } int SSL_set_session(SSL* ssl, SSL_SESSION* session) { if (session) return SetSession(ssl, session); return SSL_FAILURE; } #endif /* NO_SESSION_CACHE */ void SSL_load_error_strings(void) /* compatibility only */ {} int SSL_library_init(void) { if (InitCyaSSL() == 0) return SSL_SUCCESS; else return -1; } #ifndef NO_SESSION_CACHE /* on by default if built in but allow user to turn off */ long SSL_CTX_set_session_cache_mode(SSL_CTX* ctx, long mode) { if (mode == SSL_SESS_CACHE_OFF) ctx->sessionCacheOff = 1; if (mode == SSL_SESS_CACHE_NO_AUTO_CLEAR) ctx->sessionCacheFlushOff = 1; return SSL_SUCCESS; } #endif /* NO_SESSION_CACHE */ int SSL_CTX_set_cipher_list(SSL_CTX* ctx, const char* list) { if (SetCipherList(ctx, list)) return SSL_SUCCESS; else return SSL_FAILURE; } /* client only parts */ #ifndef NO_CYASSL_CLIENT SSL_METHOD* SSLv3_client_method(void) { SSL_METHOD* method = (SSL_METHOD*) XMALLOC(sizeof(SSL_METHOD), 0, DYNAMIC_TYPE_METHOD); if (method) InitSSL_Method(method, MakeSSLv3()); return method; } #ifdef CYASSL_DTLS SSL_METHOD* DTLSv1_client_method(void) { SSL_METHOD* method = (SSL_METHOD*) XMALLOC(sizeof(SSL_METHOD), 0, DYNAMIC_TYPE_METHOD); if (method) InitSSL_Method(method, MakeDTLSv1()); return method; } #endif /* please see note at top of README if you get an error from connect */ int SSL_connect(SSL* ssl) { int neededState; CYASSL_ENTER("SSL_connect()"); #ifdef HAVE_ERRNO_H errno = 0; #endif if (ssl->options.side != CLIENT_END) { CYASSL_ERROR(ssl->error = SIDE_ERROR); return SSL_FATAL_ERROR; } #ifdef CYASSL_DTLS if (ssl->version.major == DTLS_MAJOR && ssl->version.minor == DTLS_MINOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; } #endif if (ssl->buffers.outputBuffer.length > 0) { if ( (ssl->error = SendBuffered(ssl)) == 0) { ssl->options.connectState++; CYASSL_MSG("connect state: Advanced from buffered send"); } else { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } switch (ssl->options.connectState) { case CONNECT_BEGIN : /* always send client hello first */ if ( (ssl->error = SendClientHello(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = CLIENT_HELLO_SENT; CYASSL_MSG("connect state: CLIENT_HELLO_SENT"); case CLIENT_HELLO_SENT : neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; #ifdef CYASSL_DTLS if (ssl->options.dtls && !ssl->options.resuming) neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; #endif /* get response */ while (ssl->options.serverState < neededState) { if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ else if (neededState == SERVER_FINISHED_COMPLETE) if (!ssl->options.resuming) { if (!ssl->options.dtls) neededState = SERVER_HELLODONE_COMPLETE; else neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE; } } ssl->options.connectState = HELLO_AGAIN; CYASSL_MSG("connect state: HELLO_AGAIN"); case HELLO_AGAIN : #ifdef CYASSL_DTLS if (ssl->options.dtls && !ssl->options.resuming) { /* re-init hashes, exclude first hello and verify request */ InitMd5(&ssl->hashMd5); InitSha(&ssl->hashSha); if ( (ssl->error = SendClientHello(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif ssl->options.connectState = HELLO_AGAIN_REPLY; CYASSL_MSG("connect state: HELLO_AGAIN_REPLY"); case HELLO_AGAIN_REPLY : #ifdef CYASSL_DTLS if (ssl->options.dtls) { neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE; /* get response */ while (ssl->options.serverState < neededState) { if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } /* if resumption failed, reset needed state */ else if (neededState == SERVER_FINISHED_COMPLETE) if (!ssl->options.resuming) neededState = SERVER_HELLODONE_COMPLETE; } } #endif ssl->options.connectState = FIRST_REPLY_DONE; CYASSL_MSG("connect state: FIRST_REPLY_DONE"); case FIRST_REPLY_DONE : if (ssl->options.sendVerify) if ( (ssl->error = SendCertificate(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = FIRST_REPLY_FIRST; CYASSL_MSG("connect state: FIRST_REPLY_FIRST"); case FIRST_REPLY_FIRST : if (!ssl->options.resuming) if ( (ssl->error = SendClientKeyExchange(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = FIRST_REPLY_SECOND; CYASSL_MSG("connect state: FIRST_REPLY_SECOND"); case FIRST_REPLY_SECOND : if (ssl->options.sendVerify) if ( (ssl->error = SendCertificateVerify(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = FIRST_REPLY_THIRD; CYASSL_MSG("connect state: FIRST_REPLY_THIRD"); case FIRST_REPLY_THIRD : if ( (ssl->error = SendChangeCipher(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = FIRST_REPLY_FOURTH; CYASSL_MSG("connect state: FIRST_REPLY_FOURTH"); case FIRST_REPLY_FOURTH : if ( (ssl->error = SendFinished(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = FINISHED_DONE; CYASSL_MSG("connect state: FINISHED_DONE"); case FINISHED_DONE : /* get response */ while (ssl->options.serverState < SERVER_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.connectState = SECOND_REPLY_DONE; CYASSL_MSG("connect state: SECOND_REPLY_DONE"); case SECOND_REPLY_DONE: if (ssl->buffers.inputBuffer.dynamicFlag) ShrinkInputBuffer(ssl, NO_FORCED_FREE); CYASSL_LEAVE("SSL_connect()", SSL_SUCCESS); return SSL_SUCCESS; default: CYASSL_MSG("Unknown connect state ERROR"); return SSL_FATAL_ERROR; /* unknown connect state */ } } #endif /* NO_CYASSL_CLIENT */ /* server only parts */ #ifndef NO_CYASSL_SERVER SSL_METHOD* SSLv3_server_method(void) { SSL_METHOD* method = (SSL_METHOD*) XMALLOC(sizeof(SSL_METHOD), 0, DYNAMIC_TYPE_METHOD); if (method) { InitSSL_Method(method, MakeSSLv3()); method->side = SERVER_END; } return method; } #ifdef CYASSL_DTLS SSL_METHOD* DTLSv1_server_method(void) { SSL_METHOD* method = (SSL_METHOD*) XMALLOC(sizeof(SSL_METHOD), 0, DYNAMIC_TYPE_METHOD); if (method) { InitSSL_Method(method, MakeDTLSv1()); method->side = SERVER_END; } return method; } #endif int SSL_accept(SSL* ssl) { CYASSL_ENTER("SSL_accept()"); #ifdef HAVE_ERRNO_H errno = 0; #endif if (ssl->options.side != SERVER_END) { CYASSL_ERROR(ssl->error = SIDE_ERROR); return SSL_FATAL_ERROR; } #ifdef CYASSL_DTLS if (ssl->version.major == DTLS_MAJOR && ssl->version.minor == DTLS_MINOR) { ssl->options.dtls = 1; ssl->options.tls = 1; ssl->options.tls1_1 = 1; } #endif if (ssl->buffers.outputBuffer.length > 0) { if ( (ssl->error = SendBuffered(ssl)) == 0) { ssl->options.acceptState++; CYASSL_MSG("accept state: Advanced from buffered send"); } else { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } switch (ssl->options.acceptState) { case ACCEPT_BEGIN : /* get response */ while (ssl->options.clientState < CLIENT_HELLO_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE; CYASSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE"); case ACCEPT_CLIENT_HELLO_DONE : #ifdef CYASSL_DTLS if (ssl->options.dtls && !ssl->options.resuming) if ( (ssl->error = SendHelloVerifyRequest(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } #endif ssl->options.acceptState = HELLO_VERIFY_SENT; CYASSL_MSG("accept state HELLO_VERIFY_SENT"); case HELLO_VERIFY_SENT: #ifdef CYASSL_DTLS if (ssl->options.dtls && !ssl->options.resuming) { ssl->options.clientState = NULL_STATE; /* get again */ /* re-init hashes, exclude first hello and verify request */ InitMd5(&ssl->hashMd5); InitSha(&ssl->hashSha); while (ssl->options.clientState < CLIENT_HELLO_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } #endif ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE; CYASSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE"); case ACCEPT_FIRST_REPLY_DONE : if ( (ssl->error = SendServerHello(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_SENT; CYASSL_MSG("accept state SERVER_HELLO_SENT"); case SERVER_HELLO_SENT : if (!ssl->options.resuming) if ( (ssl->error = SendCertificate(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = CERT_SENT; CYASSL_MSG("accept state CERT_SENT"); case CERT_SENT : if (!ssl->options.resuming) if ( (ssl->error = SendServerKeyExchange(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = KEY_EXCHANGE_SENT; CYASSL_MSG("accept state KEY_EXCHANGE_SENT"); case KEY_EXCHANGE_SENT : if (!ssl->options.resuming) if (ssl->options.verifyPeer) if ( (ssl->error = SendCertificateRequest(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = CERT_REQ_SENT; CYASSL_MSG("accept state CERT_REQ_SENT"); case CERT_REQ_SENT : if (!ssl->options.resuming) if ( (ssl->error = SendServerHelloDone(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = SERVER_HELLO_DONE; CYASSL_MSG("accept state SERVER_HELLO_DONE"); case SERVER_HELLO_DONE : if (!ssl->options.resuming) { while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } } ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE; CYASSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE"); case ACCEPT_SECOND_REPLY_DONE : if ( (ssl->error = SendChangeCipher(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = CHANGE_CIPHER_SENT; CYASSL_MSG("accept state CHANGE_CIPHER_SENT"); case CHANGE_CIPHER_SENT : if ( (ssl->error = SendFinished(ssl)) != 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_FINISHED_DONE; CYASSL_MSG("accept state ACCEPT_FINISHED_DONE"); case ACCEPT_FINISHED_DONE : if (ssl->options.resuming) while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE) if ( (ssl->error = ProcessReply(ssl)) < 0) { CYASSL_ERROR(ssl->error); return SSL_FATAL_ERROR; } ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE; CYASSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE"); case ACCEPT_THIRD_REPLY_DONE : if (ssl->buffers.inputBuffer.dynamicFlag) ShrinkInputBuffer(ssl, NO_FORCED_FREE); CYASSL_LEAVE("SSL_accept()", SSL_SUCCESS); return SSL_SUCCESS; default : CYASSL_MSG("Unknown accept state ERROR"); return SSL_FATAL_ERROR; } } #endif /* NO_CYASSL_SERVER */ int InitCyaSSL(void) { if (InitMutex(&mutex) == 0) return 0; else return -1; } int FreeCyaSSL(void) { if (FreeMutex(&mutex) == 0) return 0; else return -1; } #ifndef NO_SESSION_CACHE static INLINE word32 HashSession(const byte* sessionID) { /* id is random, just make 32 bit number from first 4 bytes for now */ return (sessionID[0] << 24) | (sessionID[1] << 16) | (sessionID[2] << 8) | sessionID[3]; } void SSL_flush_sessions(SSL_CTX* ctx, long tm) { /* static table now, no flusing needed */ } SSL_SESSION* GetSession(SSL* ssl, byte* masterSecret) { SSL_SESSION* ret = 0; const byte* id = ssl->arrays.sessionID; word32 row; int idx; if (ssl->options.sessionCacheOff) return 0; row = HashSession(id) % SESSION_ROWS; if (LockMutex(&mutex) != 0) return 0; if (SessionCache[row].totalCount >= SESSIONS_PER_ROW) idx = SESSIONS_PER_ROW - 1; else idx = SessionCache[row].nextIdx - 1; for (; idx >= 0; idx--) { SSL_SESSION* current; if (idx >= SESSIONS_PER_ROW) /* server could have restarted, idx */ break; /* would be word32(-1) and seg fault */ current = &SessionCache[row].Sessions[idx]; if (XMEMCMP(current->sessionID, id, ID_LEN) == 0) { if (LowResTimer() < (current->bornOn + current->timeout)) { ret = current; if (masterSecret) XMEMCPY(masterSecret, current->masterSecret, SECRET_LEN); } break; } } UnLockMutex(&mutex); return ret; } int SetSession(SSL* ssl, SSL_SESSION* session) { if (ssl->options.sessionCacheOff) return SSL_FAILURE; if (LowResTimer() < (session->bornOn + session->timeout)) { ssl->session = *session; ssl->options.resuming = 1; #ifdef SESSION_CERTS ssl->version = session->version; ssl->options.cipherSuite = session->cipherSuite; #endif return SSL_SUCCESS; } return SSL_FAILURE; /* session timed out */ } int AddSession(SSL* ssl) { word32 row, idx; if (ssl->options.sessionCacheOff) return 0; row = HashSession(ssl->arrays.sessionID) % SESSION_ROWS; if (LockMutex(&mutex) != 0) return -1; idx = SessionCache[row].nextIdx++; XMEMCPY(SessionCache[row].Sessions[idx].masterSecret, ssl->arrays.masterSecret, SECRET_LEN); XMEMCPY(SessionCache[row].Sessions[idx].sessionID, ssl->arrays.sessionID, ID_LEN); SessionCache[row].Sessions[idx].timeout = DEFAULT_TIMEOUT; SessionCache[row].Sessions[idx].bornOn = LowResTimer(); #ifdef SESSION_CERTS SessionCache[row].Sessions[idx].chain.count = ssl->session.chain.count; XMEMCPY(SessionCache[row].Sessions[idx].chain.certs, ssl->session.chain.certs, sizeof(x509_buffer) * MAX_CHAIN_DEPTH); SessionCache[row].Sessions[idx].version = ssl->version; SessionCache[row].Sessions[idx].cipherSuite = ssl->options.cipherSuite; #endif SessionCache[row].totalCount++; if (SessionCache[row].nextIdx == SESSIONS_PER_ROW) SessionCache[row].nextIdx = 0; if (UnLockMutex(&mutex) != 0) return -1; return 0; } #ifdef SESSION_STATS void PrintSessionStats(void) { word32 totalSessionsSeen = 0; word32 totalSessionsNow = 0; word32 rowNow; int i; double E; /* expected freq */ double chiSquare = 0; for (i = 0; i < SESSION_ROWS; i++) { totalSessionsSeen += SessionCache[i].totalCount; if (SessionCache[i].totalCount >= SESSIONS_PER_ROW) rowNow = SESSIONS_PER_ROW; else if (SessionCache[i].nextIdx == 0) rowNow = 0; else rowNow = SessionCache[i].nextIdx; totalSessionsNow += rowNow; } printf("Total Sessions Seen = %d\n", totalSessionsSeen); printf("Total Sessions Now = %d\n", totalSessionsNow); E = (double)totalSessionsSeen / SESSION_ROWS; for (i = 0; i < SESSION_ROWS; i++) { double diff = SessionCache[i].totalCount - E; diff *= diff; /* sqaure */ diff /= E; /* normalize */ chiSquare += diff; } printf(" chi-square = %5.1f, d.f. = %d\n", chiSquare, SESSION_ROWS - 1); if (SESSION_ROWS == 11) printf(" .05 p value = 18.3, chi-square should be less\n"); else if (SESSION_ROWS == 211) printf(".05 p value = 244.8, chi-square should be less\n"); else if (SESSION_ROWS == 5981) printf(".05 p value = 6161.0, chi-square should be less\n"); printf("\n"); } #endif /* SESSION_STATS */ #endif /* NO_SESSION_CACHE */ /* call before SSL_connect, if verifying will add name check to date check and signature check */ int CyaSSL_check_domain_name(SSL* ssl, const char* dn) { if (ssl->buffers.domainName.buffer) XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN); ssl->buffers.domainName.length = (word32)XSTRLEN(dn) + 1; ssl->buffers.domainName.buffer = (byte*) XMALLOC( ssl->buffers.domainName.length, ssl->heap, DYNAMIC_TYPE_DOMAIN); if (ssl->buffers.domainName.buffer) { XSTRNCPY((char*)ssl->buffers.domainName.buffer, dn, ssl->buffers.domainName.length); return SSL_SUCCESS; } else { ssl->error = MEMORY_ERROR; return SSL_FAILURE; } } /* turn on CyaSSL zlib compression returns 0 for success, else error (not built in) */ int CyaSSL_set_compression(SSL* ssl) { #ifdef HAVE_LIBZ ssl->options.usingCompression = 1; return 0; #else return -1; #endif } #ifndef USE_WINDOWS_API #ifndef NO_WRITEV /* simulate writev semantics, doesn't actually do block at a time though because of SSL_write behavior and because front adds may be small */ int CyaSSL_writev(SSL* ssl, const struct iovec* iov, int iovcnt) { byte tmp[OUTPUT_RECORD_SIZE]; byte* buffer = tmp; int send = 0; int newBuffer = 0; int idx = 0; int i; int ret; for (i = 0; i < iovcnt; i++) send += iov[i].iov_len; if (send > sizeof(tmp)) { byte* tmp2 = (byte*) XMALLOC(send, ssl->heap, DYNAMIC_TYPE_WRITEV); if (!tmp2) return MEMORY_ERROR; buffer = tmp2; newBuffer = 1; } for (i = 0; i < iovcnt; i++) { XMEMCPY(&buffer[idx], iov[i].iov_base, iov[i].iov_len); idx += iov[i].iov_len; } ret = SSL_write(ssl, buffer, send); if (newBuffer) XFREE(buffer, ssl->heap, DYNAMIC_TYPE_WRITEV); return ret; } #endif #endif #ifdef CYASSL_CALLBACKS typedef struct itimerval Itimerval; /* don't keep calling simple functions while setting up timer and singals if no inlining these are the next best */ #define AddTimes(a, b, c) \ do { \ c.tv_sec = a.tv_sec + b.tv_sec; \ c.tv_usec = a.tv_usec + b.tv_usec; \ if (c.tv_sec >= 1000000) { \ c.tv_sec++; \ c.tv_usec -= 1000000; \ } \ } while (0) #define SubtractTimes(a, b, c) \ do { \ c.tv_sec = a.tv_sec - b.tv_sec; \ c.tv_usec = a.tv_usec - b.tv_usec; \ if (c.tv_sec < 0) { \ c.tv_sec--; \ c.tv_usec += 1000000; \ } \ } while (0) #define CmpTimes(a, b, cmp) \ ((a.tv_sec == b.tv_sec) ? \ (a.tv_usec cmp b.tv_usec) : \ (a.tv_sec cmp b.tv_sec)) \ /* do nothing handler */ static void myHandler(int signo) { return; } static int CyaSSL_ex_wrapper(SSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, Timeval timeout) { int ret = -1; int oldTimerOn = 0; /* was timer already on */ Timeval startTime; Timeval endTime; Timeval totalTime; Itimerval myTimeout; Itimerval oldTimeout; /* if old timer adjust from total time to reset */ struct sigaction act, oact; #define ERR_OUT(x) { ssl->hsInfoOn = 0; ssl->toInfoOn = 0; return x; } if (hsCb) { ssl->hsInfoOn = 1; InitHandShakeInfo(&ssl->handShakeInfo); } if (toCb) { ssl->toInfoOn = 1; InitTimeoutInfo(&ssl->timeoutInfo); if (gettimeofday(&startTime, 0) < 0) ERR_OUT(GETTIME_ERROR); /* use setitimer to simulate getitimer, init 0 myTimeout */ myTimeout.it_interval.tv_sec = 0; myTimeout.it_interval.tv_usec = 0; myTimeout.it_value.tv_sec = 0; myTimeout.it_value.tv_usec = 0; if (setitimer(ITIMER_REAL, &myTimeout, &oldTimeout) < 0) ERR_OUT(SETITIMER_ERROR); if (oldTimeout.it_value.tv_sec || oldTimeout.it_value.tv_usec) { oldTimerOn = 1; /* is old timer going to expire before ours */ if (CmpTimes(oldTimeout.it_value, timeout, <)) { timeout.tv_sec = oldTimeout.it_value.tv_sec; timeout.tv_usec = oldTimeout.it_value.tv_usec; } } myTimeout.it_value.tv_sec = timeout.tv_sec; myTimeout.it_value.tv_usec = timeout.tv_usec; /* set up signal handler, don't restart socket send/recv */ act.sa_handler = myHandler; sigemptyset(&act.sa_mask); act.sa_flags = 0; #ifdef SA_INTERRUPT act.sa_flags |= SA_INTERRUPT; #endif if (sigaction(SIGALRM, &act, &oact) < 0) ERR_OUT(SIGACT_ERROR); if (setitimer(ITIMER_REAL, &myTimeout, 0) < 0) ERR_OUT(SETITIMER_ERROR); } /* do main work */ #ifndef NO_CYASSL_CLIENT if (ssl->options.side == CLIENT_END) ret = SSL_connect(ssl); #endif #ifndef NO_CYASSL_SERVER if (ssl->options.side == SERVER_END) ret = SSL_accept(ssl); #endif /* do callbacks */ if (toCb) { if (oldTimerOn) { gettimeofday(&endTime, 0); SubtractTimes(endTime, startTime, totalTime); /* adjust old timer for elapsed time */ if (CmpTimes(totalTime, oldTimeout.it_value, <)) SubtractTimes(oldTimeout.it_value, totalTime, oldTimeout.it_value); else { /* reset value to interval, may be off */ oldTimeout.it_value.tv_sec = oldTimeout.it_interval.tv_sec; oldTimeout.it_value.tv_usec =oldTimeout.it_interval.tv_usec; } /* keep iter the same whether there or not */ } /* restore old handler */ if (sigaction(SIGALRM, &oact, 0) < 0) ret = SIGACT_ERROR; /* more pressing error, stomp */ else /* use old settings which may turn off (expired or not there) */ if (setitimer(ITIMER_REAL, &oldTimeout, 0) < 0) ret = SETITIMER_ERROR; /* if we had a timeout call callback */ if (ssl->timeoutInfo.timeoutName[0]) { ssl->timeoutInfo.timeoutValue.tv_sec = timeout.tv_sec; ssl->timeoutInfo.timeoutValue.tv_usec = timeout.tv_usec; (toCb)(&ssl->timeoutInfo); } /* clean up */ FreeTimeoutInfo(&ssl->timeoutInfo, ssl->heap); ssl->toInfoOn = 0; } if (hsCb) { FinishHandShakeInfo(&ssl->handShakeInfo, ssl); (hsCb)(&ssl->handShakeInfo); ssl->hsInfoOn = 0; } return ret; } #ifndef NO_CYASSL_CLIENT int CyaSSL_connect_ex(SSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb, Timeval timeout) { return CyaSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #ifndef NO_CYASSL_SERVER int CyaSSL_accept_ex(SSL* ssl, HandShakeCallBack hsCb, TimeoutCallBack toCb,Timeval timeout) { return CyaSSL_ex_wrapper(ssl, hsCb, toCb, timeout); } #endif #endif /* CYASSL_CALLBACKS */ #ifndef NO_PSK void SSL_CTX_set_psk_client_callback(SSL_CTX* ctx, psk_client_callback cb) { ctx->havePSK = 1; ctx->client_psk_cb = cb; } void SSL_set_psk_client_callback(SSL* ssl, psk_client_callback cb) { ssl->options.havePSK = 1; ssl->options.client_psk_cb = cb; InitSuites(&ssl->suites, ssl->version,TRUE,TRUE, ssl->options.haveNTRU); } void SSL_CTX_set_psk_server_callback(SSL_CTX* ctx, psk_server_callback cb) { ctx->havePSK = 1; ctx->server_psk_cb = cb; } void SSL_set_psk_server_callback(SSL* ssl, psk_server_callback cb) { ssl->options.havePSK = 1; ssl->options.server_psk_cb = cb; InitSuites(&ssl->suites, ssl->version, ssl->options.haveDH, TRUE, ssl->options.haveNTRU); } const char* SSL_get_psk_identity_hint(const SSL* ssl) { return ssl->arrays.server_hint; } const char* SSL_get_psk_identity(const SSL* ssl) { return ssl->arrays.client_identity; } int SSL_CTX_use_psk_identity_hint(SSL_CTX* ctx, const char* hint) { if (hint == 0) ctx->server_hint[0] = 0; else XSTRNCPY(ctx->server_hint, hint, MAX_PSK_ID_LEN); return SSL_SUCCESS; } int SSL_use_psk_identity_hint(SSL* ssl, const char* hint) { if (hint == 0) ssl->arrays.server_hint[0] = 0; else XSTRNCPY(ssl->arrays.server_hint, hint, MAX_PSK_ID_LEN); return SSL_SUCCESS; } #endif /* NO_PSK */ #if defined(NO_FILESYSTEM) || defined(MICRIUM) /* CyaSSL extension allows DER files to be loaded from buffers as well */ int CyaSSL_CTX_load_verify_buffer(SSL_CTX* ctx, const unsigned char* buffer, long sz, int format) { return ProcessBuffer(ctx, buffer, sz, format, CA_TYPE); } int CyaSSL_CTX_use_certificate_buffer(SSL_CTX* ctx, const unsigned char* buffer,long sz,int format) { return ProcessBuffer(ctx, buffer, sz, format, CERT_TYPE); } int CyaSSL_CTX_use_PrivateKey_buffer(SSL_CTX* ctx, const unsigned char* buffer,long sz,int format) { return ProcessBuffer(ctx, buffer, sz, format, PRIVATEKEY_TYPE); } int CyaSSL_CTX_use_certificate_chain_buffer(SSL_CTX* ctx, const unsigned char* buffer, long sz) { /* add first to ctx, all tested implementations support this */ return ProcessBuffer(ctx, buffer, sz, SSL_FILETYPE_PEM, CA_TYPE); } #endif /* NO_FILESYSTEM || MICRIUM */ #if defined(OPENSSL_EXTRA) || defined(GOAHEAD_WS) int SSLeay_add_ssl_algorithms(void) { OpenSSL_add_all_algorithms(); return SSL_SUCCESS; } long SSL_CTX_sess_set_cache_size(SSL_CTX* ctx, long sz) { /* cache size fixed at compile time in CyaSSL */ return 0; } void SSL_CTX_set_quiet_shutdown(SSL_CTX* ctx, int mode) { if (mode) ctx->quietShutdown = 1; } int SSL_CTX_check_private_key(SSL_CTX* ctx) { /* TODO: check private against public for RSA match */ return SSL_SUCCESS; } void SSL_set_bio(SSL* ssl, BIO* rd, BIO* wr) { SSL_set_rfd(ssl, rd->fd); SSL_set_wfd(ssl, wr->fd); ssl->biord = rd; ssl->biowr = wr; } void SSL_CTX_set_client_CA_list(SSL_CTX* ctx, STACK_OF(X509_NAME)* names) { } STACK_OF(X509_NAME)* SSL_load_client_CA_file(const char* fname) { return 0; } int SSL_CTX_set_default_verify_paths(SSL_CTX* ctx) { /* TODO:, not needed in goahead */ return SSL_NOT_IMPLEMENTED; } void SSL_set_accept_state(SSL* ssl) { byte havePSK = 0; ssl->options.side = SERVER_END; /* reset suites in case user switched */ #ifndef NO_PSK havePSK = ssl->options.havePSK; #endif InitSuites(&ssl->suites, ssl->version, ssl->options.haveDH, havePSK, ssl->options.haveNTRU); } void OpenSSL_add_all_algorithms(void) { InitCyaSSL(); } int SSLeay_add_all_algorithms(void) { OpenSSL_add_all_algorithms(); return SSL_SUCCESS; } void SSL_CTX_set_tmp_rsa_callback(SSL_CTX* ctx, RSA*(*f)(SSL*, int, int)) { /* CyaSSL verifies all these internally */ } void SSL_set_shutdown(SSL* ssl, int opt) { } long SSL_CTX_set_options(SSL_CTX* ctx, long opt) { /* goahead calls with 0, do nothing */ return opt; } int SSL_set_rfd(SSL* ssl, int rfd) { ssl->rfd = rfd; /* not used directly to allow IO callbacks */ ssl->IOCB_ReadCtx = &ssl->rfd; return SSL_SUCCESS; } int SSL_set_wfd(SSL* ssl, int wfd) { ssl->wfd = wfd; /* not used directly to allow IO callbacks */ ssl->IOCB_WriteCtx = &ssl->wfd; return SSL_SUCCESS; } RSA* RSA_generate_key(int len, unsigned long bits, void(*f)(int, int, void*), void* data) { /* no tmp key needed, actual generation not supported */ return 0; } X509_NAME* X509_get_issuer_name(X509* cert) { return &cert->issuer; } X509_NAME* X509_get_subject_name(X509* cert) { return &cert->subject; } /* copy name into buffer, at most sz bytes, if buffer is null will malloc buffer, call responsible for freeing */ char* X509_NAME_oneline(X509_NAME* name, char* buffer, int sz) { int copySz = min(sz, name->sz); if (!name->sz) return buffer; if (!buffer) { buffer = (char*)XMALLOC(name->sz, 0, DYNAMIC_TYPE_OPENSSL); if (!buffer) return buffer; copySz = name->sz; } if (copySz == 0) return buffer; XMEMCPY(buffer, name->name, copySz - 1); buffer[copySz - 1] = 0; return buffer; } X509* X509_STORE_CTX_get_current_cert(X509_STORE_CTX* ctx) { return 0; } int X509_STORE_CTX_get_error(X509_STORE_CTX* ctx) { return 0; } int X509_STORE_CTX_get_error_depth(X509_STORE_CTX* ctx) { return 0; } BIO_METHOD* BIO_f_buffer(void) { static BIO_METHOD meth; meth.type = BIO_BUFFER; return &meth; } long BIO_set_write_buffer_size(BIO* bio, long size) { /* CyaSSL has internal buffer, compatibility only */ return size; } BIO_METHOD* BIO_f_ssl(void) { static BIO_METHOD meth; meth.type = BIO_SSL; return &meth; } BIO* BIO_new_socket(int sfd, int close) { BIO* bio = (BIO*) XMALLOC(sizeof(BIO), 0, DYNAMIC_TYPE_OPENSSL); if (bio) { bio->type = BIO_SOCKET; bio->close = close; bio->eof = 0; bio->ssl = 0; bio->fd = sfd; bio->prev = 0; bio->next = 0; } return bio; } int BIO_eof(BIO* b) { if (b->eof) return 1; return 0; } long BIO_set_ssl(BIO* b, SSL* ssl, int close) { b->ssl = ssl; b->close = close; /* add to ssl for bio free if SSL_free called before/instead of free_all? */ return 0; } BIO* BIO_new(BIO_METHOD* method) { BIO* bio = (BIO*) XMALLOC(sizeof(BIO), 0, DYNAMIC_TYPE_OPENSSL); if (bio) { bio->type = method->type; bio->close = 0; bio->eof = 0; bio->ssl = 0; bio->fd = 0; bio->prev = 0; bio->next = 0; } return bio; } #ifdef USE_WINDOWS_API #define CloseSocket(s) closesocket(s) #else #define CloseSocket(s) close(s) #endif int BIO_free(BIO* bio) { /* unchain?, doesn't matter in goahead since from free all */ if (bio) { if (bio->close) { if (bio->ssl) SSL_free(bio->ssl); if (bio->fd) CloseSocket(bio->fd); } XFREE(bio, 0, DYNAMIC_TYPE_OPENSSL); } return 0; } int BIO_free_all(BIO* bio) { BIO* next = bio; while ( (bio = next) ) { next = bio->next; BIO_free(bio); } return 0; } int BIO_read(BIO* bio, void* buf, int len) { int ret; SSL* ssl = 0; BIO* front = bio; /* already got eof, again is error */ if (front->eof) return -1; while(bio && ((ssl = bio->ssl) == 0) ) bio = bio->next; if (ssl == 0) return -1; ret = SSL_read(ssl, buf, len); if (ret == 0) front->eof = 1; else if (ret < 0) { int err = SSL_get_error(ssl, 0); if ( !(err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) ) front->eof = 1; } return ret; } int BIO_write(BIO* bio, const void* data, int len) { int ret; SSL* ssl = 0; BIO* front = bio; /* already got eof, again is error */ if (front->eof) return -1; while(bio && ((ssl = bio->ssl) == 0) ) bio = bio->next; if (ssl == 0) return -1; ret = SSL_write(ssl, data, len); if (ret == 0) front->eof = 1; else if (ret < 0) { int err = SSL_get_error(ssl, 0); if ( !(err == SSL_ERROR_WANT_READ || err == SSL_ERROR_WANT_WRITE) ) front->eof = 1; } return ret; } BIO* BIO_push(BIO* top, BIO* append) { top->next = append; append->prev = top; return top; } int BIO_flush(BIO* bio) { /* for CyaSSL no flushing needed */ return 1; } #endif /* OPENSSL_EXTRA || GOAHEAD_WS */ #ifdef OPENSSL_EXTRA unsigned long SSLeay(void) { return SSLEAY_VERSION_NUMBER; } const char* SSLeay_version(int type) { static const char* version = "SSLeay CyaSSL compatibility"; return version; } void MD5_Init(MD5_CTX* md5) { typedef char md5_test[sizeof(MD5_CTX) >= sizeof(Md5) ? 1 : -1]; (void)sizeof(md5_test); InitMd5((Md5*)md5); } void MD5_Update(MD5_CTX* md5, const void* input, unsigned long sz) { Md5Update((Md5*)md5, (const byte*)input, sz); } void MD5_Final(byte* input, MD5_CTX* md5) { Md5Final((Md5*)md5, input); } void SHA_Init(SHA_CTX* sha) { typedef char sha_test[sizeof(SHA_CTX) >= sizeof(Sha) ? 1 : -1]; (void)sizeof(sha_test); InitSha((Sha*)sha); } void SHA_Update(SHA_CTX* sha, const void* input, unsigned long sz) { ShaUpdate((Sha*)sha, (const byte*)input, sz); } void SHA_Final(byte* input, SHA_CTX* sha) { ShaFinal((Sha*)sha, input); } const EVP_MD* EVP_md5(void) { static const char* type = "MD5"; return type; } const EVP_MD* EVP_sha1(void) { static const char* type = "SHA"; return type; } void EVP_MD_CTX_init(EVP_MD_CTX* ctx) { /* do nothing */ } int EVP_MD_CTX_cleanup(EVP_MD_CTX* ctx) { return 0; } int EVP_DigestInit(EVP_MD_CTX* ctx, const EVP_MD* type) { if (XSTRNCMP(type, "MD5", 3) == 0) { ctx->macType = MD5; MD5_Init((MD5_CTX*)&ctx->hash); } else if (XSTRNCMP(type, "SHA", 3) == 0) { ctx->macType = SHA; SHA_Init((SHA_CTX*)&ctx->hash); } else return -1; return 0; } int EVP_DigestUpdate(EVP_MD_CTX* ctx, const void* data, size_t sz) { if (ctx->macType == MD5) MD5_Update((MD5_CTX*)&ctx->hash, data, (unsigned long)sz); else if (ctx->macType == SHA) SHA_Update((SHA_CTX*)&ctx->hash, data, (unsigned long)sz); else return -1; return 0; } int EVP_DigestFinal(EVP_MD_CTX* ctx, unsigned char* md, unsigned int* s) { if (ctx->macType == MD5) { MD5_Final(md, (MD5_CTX*)&ctx->hash); if (s) *s = MD5_DIGEST_SIZE; } else if (ctx->macType == SHA) { SHA_Final(md, (SHA_CTX*)&ctx->hash); if (s) *s = SHA_DIGEST_SIZE; } else return -1; return 0; } int EVP_DigestFinal_ex(EVP_MD_CTX* ctx, unsigned char* md, unsigned int* s) { return EVP_DigestFinal(ctx, md, s); } unsigned char* HMAC(const EVP_MD* evp_md, const void* key, int key_len, const unsigned char* d, int n, unsigned char* md, unsigned int* md_len) { Hmac hmac; if (!md) return 0; /* no static buffer support */ if (XSTRNCMP(evp_md, "MD5", 3) == 0) { HmacSetKey(&hmac, MD5, key, key_len); if (md_len) *md_len = MD5_DIGEST_SIZE; } else if (XSTRNCMP(evp_md, "SHA", 3) == 0) { HmacSetKey(&hmac, SHA, key, key_len); if (md_len) *md_len = SHA_DIGEST_SIZE; } else return 0; HmacUpdate(&hmac, d, n); HmacFinal(&hmac, md); return md; } unsigned long ERR_get_error(void) { /* TODO: */ return 0; } void ERR_clear_error(void) { /* TODO: */ } int RAND_status(void) { return 1; /* CTaoCrypt provides enough seed internally */ } int RAND_bytes(unsigned char* buf, int num) { RNG rng; if (InitRng(&rng)) return 0; RNG_GenerateBlock(&rng, buf, num); return 1; } int DES_key_sched(const_DES_cblock* key, DES_key_schedule* schedule) { XMEMCPY(schedule, key, sizeof(const_DES_cblock)); return 0; } void DES_cbc_encrypt(const unsigned char* input, unsigned char* output, long length, DES_key_schedule* schedule, DES_cblock* ivec, int enc) { Des des; Des_SetKey(&des, (const byte*)schedule, (const byte*)ivec, !enc); if (enc) Des_CbcEncrypt(&des, output, input, length); else Des_CbcDecrypt(&des, output, input, length); } /* correctly sets ivec for next call */ void DES_ncbc_encrypt(const unsigned char* input, unsigned char* output, long length, DES_key_schedule* schedule, DES_cblock* ivec, int enc) { Des des; Des_SetKey(&des, (const byte*)schedule, (const byte*)ivec, !enc); if (enc) Des_CbcEncrypt(&des, output, input, length); else Des_CbcDecrypt(&des, output, input, length); XMEMCPY(ivec, output + length - sizeof(DES_cblock), sizeof(DES_cblock)); } void ERR_free_strings(void) { /* handled internally */ } void ERR_remove_state(unsigned long state) { /* TODO: GetErrors().Remove(); */ } void EVP_cleanup(void) { /* nothing to do here */ } void CRYPTO_cleanup_all_ex_data(void) { /* nothing to do here */ } long SSL_CTX_set_mode(SSL_CTX* ctx, long mode) { /* SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is CyaSSL default mode */ if (mode == SSL_MODE_ENABLE_PARTIAL_WRITE) ctx->partialWrite = 1; return mode; } long SSL_CTX_get_mode(SSL_CTX* ctx) { /* TODO: */ return 0; } void SSL_CTX_set_default_read_ahead(SSL_CTX* ctx, int m) { /* TODO: maybe? */ } int SSL_CTX_set_session_id_context(SSL_CTX* ctx, const unsigned char* sid_ctx, unsigned int sid_ctx_len) { /* No application specific context needed for cyaSSL */ return SSL_SUCCESS; } long SSL_CTX_sess_get_cache_size(SSL_CTX* ctx) { /* TODO: maybe? */ return (~0); } unsigned long ERR_get_error_line_data(const char** file, int* line, const char** data, int *flags) { /* Not implemented */ return 0; } X509* SSL_get_peer_certificate(SSL* ssl) { if (ssl->peerCert.issuer.sz) return &ssl->peerCert; else return 0; } int SSL_set_ex_data(SSL* ssl, int idx, void* data) { return 0; } int SSL_get_shutdown(const SSL* ssl) { return 0; } int SSL_set_session_id_context(SSL* ssl, const unsigned char* id, unsigned int len) { return 0; } void SSL_set_connect_state(SSL* ssl) { /* client by default */ } int SSL_session_reused(SSL* ssl) { return ssl->options.resuming; } void SSL_SESSION_free(SSL_SESSION* session) { } const char* SSL_get_version(SSL* ssl) { if (ssl->version.major == 3) { switch (ssl->version.minor) { case 0 : return "SSLv3"; case 1 : return "TLSv1"; case 2 : return "TLSv1.1"; case 3 : return "TLSv1.2"; } } return "unknown"; } SSL_CIPHER* SSL_get_current_cipher(SSL* ssl) { return &ssl->cipher; } const char* SSL_CIPHER_get_name(const SSL_CIPHER* cipher) { if (cipher) { switch (cipher->ssl->options.cipherSuite) { case SSL_RSA_WITH_RC4_128_SHA : return "SSL_RSA_WITH_RC4_128_SHA"; case SSL_RSA_WITH_RC4_128_MD5 : return "SSL_RSA_WITH_RC4_128_MD5"; case SSL_RSA_WITH_3DES_EDE_CBC_SHA : return "SSL_RSA_WITH_3DES_EDE_CBC_SHA"; case TLS_RSA_WITH_AES_128_CBC_SHA : return "TLS_RSA_WITH_AES_128_CBC_SHA"; case TLS_RSA_WITH_AES_256_CBC_SHA : return "TLS_RSA_WITH_AES_256_CBC_SHA"; case TLS_PSK_WITH_AES_128_CBC_SHA : return "TLS_PSK_WITH_AES_128_CBC_SHA"; case TLS_PSK_WITH_AES_256_CBC_SHA : return "TLS_PSK_WITH_AES_256_CBC_SHA"; case TLS_DHE_RSA_WITH_AES_128_CBC_SHA : return "TLS_DHE_RSA_WITH_AES_128_CBC_SHA"; case TLS_DHE_RSA_WITH_AES_256_CBC_SHA : return "TLS_DHE_RSA_WITH_AES_256_CBC_SHA"; case TLS_RSA_WITH_HC_128_CBC_MD5 : return "TLS_RSA_WITH_HC_128_CBC_MD5"; case TLS_RSA_WITH_HC_128_CBC_SHA : return "TLS_RSA_WITH_HC_128_CBC_SHA"; case TLS_RSA_WITH_RABBIT_CBC_SHA : return "TLS_RSA_WITH_RABBIT_CBC_SHA"; case TLS_NTRU_RSA_WITH_RC4_128_SHA : return "TLS_NTRU_RSA_WITH_RC4_128_SHA"; case TLS_NTRU_RSA_WITH_3DES_EDE_CBC_SHA : return "TLS_NTRU_RSA_WITH_3DES_EDE_CBC_SHA"; case TLS_NTRU_RSA_WITH_AES_128_CBC_SHA : return "TLS_NTRU_RSA_WITH_AES_128_CBC_SHA"; case TLS_NTRU_RSA_WITH_AES_256_CBC_SHA : return "TLS_NTRU_RSA_WITH_AES_256_CBC_SHA"; } } return "NONE"; } char* SSL_CIPHER_description(SSL_CIPHER* cipher, char* buffer, int len) { return 0; } SSL_SESSION* SSL_get1_session(SSL* ssl) /* what's ref count */ { return 0; } void X509_free(X509* buf) { } void OPENSSL_free(void* buf) { } int OCSP_parse_url(char* url, char** host, char** port, char** path, int* ssl) { return 0; } SSL_METHOD* SSLv2_client_method(void) { return 0; } SSL_METHOD* SSLv2_server_method(void) { return 0; } #ifndef NO_MD4 void MD4_Init(MD4_CTX* md4) { /* make sure we have a big enough buffer */ typedef char ok[sizeof(md4->buffer) >= sizeof(Md4) ? 1 : -1]; (void) sizeof(ok); InitMd4((Md4*)md4); } void MD4_Update(MD4_CTX* md4, const void* data, size_t len) { Md4Update((Md4*)md4, (const byte*)data, (word32)len); } void MD4_Final(unsigned char* digest, MD4_CTX* md4) { Md4Final((Md4*)md4, digest); } #endif /* NO_MD4 */ BIO* BIO_pop(BIO* top) { return 0; } int BIO_pending(BIO* bio) { return 0; } BIO_METHOD* BIO_s_mem(void) { return 0; } BIO_METHOD* BIO_f_base64(void) { return 0; } void BIO_set_flags(BIO* bio, int flags) { } void RAND_screen(void) { } const char* RAND_file_name(char* fname, size_t len) { return 0; } int RAND_write_file(const char* fname) { return 0; } int RAND_load_file(const char* fname, long len) { /* CTaoCrypt provides enough entropy internally or will report error */ if (len == -1) return 1024; else return (int)len; } int RAND_egd(const char* path) { return 0; } COMP_METHOD* COMP_zlib(void) { return 0; } COMP_METHOD* COMP_rle(void) { return 0; } int SSL_COMP_add_compression_method(int method, void* data) { return 0; } int SSL_get_ex_new_index(long idx, void* data, void* cb1, void* cb2, void* cb3) { return 0; } int CRYPTO_num_locks(void) { return 0; } void CRYPTO_set_id_callback(unsigned long (*f)(void)) { } void CRYPTO_set_locking_callback(void (*f)(int, int, const char*, int)) { } void CRYPTO_set_dynlock_create_callback(CRYPTO_dynlock_value* (*f)( const char*, int)) { } void CRYPTO_set_dynlock_lock_callback(void (*f)(int, CRYPTO_dynlock_value*, const char*, int)) { } void CRYPTO_set_dynlock_destroy_callback(void (*f)(CRYPTO_dynlock_value*, const char*, int)) { } const char* X509_verify_cert_error_string(long err) { return 0; } int X509_LOOKUP_add_dir(X509_LOOKUP* lookup, const char* dir, long len) { return 0; } int X509_LOOKUP_load_file(X509_LOOKUP* lookup, const char* file, long len) { return 0; } X509_LOOKUP_METHOD* X509_LOOKUP_hash_dir(void) { return 0; } X509_LOOKUP_METHOD* X509_LOOKUP_file(void) { return 0; } X509_LOOKUP* X509_STORE_add_lookup(X509_STORE* store, X509_LOOKUP_METHOD* m) { return 0; } X509_STORE* X509_STORE_new(void) { return 0; } int X509_STORE_get_by_subject(X509_STORE_CTX* ctx, int idx, X509_NAME* name, X509_OBJECT* obj) { return 0; } int X509_STORE_CTX_init(X509_STORE_CTX* ctx, X509_STORE* store, X509* x509, STACK_OF(X509)* sk) { return 0; } void X509_STORE_CTX_cleanup(X509_STORE_CTX* ctx) { } ASN1_TIME* X509_CRL_get_lastUpdate(X509_CRL* crl) { return 0; } ASN1_TIME* X509_CRL_get_nextUpdate(X509_CRL* crl) { return 0; } EVP_PKEY* X509_get_pubkey(X509* x509) { return 0; } int X509_CRL_verify(X509_CRL* crl, EVP_PKEY* key) { return 0; } void X509_STORE_CTX_set_error(X509_STORE_CTX* ctx, int err) { } void X509_OBJECT_free_contents(X509_OBJECT* obj) { } void EVP_PKEY_free(EVP_PKEY* key) { } int X509_cmp_current_time(const ASN1_TIME* time) { return 0; } int sk_X509_REVOKED_num(X509_REVOKED* revoked) { return 0; } X509_REVOKED* X509_CRL_get_REVOKED(X509_CRL* crl) { return 0; } X509_REVOKED* sk_X509_REVOKED_value(X509_REVOKED* revoked, int value) { return 0; } ASN1_INTEGER* X509_get_serialNumber(X509* x509) { return 0; } int ASN1_TIME_print(BIO* bio, const ASN1_TIME* time) { return 0; } int ASN1_INTEGER_cmp(const ASN1_INTEGER* a, const ASN1_INTEGER* b) { return 0; } long ASN1_INTEGER_get(const ASN1_INTEGER* i) { return 0; } void* X509_STORE_CTX_get_ex_data(X509_STORE_CTX* ctx, int idx) { return 0; } int SSL_get_ex_data_X509_STORE_CTX_idx(void) { return 0; } void* SSL_get_ex_data(const SSL* ssl, int idx) { return 0; } void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX* ctx, void* userdata) { ctx->userdata = userdata; } void SSL_CTX_set_default_passwd_cb(SSL_CTX* ctx, pem_password_cb cb) { ctx->passwd_cb = cb; } long SSL_CTX_set_timeout(SSL_CTX* ctx, long to) { return 0; } void SSL_CTX_set_info_callback(SSL_CTX* ctx, void (*f)()) { } unsigned long ERR_peek_error(void) { return 0; } int ERR_GET_REASON(int err) { return 0; } char* SSL_alert_type_string_long(int alert) { return 0; } char* SSL_alert_desc_string_long(int alert) { return 0; } char* SSL_state_string_long(SSL* ssl) { return 0; } void RSA_free(RSA* rsa) { } int PEM_def_callback(char* name, int num, int w, void* key) { return 0; } long SSL_CTX_sess_accept(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_connect(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_accept_good(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_connect_good(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_accept_renegotiate(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_connect_renegotiate(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_hits(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_cb_hits(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_cache_full(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_misses(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_timeouts(SSL_CTX* ctx) { return 0; } long SSL_CTX_sess_number(SSL_CTX* ctx) { return 0; } void DES_set_key_unchecked(const_DES_cblock* des, DES_key_schedule* key) { } void DES_set_odd_parity(DES_cblock* des) { } void DES_ecb_encrypt(DES_cblock* desa, DES_cblock* desb, DES_key_schedule* key, int len) { } int BIO_printf(BIO* bio, const char* format, ...) { return 0; } int ASN1_UTCTIME_print(BIO* bio, const ASN1_UTCTIME* a) { return 0; } int sk_num(X509_REVOKED* rev) { return 0; } void* sk_value(X509_REVOKED* rev, int i) { return 0; } int EVP_BytesToKey(const EVP_CIPHER* type, const EVP_MD* md, const byte* salt, const byte* data, int sz, int count, byte* key, byte* iv) { int keyLen = 0; int ivLen = 0; Md5 myMD; byte digest[MD5_DIGEST_SIZE]; int j; int keyLeft; int ivLeft; int keyOutput = 0; InitMd5(&myMD); /* only support MD5 for now */ if (XSTRNCMP(md, "MD5", 3)) return 0; /* only support CBC DES and AES for now */ if (XSTRNCMP(type, "DES-CBC", 7) == 0) { keyLen = DES_KEY_SIZE; ivLen = DES_IV_SIZE; } else if (XSTRNCMP(type, "DES-EDE3-CBC", 12) == 0) { keyLen = DES3_KEY_SIZE; ivLen = DES_IV_SIZE; } else if (XSTRNCMP(type, "AES-128-CBC", 11) == 0) { keyLen = AES_128_KEY_SIZE; ivLen = AES_IV_SIZE; } else if (XSTRNCMP(type, "AES-192-CBC", 11) == 0) { keyLen = AES_192_KEY_SIZE; ivLen = AES_IV_SIZE; } else if (XSTRNCMP(type, "AES-256-CBC", 11) == 0) { keyLen = AES_256_KEY_SIZE; ivLen = AES_IV_SIZE; } else return 0; keyLeft = keyLen; ivLeft = ivLen; while (keyOutput < (keyLen + ivLen)) { int digestLeft = MD5_DIGEST_SIZE; /* D_(i - 1) */ if (keyOutput) /* first time D_0 is empty */ Md5Update(&myMD, digest, MD5_DIGEST_SIZE); /* data */ Md5Update(&myMD, data, sz); /* salt */ if (salt) Md5Update(&myMD, salt, EVP_SALT_SIZE); Md5Final(&myMD, digest); /* count */ for (j = 1; j < count; j++) { Md5Update(&myMD, digest, MD5_DIGEST_SIZE); Md5Final(&myMD, digest); } if (keyLeft) { int store = min(keyLeft, MD5_DIGEST_SIZE); XMEMCPY(&key[keyLen - keyLeft], digest, store); keyOutput += store; keyLeft -= store; digestLeft -= store; } if (ivLeft && digestLeft) { int store = min(ivLeft, digestLeft); XMEMCPY(&iv[ivLen - ivLeft], &digest[MD5_DIGEST_SIZE - digestLeft], store); keyOutput += store; ivLeft -= store; } } if (keyOutput != (keyLen + ivLen)) return 0; return keyOutput; } /* stunnel 4.28 needs */ void* SSL_CTX_get_ex_data(const SSL_CTX* ctx, int d) { return 0; } int SSL_CTX_set_ex_data(SSL_CTX* ctx, int d, void* p) { return SSL_SUCCESS; } void SSL_CTX_sess_set_get_cb(SSL_CTX* ctx, SSL_SESSION*(*f)(SSL*, unsigned char*, int, int*)) { } void SSL_CTX_sess_set_new_cb(SSL_CTX* ctx, int (*f)(SSL*, SSL_SESSION*)) { } void SSL_CTX_sess_set_remove_cb(SSL_CTX* ctx, void (*f)(SSL_CTX*, SSL_SESSION*)) { } int i2d_SSL_SESSION(SSL_SESSION* sess, unsigned char** p) { return sizeof(SSL_SESSION); } SSL_SESSION* d2i_SSL_SESSION(SSL_SESSION** sess, const unsigned char** p, long i) { return *sess; } long SSL_SESSION_get_timeout(const SSL_SESSION* sess) { return sess->timeout; } long SSL_SESSION_get_time(const SSL_SESSION* sess) { return sess->bornOn; } int SSL_CTX_get_ex_new_index(long idx, void* arg, void* a, void* b, void* c) { return 0; } #endif /* OPENSSL_EXTRA */ #ifdef SESSION_CERTS /* Get peer's certificate chain */ X509_CHAIN* CyaSSL_get_peer_chain(SSL* ssl) { if (ssl) return &ssl->session.chain; return 0; } /* Get peer's certificate chain total count */ int CyaSSL_get_chain_count(X509_CHAIN* chain) { if (chain) return chain->count; return 0; } /* Get peer's ASN.1 DER ceritifcate at index (idx) length in bytes */ int CyaSSL_get_chain_length(X509_CHAIN* chain, int idx) { if (chain) return chain->certs[idx].length; return 0; } /* Get peer's ASN.1 DER ceritifcate at index (idx) */ byte* CyaSSL_get_chain_cert(X509_CHAIN* chain, int idx) { if (chain) return chain->certs[idx].buffer; return 0; } /* Get peer's PEM ceritifcate at index (idx), output to buffer if inLen big enough else return error (-1), output length is in *outLen */ int CyaSSL_get_chain_cert_pem(X509_CHAIN* chain, int idx, unsigned char* buffer, int inLen, int* outLen) { const char header[] = "-----BEGIN CERTIFICATE-----\n"; const char footer[] = "-----END CERTIFICATE-----\n"; int headerLen = sizeof(header) - 1; int footerLen = sizeof(footer) - 1; int i; if (!chain || !outLen || !buffer) return -1; /* don't even try if inLen too short */ if (inLen < headerLen + footerLen + chain->certs[idx].length) return -1; /* header */ XMEMCPY(buffer, header, headerLen); i = headerLen; /* body */ *outLen = inLen; /* input to Base64Encode */ if (Base64Encode(chain->certs[idx].buffer, chain->certs[idx].length, buffer + i, (word32*)outLen) < 0) return -1; i += *outLen; /* footer */ if ( (i + footerLen) > inLen) return -1; XMEMCPY(buffer + i, footer, footerLen); *outLen += headerLen + footerLen; return 0; } /* get session ID */ const byte* CyaSSL_get_sessionID(const SSL_SESSION* session) { return session->sessionID; } #endif /* SESSION_CERTS */