cya_u
Fork of CyaSSL-forEncrypt by
rsa.c
- Committer:
- toddouska
- Date:
- 2011-02-05
- Revision:
- 0:5045d2638c29
File content as of revision 0:5045d2638c29:
/* rsa.c * * Copyright (C) 2006-2009 Sawtooth Consulting Ltd. * * This file is part of CyaSSL. * * CyaSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * CyaSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include "ctc_rsa.h" #include "random.h" #include "error.h" #ifdef SHOW_GEN #include <stdio.h> #endif enum { RSA_PUBLIC_ENCRYPT = 0, RSA_PUBLIC_DECRYPT = 1, RSA_PRIVATE_ENCRYPT = 2, RSA_PRIVATE_DECRYPT = 3, RSA_BLOCK_TYPE_1 = 1, RSA_BLOCK_TYPE_2 = 2, RSA_MIN_SIZE = 512, RSA_MAX_SIZE = 4096, RSA_MIN_PAD_SZ = 11 /* seperator + 0 + pad value + 8 pads */ }; void InitRsaKey(RsaKey* key, void* heap) { key->type = -1; /* haven't decdied yet */ key->heap = heap; /* TomsFastMath doesn't use memory allocation */ #ifndef USE_FAST_MATH key->n.dp = key->e.dp = 0; /* public alloc parts */ key->d.dp = key->p.dp = 0; /* private alloc parts */ key->q.dp = key->dP.dp = 0; key->u.dp = key->dQ.dp = 0; #endif } void FreeRsaKey(RsaKey* key) { /* TomsFastMath doesn't use memory allocation */ #ifndef USE_FAST_MATH if (key->type == RSA_PRIVATE) { mp_clear(&key->u); mp_clear(&key->dQ); mp_clear(&key->dP); mp_clear(&key->q); mp_clear(&key->p); mp_clear(&key->d); } mp_clear(&key->e); mp_clear(&key->n); #endif } static void RsaPad(const byte* input, word32 inputLen, byte* pkcsBlock, word32 pkcsBlockLen, byte padValue, RNG* rng) { if (inputLen == 0) return; pkcsBlock[0] = 0x0; /* set first byte to zero and advance */ pkcsBlock++; pkcsBlockLen--; pkcsBlock[0] = padValue; /* insert padValue */ if (padValue == RSA_BLOCK_TYPE_1) /* pad with 0xff bytes */ XMEMSET(&pkcsBlock[1], 0xFF, pkcsBlockLen - inputLen - 2); else { /* pad with non-zero random bytes */ word32 padLen = pkcsBlockLen - inputLen - 1, i; RNG_GenerateBlock(rng, &pkcsBlock[1], padLen); /* remove zeros */ for (i = 1; i < padLen; i++) if (pkcsBlock[i] == 0) pkcsBlock[i] = 0x01; } pkcsBlock[pkcsBlockLen-inputLen-1] = 0; /* separator */ XMEMCPY(pkcsBlock+pkcsBlockLen-inputLen, input, inputLen); } static word32 RsaUnPad(const byte *pkcsBlock, unsigned int pkcsBlockLen, byte **output, byte padValue) { word32 maxOutputLen = (pkcsBlockLen > 10) ? (pkcsBlockLen - 10) : 0, invalid = 0, i = 1, outputLen; if (pkcsBlock[0] != 0x0) /* skip past zero */ invalid = 1; pkcsBlock++; pkcsBlockLen--; /* Require block type padValue */ invalid = (pkcsBlock[0] != padValue) || invalid; /* skip past the padding until we find the separator */ while (i<pkcsBlockLen && pkcsBlock[i++]) { /* null body */ } if(!(i==pkcsBlockLen || pkcsBlock[i-1]==0)) return 0; outputLen = pkcsBlockLen - i; invalid = (outputLen > maxOutputLen) || invalid; if (invalid) return 0; *output = (byte *)(pkcsBlock + i); return outputLen; } static int RsaFunction(const byte* in, word32 inLen, byte* out, word32* outLen, int type, RsaKey* key) { #define ERROR_OUT(x) { ret = x; goto done;} mp_int tmp; int ret = 0; word32 keyLen, len; if (mp_init(&tmp) != MP_OKAY) return MP_INIT_E; if (mp_read_unsigned_bin(&tmp, (byte*)in, inLen) != MP_OKAY) ERROR_OUT(MP_READ_E); if (type == RSA_PRIVATE_DECRYPT || type == RSA_PRIVATE_ENCRYPT) { #ifdef RSA_LOW_MEM /* half as much memory but twice as slow */ if (mp_exptmod(&tmp, &key->d, &key->n, &tmp) != MP_OKAY) ERROR_OUT(MP_EXPTMOD_E); #else #define INNER_ERROR_OUT(x) { ret = x; goto inner_done; } mp_int tmpa, tmpb; if (mp_init(&tmpa) != MP_OKAY) ERROR_OUT(MP_INIT_E); if (mp_init(&tmpb) != MP_OKAY) { mp_clear(&tmpa); ERROR_OUT(MP_INIT_E); } /* tmpa = tmp^dP mod p */ if (mp_exptmod(&tmp, &key->dP, &key->p, &tmpa) != MP_OKAY) INNER_ERROR_OUT(MP_EXPTMOD_E); /* tmpb = tmp^dQ mod q */ if (mp_exptmod(&tmp, &key->dQ, &key->q, &tmpb) != MP_OKAY) INNER_ERROR_OUT(MP_EXPTMOD_E); /* tmp = (tmpa - tmpb) * qInv (mod p) */ if (mp_sub(&tmpa, &tmpb, &tmp) != MP_OKAY) INNER_ERROR_OUT(MP_SUB_E); if (mp_mulmod(&tmp, &key->u, &key->p, &tmp) != MP_OKAY) INNER_ERROR_OUT(MP_MULMOD_E); /* tmp = tmpb + q * tmp */ if (mp_mul(&tmp, &key->q, &tmp) != MP_OKAY) INNER_ERROR_OUT(MP_MUL_E); if (mp_add(&tmp, &tmpb, &tmp) != MP_OKAY) INNER_ERROR_OUT(MP_ADD_E); inner_done: mp_clear(&tmpa); mp_clear(&tmpb); if (ret != 0) return ret; #endif /* RSA_LOW_MEM */ } else if (type == RSA_PUBLIC_ENCRYPT || type == RSA_PUBLIC_DECRYPT) { if (mp_exptmod(&tmp, &key->e, &key->n, &tmp) != MP_OKAY) ERROR_OUT(MP_EXPTMOD_E); } else ERROR_OUT(RSA_WRONG_TYPE_E); keyLen = mp_unsigned_bin_size(&key->n); if (keyLen > *outLen) ERROR_OUT(RSA_BUFFER_E); len = mp_unsigned_bin_size(&tmp); /* pad front w/ zeros to match key length */ while (len < keyLen) { *out++ = 0x00; len++; } *outLen = keyLen; /* convert */ if (mp_to_unsigned_bin(&tmp, out) != MP_OKAY) ERROR_OUT(MP_TO_E); done: mp_clear(&tmp); return ret; } int RsaPublicEncrypt(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key, RNG* rng) { int sz = mp_unsigned_bin_size(&key->n), ret; if (sz > (int)outLen) return RSA_BUFFER_E; if (inLen > (word32)(sz - RSA_MIN_PAD_SZ)) return RSA_BUFFER_E; RsaPad(in, inLen, out, sz, RSA_BLOCK_TYPE_2, rng); if ((ret = RsaFunction(out, sz, out, &outLen, RSA_PUBLIC_ENCRYPT, key)) < 0) sz = ret; return sz; } int RsaPrivateDecryptInline(byte* in, word32 inLen, byte** out, RsaKey* key) { int plainLen, ret; if ((ret = RsaFunction(in, inLen, in, &inLen, RSA_PRIVATE_DECRYPT, key)) < 0) { return ret; } plainLen = RsaUnPad(in, inLen, out, RSA_BLOCK_TYPE_2); return plainLen; } int RsaPrivateDecrypt(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key) { int plainLen, ret; byte* tmp; byte* pad = 0; if ( !(tmp = (byte*)XMALLOC(inLen, key->heap, DYNAMIC_TYPE_RSA)) ) return MEMORY_E; XMEMCPY(tmp, in, inLen); if ((ret = plainLen = RsaPrivateDecryptInline(tmp, inLen, &pad, key)) < 0) { XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA); return ret; } XMEMCPY(out, pad, plainLen); XMEMSET(tmp, 0x00, inLen); XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA); return plainLen; } /* for Rsa Verify */ int RsaSSL_VerifyInline(byte* in, word32 inLen, byte** out, RsaKey* key) { int plainLen, ret; if ((ret = RsaFunction(in, inLen, in, &inLen, RSA_PUBLIC_DECRYPT, key)) < 0) { return ret; } plainLen = RsaUnPad(in, inLen, out, RSA_BLOCK_TYPE_1); return plainLen; } int RsaSSL_Verify(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key) { int plainLen, ret; byte* tmp; byte* pad = 0; if ( !(tmp = (byte*)XMALLOC(inLen, key->heap, DYNAMIC_TYPE_RSA)) ) return MEMORY_E; XMEMCPY(tmp, in, inLen); if ((ret = plainLen = RsaSSL_VerifyInline(tmp, inLen, &pad, key)) < 0) { XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA); return ret; } XMEMCPY(out, pad, plainLen); XMEMSET(tmp, 0x00, inLen); XFREE(tmp, key->heap, DYNAMIC_TYPE_RSA); return plainLen; } /* for Rsa Sign */ int RsaSSL_Sign(const byte* in, word32 inLen, byte* out, word32 outLen, RsaKey* key, RNG* rng) { int sz = mp_unsigned_bin_size(&key->n), ret; if (sz > (int)outLen) return RSA_BUFFER_E; if (inLen > (word32)(sz - RSA_MIN_PAD_SZ)) return RSA_BUFFER_E; RsaPad(in, inLen, out, sz, RSA_BLOCK_TYPE_1, rng); if ((ret = RsaFunction(out, sz, out, &outLen, RSA_PRIVATE_ENCRYPT,key)) < 0) sz = ret; return sz; } int RsaEncryptSize(RsaKey* key) { return mp_unsigned_bin_size(&key->n); } #ifdef CYASSL_KEY_GEN static const int USE_BBS = 1; static int rand_prime(mp_int* N, int len, RNG* rng, void* heap) { int err, res, type; byte* buf; if (N == NULL || rng == NULL) return -1; /* get type */ if (len < 0) { type = USE_BBS; len = -len; } else { type = 0; } /* allow sizes between 2 and 512 bytes for a prime size */ if (len < 2 || len > 512) { return -1; } /* allocate buffer to work with */ buf = XCALLOC(1, len, heap); if (buf == NULL) { return -1; } do { #ifdef SHOW_GEN printf("."); fflush(stdout); #endif /* generate value */ RNG_GenerateBlock(rng, buf, len); /* munge bits */ buf[0] |= 0x80 | 0x40; buf[len-1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00); /* load value */ if ((err = mp_read_unsigned_bin(N, buf, len)) != MP_OKAY) { XFREE(buf, heap, DYNAMIC_TYPE_RSA); return err; } /* test */ if ((err = mp_prime_is_prime(N, 8, &res)) != MP_OKAY) { XFREE(buf, heap, DYNAMIC_TYPE_RSA); return err; } } while (res == MP_NO); #ifdef LTC_CLEAN_STACK XMEMSET(buf, 0, len); #endif XFREE(buf, heap, DYNAMIC_TYPE_RSA); return 0; } /* Make an RSA key for size bits, with e specified, 65537 is a good e */ int MakeRsaKey(RsaKey* key, int size, long e, RNG* rng) { mp_int p, q, tmp1, tmp2, tmp3; int err; if (key == NULL || rng == NULL) return -1; if (size < RSA_MIN_SIZE || size > RSA_MAX_SIZE) return -1; if (e < 3 || (e & 1) == 0) return -1; if ((err = mp_init_multi(&p, &q, &tmp1, &tmp2, &tmp3, NULL)) != MP_OKAY) return err; err = mp_set_int(&tmp3, e); /* make p */ if (err == MP_OKAY) { do { err = rand_prime(&p, size/16, rng, key->heap); /* size in bytes/2 */ if (err == MP_OKAY) err = mp_sub_d(&p, 1, &tmp1); /* tmp1 = p-1 */ if (err == MP_OKAY) err = mp_gcd(&tmp1, &tmp3, &tmp2); /* tmp2 = gcd(p-1, e) */ } while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0); /* e divdes p-1 */ } /* make q */ if (err == MP_OKAY) { do { err = rand_prime(&q, size/16, rng, key->heap); /* size in bytes/2 */ if (err == MP_OKAY) err = mp_sub_d(&q, 1, &tmp1); /* tmp1 = q-1 */ if (err == MP_OKAY) err = mp_gcd(&tmp1, &tmp3, &tmp2); /* tmp2 = gcd(q-1, e) */ } while (err == MP_OKAY && mp_cmp_d(&tmp2, 1) != 0); /* e divdes q-1 */ } if (err == MP_OKAY) err = mp_init_multi(&key->n, &key->e, &key->d, &key->p, &key->q, NULL); if (err == MP_OKAY) err = mp_init_multi(&key->dP, &key->dP, &key->u, NULL, NULL, NULL); if (err == MP_OKAY) err = mp_sub_d(&p, 1, &tmp2); /* tmp2 = p-1 */ if (err == MP_OKAY) err = mp_lcm(&tmp1, &tmp2, &tmp1); /* tmp1 = lcm(p-1, q-1),last loop */ /* make key */ if (err == MP_OKAY) err = mp_set_int(&key->e, e); /* key->e = e */ if (err == MP_OKAY) /* key->d = 1/e mod lcm(p-1, q-1) */ err = mp_invmod(&key->e, &tmp1, &key->d); if (err == MP_OKAY) err = mp_mul(&p, &q, &key->n); /* key->n = pq */ if (err == MP_OKAY) err = mp_sub_d(&p, 1, &tmp1); if (err == MP_OKAY) err = mp_sub_d(&q, 1, &tmp2); if (err == MP_OKAY) err = mp_mod(&key->d, &tmp1, &key->dP); if (err == MP_OKAY) err = mp_mod(&key->d, &tmp2, &key->dQ); if (err == MP_OKAY) err = mp_invmod(&q, &p, &key->u); if (err == MP_OKAY) err = mp_copy(&p, &key->p); if (err == MP_OKAY) err = mp_copy(&q, &key->q); if (err == MP_OKAY) key->type = RSA_PRIVATE; mp_clear(&tmp3); mp_clear(&tmp2); mp_clear(&tmp1); mp_clear(&q); mp_clear(&p); if (err != MP_OKAY) { FreeRsaKey(key); return err; } return 0; } #endif /* CYASLS_KEY_GEN */