I2C library for Bosch BNO055 sensor
Dependents: Project Campus_Safety_Bot
Fork of BNO055 by
BNO055.cpp
- Committer:
- StressedDave
- Date:
- 2015-09-10
- Revision:
- 5:beaa2bff7ff0
- Parent:
- 4:481ecdf3baf8
- Child:
- 6:1f722ffec323
File content as of revision 5:beaa2bff7ff0:
#include "BNO055.h" #include "mbed.h" BNO055::BNO055(PinName SDA, PinName SCL) : _i2c(SDA,SCL){ //Set I2C fast and bring reset line high _i2c.frequency(400000); address = BNOAddress; accel_scale = 1.0f; rate_scale = 1.0f/16.0f; angle_scale = 1.0f/16.0f; temp_scale = 1; } void BNO055::reset(){ //Perform a power-on-reset readchar(BNO055_SYS_TRIGGER_ADDR); rx = rx | 0x20; writechar(BNO055_SYS_TRIGGER_ADDR,rx); //Wait for the system to come back up again (datasheet says 650ms) wait_ms(675); } bool BNO055::check(){ //Check we have communication link with the chip readchar(BNO055_CHIP_ID_ADDR); if (rx != 0xA0) return false; //Grab the chip ID and software versions tx[0] = BNO055_CHIP_ID_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address+1,rawdata,7,false); ID.id = rawdata[0]; ID.accel = rawdata[1]; ID.mag = rawdata[2]; ID.gyro = rawdata[3]; ID.sw[0] = rawdata[4]; ID.sw[1] = rawdata[5]; ID.bootload = rawdata[6]; setpage(1); tx[0] = BNO055_UNIQUE_ID_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address+1,ID.serial,16,false); setpage(0); return true; } void BNO055::SetExternalCrystal(bool yn){ // Read the current status from the device readchar(BNO055_SYS_TRIGGER_ADDR); if (yn) rx = rx | 0x80; else rx = rx & 0x7F; writechar(BNO055_SYS_TRIGGER_ADDR,rx); } void BNO055::set_accel_units(char units){ readchar(BNO055_UNIT_SEL_ADDR); if(units == MPERSPERS){ rx = rx & 0xFE; accel_scale = 0.01f; } else { rx = rx | units; accel_scale = 1.0f; } writechar(BNO055_UNIT_SEL_ADDR,rx); } void BNO055::set_anglerate_units(char units){ readchar(BNO055_UNIT_SEL_ADDR); if (units == DEG_PER_SEC){ rx = rx & 0xFD; rate_scale = 1.0f/16.0f; } else { rx = rx | units; rate_scale = 1.0f/900.0f; } writechar(BNO055_UNIT_SEL_ADDR,rx); } void BNO055::set_angle_units(char units){ readchar(BNO055_UNIT_SEL_ADDR); if (units == DEGREES){ rx = rx & 0xFB; angle_scale = 1.0f/16.0f; } else { rx = rx | units; rate_scale = 1.0f/900.0f; } writechar(BNO055_UNIT_SEL_ADDR,rx); } void BNO055::set_temp_units(char units){ readchar(BNO055_UNIT_SEL_ADDR); if (units == CENTIGRADE){ rx = rx & 0xEF; temp_scale = 1; } else { rx = rx | units; temp_scale = 2; } writechar(BNO055_UNIT_SEL_ADDR,rx); } void BNO055::set_orientation(char units){ readchar(BNO055_UNIT_SEL_ADDR); if (units == WINDOWS) rx = rx &0x7F; else rx = rx | units; writechar(BNO055_UNIT_SEL_ADDR,rx); } void BNO055::setmode(char omode){ writechar(BNO055_OPR_MODE_ADDR,omode); op_mode = omode; } void BNO055::setpowermode(char pmode){ writechar(BNO055_PWR_MODE_ADDR,pmode); pwr_mode = pmode; } void BNO055::get_accel(void){ tx[0] = BNO055_ACCEL_DATA_X_LSB_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address+1,rawdata,6,0); accel.rawx = (rawdata[1] << 8 | rawdata[0]); accel.rawy = (rawdata[3] << 8 | rawdata[2]); accel.rawz = (rawdata[5] << 8 | rawdata[4]); accel.x = float(accel.rawx)*accel_scale; accel.y = float(accel.rawy)*accel_scale; accel.z = float(accel.rawz)*accel_scale; } void BNO055::get_gyro(void){ tx[0] = BNO055_GYRO_DATA_X_LSB_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address+1,rawdata,6,0); gyro.rawx = (rawdata[1] << 8 | rawdata[0]); gyro.rawy = (rawdata[3] << 8 | rawdata[2]); gyro.rawz = (rawdata[5] << 8 | rawdata[4]); gyro.x = float(gyro.rawx)*rate_scale; gyro.y = float(gyro.rawy)*rate_scale; gyro.z = float(gyro.rawz)*rate_scale; } void BNO055::get_mag(void){ tx[0] = BNO055_MAG_DATA_X_LSB_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address+1,rawdata,6,0); mag.rawx = (rawdata[1] << 8 | rawdata[0]); mag.rawy = (rawdata[3] << 8 | rawdata[2]); mag.rawz = (rawdata[5] << 8 | rawdata[4]); mag.x = float(mag.rawx); mag.y = float(mag.rawy); mag.z = float(mag.rawz); } void BNO055::get_lia(void){ tx[0] = BNO055_LINEAR_ACCEL_DATA_X_LSB_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address+1,rawdata,6,0); lia.rawx = (rawdata[1] << 8 | rawdata[0]); lia.rawy = (rawdata[3] << 8 | rawdata[2]); lia.rawz = (rawdata[5] << 8 | rawdata[4]); lia.x = float(lia.rawx)*accel_scale; lia.y = float(lia.rawy)*accel_scale; lia.z = float(lia.rawz)*accel_scale; } void BNO055::get_grv(void){ tx[0] = BNO055_GRAVITY_DATA_X_LSB_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address+1,rawdata,6,0); gravity.rawx = (rawdata[1] << 8 | rawdata[0]); gravity.rawy = (rawdata[3] << 8 | rawdata[2]); gravity.rawz = (rawdata[5] << 8 | rawdata[4]); gravity.x = float(gravity.rawx)*accel_scale; gravity.y = float(gravity.rawy)*accel_scale; gravity.z = float(gravity.rawz)*accel_scale; } void BNO055::get_quat(void){ tx[0] = BNO055_QUATERNION_DATA_W_LSB_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address+1,rawdata,8,0); quat.raww = (rawdata[1] << 8 | rawdata[0]); quat.rawx = (rawdata[3] << 8 | rawdata[2]); quat.rawy = (rawdata[5] << 8 | rawdata[4]); quat.rawz = (rawdata[7] << 8 | rawdata[6]); quat.w = float(quat.raww)/16384.0f; quat.x = float(quat.rawx)/16384.0f; quat.y = float(quat.rawy)/16384.0f; quat.z = float(quat.rawz)/16384.0f; } void BNO055::get_angles(void){ tx[0] = BNO055_EULER_H_LSB_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address+1,rawdata,6,0); euler.rawyaw = (rawdata[1] << 8 | rawdata[0]); euler.rawroll = (rawdata[3] << 8 | rawdata[2]); euler.rawpitch = (rawdata[5] << 8 | rawdata[4]); euler.yaw = float(euler.rawyaw)*angle_scale; euler.roll = float(euler.rawroll)*angle_scale; euler.pitch = float(euler.rawpitch)*angle_scale; } void BNO055::get_temp(void){ readchar(BNO055_TEMP_ADDR); temperature = rx / temp_scale; } void BNO055::get_calib(void){ readchar(BNO055_CALIB_STAT_ADDR); calib = rx; } void BNO055::read_calibration_data(void){ char tempmode = op_mode; setmode(OPERATION_MODE_CONFIG); wait_ms(20); tx[0] = ACCEL_OFFSET_X_LSB_ADDR; _i2c.write(address,tx,1,true); _i2c.read(address,calibration,22,false); setmode(tempmode); wait_ms(10); } void BNO055::write_calibration_data(void){ char tempmode = op_mode; setmode(OPERATION_MODE_CONFIG); wait_ms(20); tx[0] = ACCEL_OFFSET_X_LSB_ADDR; _i2c.write(address,tx,1,true); _i2c.write(address,calibration,22,false); setmode(tempmode); wait_ms(10); } void BNO055::set_mapping(char orient){ switch (orient){ case 0: writechar(BNO055_AXIS_MAP_CONFIG_ADDR,0x21); writechar(BNO055_AXIS_MAP_SIGN_ADDR,0x04); break; case 1: writechar(BNO055_AXIS_MAP_CONFIG_ADDR,0x24); writechar(BNO055_AXIS_MAP_SIGN_ADDR,0x00); break; case 2: writechar(BNO055_AXIS_MAP_CONFIG_ADDR,0x24); writechar(BNO055_AXIS_MAP_SIGN_ADDR,0x00); break; case 3: writechar(BNO055_AXIS_MAP_CONFIG_ADDR,0x21); writechar(BNO055_AXIS_MAP_SIGN_ADDR,0x02); break; case 4: writechar(BNO055_AXIS_MAP_CONFIG_ADDR,0x24); writechar(BNO055_AXIS_MAP_SIGN_ADDR,0x03); break; case 5: writechar(BNO055_AXIS_MAP_CONFIG_ADDR,0x21); writechar(BNO055_AXIS_MAP_SIGN_ADDR,0x01); break; case 6: writechar(BNO055_AXIS_MAP_CONFIG_ADDR,0x21); writechar(BNO055_AXIS_MAP_SIGN_ADDR,0x07); break; case 7: writechar(BNO055_AXIS_MAP_CONFIG_ADDR,0x24); writechar(BNO055_AXIS_MAP_SIGN_ADDR,0x05); break; default: writechar(BNO055_AXIS_MAP_CONFIG_ADDR,0x24); writechar(BNO055_AXIS_MAP_SIGN_ADDR,0x00); } }