SX1276 Shield based Applications

Dependencies:   X_NUCLEO_IKS01A1 LoRaWAN-lib SX1276Lib mbed

LoRaWAN-SX1276-Application Demo uses SX1276MB1LAS mbed component shield on a nucleo board platform to demonstrate a Class-A LoRaWAN device in the 915MHz ISM band for North American region. It uses the LoRaWAN-lib and SX1276Lib libraries.

Comissioning.h (LoRaWAN Network Configuration)

The end-device can be activated in one of the two ways:

Over the Air (OTA) activation can be enabled as shown in the figure below. /media/uploads/ubhat/ota_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_EUI (8 Bytes) : Fist 3 Bytes is the Organizationally Unique Identifier (OUI) followed by 5 bytes of unique ID. If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_APPLICATION_EUI (8 Bytes)
  • LORAWAN_APPLICATION_KEY (or DEVKEY) (16 Bytes)

/media/uploads/ubhat/ota_eui.png

Activation by Personalization (ABP) can be enabled as shown in the figure below. /media/uploads/ubhat/abp_enable.png

The end-device must be configured with the following parameters:

  • LORAWAN_DEVICE_ADDRESS (4 Bytes) : If not defined by user, then the firmware automatically assigns one to the end-device
  • LORAWAN_NWKSKEY (16 Bytes)
  • LORAWAN_APPSKEY (16 Bytes)

/media/uploads/ubhat/abp_key.png

Config.h (LoRaWAN Communication Parameters)

  • Mode of Operation : Hybrid If the end-device needs to be configured to operate over 8-channels, then Hybrid Mode needs to be enabled /media/uploads/ubhat/hybridenable.png
  • Mode of Operation : Frequency Hop If the end-device needs to be configured to operate over 64-channels, then Hybrid Mode needs to be disabled
  • Delay between successive JOIN REQUESTs : The delay between successive Join Requests (until the end-device joins the network) can be configured using the parameter OVER_THE_AIR_ACTIVATION_DUTYCYCLE
  • Inter-Frame Delay : One can change the delay between each frame transmission using APP_TX_DUTYCYCLE It is advisable that APP_TX_DUTYCYCLE is greater than or equal to 3sec.
  • Data Rate : The data rate can be configured as per LoRaWAN specification using the paramter LORAWAN_DEFAULT_DATARATE. The range of values are DR_0, DR_1, DR_2, DR_3 and DR_4
  • Confirmed/Unconfirmed Messages : The uplink message or payload can be chosen to be confirmed or unconfirmed using the parameter LORAWAN_CONFIRMED_MSG_ON. When set to 1, the transmitted messages need to be confirmed with an ACK by the network server in the subsequent RX window. When set to 0, no ACK is requested.
  • ADR ON/OFF : The ADR can be enabled or disabled using the parameter LORAWAN_ADR_ON. When set to 1, ADR is enabled and disabled when set to 0.
  • Application Port : The application port can be set using parameter LORAWAN_APP_PORT. A few examples are associated to specific Application Port, and are defined in Config.h
  • Payload Length : The lenght of the payload (in bytes) to be transmitted can be configured using LORAWAN_APP_DATA_SIZE
  • Transmit Power : The transmit power can be configured using LORAWAN_TX_POWER (LoRaMAC verifies if the set power is compliant with the LoRaWAN spec and FCC guidelines)

/media/uploads/ubhat/loraconfig.png

The baud-rate for serial terminal display is 115200

system/crypto/cmac.cpp

Committer:
ubhat
Date:
2018-07-18
Revision:
6:c5f2da0de0b0
Parent:
0:42863a11464a

File content as of revision 6:c5f2da0de0b0:

/**************************************************************************
Copyright (C) 2009 Lander Casado, Philippas Tsigas

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files 
(the "Software"), to deal with the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, 
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions: 

Redistributions of source code must retain the above copyright notice, 
this list of conditions and the following disclaimers. Redistributions in
binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimers in the documentation and/or 
other materials provided with the distribution.

In no event shall the authors or copyright holders be liable for any special,
incidental, indirect or consequential damages of any kind, or any damages 
whatsoever resulting from loss of use, data or profits, whether or not 
advised of the possibility of damage, and on any theory of liability, 
arising out of or in connection with the use or performance of this software.
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
DEALINGS WITH THE SOFTWARE

*****************************************************************************/
//#include <sys/param.h>
//#include <sys/systm.h> 
#include <stdint.h>
#include "aes.h"
#include "cmac.h"
#include "utilities.h"

#define LSHIFT(v, r) do {                                       \
  int32_t i;                                                  \
           for (i = 0; i < 15; i++)                                \
                    (r)[i] = (v)[i] << 1 | (v)[i + 1] >> 7;         \
            (r)[15] = (v)[15] << 1;                                 \
    } while (0)
    
#define XOR(v, r) do {                                          \
            int32_t i;                                                  \
            for (i = 0; i < 16; i++)     \
        {   \
                    (r)[i] = (r)[i] ^ (v)[i]; \
        }                          \
    } while (0) \


void AES_CMAC_Init(AES_CMAC_CTX *ctx)
{
            memset1(ctx->X, 0, sizeof ctx->X);
            ctx->M_n = 0;
        memset1(ctx->rijndael.ksch, '\0', 240);
}
    
void AES_CMAC_SetKey(AES_CMAC_CTX *ctx, const uint8_t key[AES_CMAC_KEY_LENGTH])
{
           //rijndael_set_key_enc_only(&ctx->rijndael, key, 128);
       aes_set_key( key, AES_CMAC_KEY_LENGTH, &ctx->rijndael);
}
    
void AES_CMAC_Update(AES_CMAC_CTX *ctx, const uint8_t *data, uint32_t len)
{
            uint32_t mlen;
        uint8_t in[16];
    
            if (ctx->M_n > 0) {
                  mlen = MIN(16 - ctx->M_n, len);
                    memcpy1(ctx->M_last + ctx->M_n, data, mlen);
                    ctx->M_n += mlen;
                    if (ctx->M_n < 16 || len == mlen)
                            return;
                   XOR(ctx->M_last, ctx->X);
                    //rijndael_encrypt(&ctx->rijndael, ctx->X, ctx->X);
            aes_encrypt( ctx->X, ctx->X, &ctx->rijndael);
                    data += mlen;
                    len -= mlen;
            }
            while (len > 16) {      /* not last block */

                    XOR(data, ctx->X);
                    //rijndael_encrypt(&ctx->rijndael, ctx->X, ctx->X);

                    memcpy1(in, &ctx->X[0], 16); //Bestela ez du ondo iten
            aes_encrypt( in, in, &ctx->rijndael);
                    memcpy1(&ctx->X[0], in, 16);

                    data += 16;
                    len -= 16;
            }
            /* potential last block, save it */
            memcpy1(ctx->M_last, data, len);
            ctx->M_n = len;
}
   
void AES_CMAC_Final(uint8_t digest[AES_CMAC_DIGEST_LENGTH], AES_CMAC_CTX *ctx)
{
            uint8_t K[16];
        uint8_t in[16];
            /* generate subkey K1 */
            memset1(K, '\0', 16);

            //rijndael_encrypt(&ctx->rijndael, K, K);

            aes_encrypt( K, K, &ctx->rijndael);

            if (K[0] & 0x80) {
                    LSHIFT(K, K);
                   K[15] ^= 0x87;
            } else
                    LSHIFT(K, K);


            if (ctx->M_n == 16) {
                    /* last block was a complete block */
                    XOR(K, ctx->M_last);

           } else {
                   /* generate subkey K2 */
                  if (K[0] & 0x80) {
                          LSHIFT(K, K);
                          K[15] ^= 0x87;
                  } else
                           LSHIFT(K, K);

                   /* padding(M_last) */
                   ctx->M_last[ctx->M_n] = 0x80;
                   while (++ctx->M_n < 16)
                         ctx->M_last[ctx->M_n] = 0;
   
                  XOR(K, ctx->M_last);


           }
           XOR(ctx->M_last, ctx->X);

           //rijndael_encrypt(&ctx->rijndael, ctx->X, digest);

       memcpy1(in, &ctx->X[0], 16); //Bestela ez du ondo iten
       aes_encrypt(in, digest, &ctx->rijndael);
           memset1(K, 0, sizeof K);

}