Simple USBHost library for LPC4088. Backward compatibility of official-USBHost.
Dependencies: FATFileSystem mbed-rtos
EA LPC4088 QSB専用の簡易USBホストライブラリです。
official-USBHostの下位互換で対応プログラムを僅かな修正で動かすことが出来ます。
examples:
Import programLPC4088-USBHostMSD_HelloWorld
Simple USBHost MSD(USB flash drive) for EA LPC4088 QSB test program
Import programLPC4088-BTstack_example
BTstack for EA LPC4088 QSB example program
Import programLPC4088-USBHostC270_example
Simple USBHost WebCam for EA LPC4088 QSB/LPC1768 test program
USBHost/USBHost.cpp
- Committer:
- va009039
- Date:
- 2014-04-25
- Revision:
- 0:148fca6fd246
File content as of revision 0:148fca6fd246:
/* mbed USBHost Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "USBHost.h" #define USB_DEBUG #include "BaseUsbHostDebug.h" #define TEST #include "BaseUsbHostTest.h" USBHost* USBHost::inst = NULL; USBHost* USBHost::getHostInst() { if (inst == NULL) { inst = new USBHost(); inst->init(); } return inst; } void USBHost::poll() { if (inst) { inst->task(); } } USBHost::USBHost() { } /* virtual */ bool USBHost::addDevice(USBDeviceConnected* parent, int port, bool lowSpeed) { USBDeviceConnected* dev = new USBDeviceConnected; USBEndpoint* ep = new USBEndpoint(dev); dev->init(0, port, lowSpeed); dev->setAddress(0); dev->setEpCtl(ep); uint8_t desc[18]; wait_ms(100); int rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, 8); USB_TEST_ASSERT(rc == USB_TYPE_OK); if (rc != USB_TYPE_OK) { USB_ERR("ADD DEVICE FAILD"); } USB_DBG_HEX(desc, 8); DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc); ep->setSize(dev_desc->bMaxPacketSize); int new_addr = USBDeviceConnected::getNewAddress(); rc = controlWrite(dev, 0x00, SET_ADDRESS, new_addr, 0, NULL, 0); USB_TEST_ASSERT(rc == USB_TYPE_OK); dev->setAddress(new_addr); wait_ms(100); rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc)); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, sizeof(desc)); dev->setVid(dev_desc->idVendor); dev->setPid(dev_desc->idProduct); dev->setClass(dev_desc->bDeviceClass); USB_INFO("parent:%p port:%d speed:%s VID:%04x PID:%04x class:%02x addr:%d", parent, port, (lowSpeed ? "low " : "full"), dev->getVid(), dev->getPid(), dev->getClass(), dev->getAddress()); DeviceLists.push_back(dev); if (dev->getClass() == HUB_CLASS) { const int config = 1; int rc = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0); USB_TEST_ASSERT(rc == USB_TYPE_OK); wait_ms(100); Hub(dev); } return true; } // enumerate a device with the control USBEndpoint USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator) { if (dev->getClass() == HUB_CLASS) { // skip hub class return USB_TYPE_OK; } uint8_t desc[18]; USB_TYPE rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc)); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, sizeof(desc)); if (rc != USB_TYPE_OK) { return rc; } DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc); dev->setClass(dev_desc->bDeviceClass); pEnumerator->setVidPid(dev->getVid(), dev->getPid()); rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, desc, 4); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, 4); int TotalLength = desc[2]|desc[3]<<8; uint8_t* buf = new uint8_t[TotalLength]; rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, buf, TotalLength); USB_TEST_ASSERT(rc == USB_TYPE_OK); //USB_DBG_HEX(buf, TotalLength); // Parse the configuration descriptor parseConfDescr(dev, buf, TotalLength, pEnumerator); delete[] buf; // only set configuration if not enumerated before if (!dev->isEnumerated()) { USB_DBG("Set configuration 1 on dev: %p", dev); // sixth step: set configuration (only 1 supported) int config = 1; USB_TYPE res = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0); if (res != USB_TYPE_OK) { USB_ERR("SET CONF FAILED"); return res; } // Some devices may require this delay wait_ms(100); dev->setEnumerated(); // Now the device is enumerated! USB_DBG("dev %p is enumerated", dev); } return USB_TYPE_OK; } // this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor. void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator) { uint32_t index = 0; uint32_t len_desc = 0; uint8_t id = 0; USBEndpoint * ep = NULL; uint8_t intf_nb = 0; bool parsing_intf = false; uint8_t current_intf = 0; EndpointDescriptor* ep_desc; while (index < len) { len_desc = conf_descr[index]; id = conf_descr[index+1]; USB_DBG_HEX(conf_descr+index, len_desc); switch (id) { case CONFIGURATION_DESCRIPTOR: USB_DBG("dev: %p has %d intf", dev, conf_descr[4]); dev->setNbIntf(conf_descr[4]); break; case INTERFACE_DESCRIPTOR: if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) { intf_nb++; current_intf = conf_descr[index + 2]; dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]); USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]); parsing_intf = true; } else { parsing_intf = false; } break; case ENDPOINT_DESCRIPTOR: ep_desc = reinterpret_cast<EndpointDescriptor*>(conf_descr+index); if (parsing_intf && (intf_nb <= MAX_INTF) ) { ENDPOINT_TYPE type = (ENDPOINT_TYPE)(ep_desc->bmAttributes & 0x03); ENDPOINT_DIRECTION dir = (ep_desc->bEndpointAddress & 0x80) ? IN : OUT; if(pEnumerator->useEndpoint(current_intf, type, dir)) { ep = new USBEndpoint(dev); ep->init(type, dir, ep_desc->wMaxPacketSize, ep_desc->bEndpointAddress); USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev); dev->addEndpoint(current_intf, ep); } } break; case HID_DESCRIPTOR: //lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8); break; default: break; } index += len_desc; } } USB_TYPE USBHost::controlRead(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { USBEndpoint* ep = dev->getEpCtl(); return controlRead(ep, requestType, request, value, index, buf, len); } USB_TYPE USBHost::controlWrite(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { USBEndpoint* ep = dev->getEpCtl(); return controlWrite(ep, requestType, request, value, index, buf, len); } USB_TYPE USBHost::controlRead(USBEndpoint* ep, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t* buf, uint32_t len) { SETUP_PACKET setup(requestType, request, value, index, len); int result = token_setup(ep, &setup, len); // setup stage if (result < 0) { return USB_TYPE_ERROR; } result = token_in(ep, buf, len); // data stage if (result < 0) { return USB_TYPE_ERROR; } int read_len = result; ep->m_pED->setToggleDATA1(); result = token_out(ep); // status stage if (result < 0) { return USB_TYPE_ERROR; } ep->setLengthTransferred(read_len); return USB_TYPE_OK; } USB_TYPE USBHost::controlWrite(USBEndpoint* ep, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { SETUP_PACKET setup(requestType, request, value, index, len); int result = token_setup(ep, &setup, len); // setup stage if (result < 0) { return USB_TYPE_ERROR; } int write_len = 0; if (buf != NULL) { result = token_out(ep, buf, len); // data stage if (result < 0) { return USB_TYPE_ERROR; } write_len = result; } ep->m_pED->setToggleDATA1(); result = token_in(ep); // status stage if (result < 0) { return USB_TYPE_ERROR; } ep->setLengthTransferred(write_len); return USB_TYPE_OK; } USB_TYPE USBHost::bulkRead(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) { if (!blocking) { ep->setBuffer(buf, len); ep_queue.push(ep); token_inNB(ep, buf, len); return USB_TYPE_PROCESSING; } int result = token_in(ep, buf, len); if (result >= 0) { ep->setLengthTransferred(result); return USB_TYPE_OK; } return USB_TYPE_ERROR; } USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint* ep, uint8_t * buf, uint32_t len, bool blocking) { int result = token_out(ep, buf, len); if (result >= 0) { ep->setLengthTransferred(result); return USB_TYPE_OK; } return USB_TYPE_ERROR; } USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) { if (!blocking) { ep->setBuffer(buf, len); ep_queue.push(ep); token_inNB(ep, buf, len); return USB_TYPE_PROCESSING; } int result = token_in(ep, buf, len); if (result >= 0) { ep->setLengthTransferred(result); return USB_TYPE_OK; } return USB_TYPE_ERROR; } int USBHost::interruptReadNB(USBEndpoint* ep, uint8_t* data, int size) { if (ep->getState() != USB_TYPE_PROCESSING) { ep->setState(USB_TYPE_PROCESSING); ep->setBuffer(data, size); token_inNB(ep, data, size); } if (token_inNB_result(ep) != USB_TYPE_PROCESSING) { return ep->getLengthTransferred(); } return -1; } int USBHost::bulkReadNB(USBEndpoint*ep, uint8_t* data, int size) { return interruptReadNB(ep, data, size); } void USBHost::task() { USBEndpoint* ep = ep_queue.pop(); if (ep) { if (token_inNB_result(ep) == USB_TYPE_OK) { ep->call(); } else { ep_queue.push(ep); } } }