mbed library sources. Supersedes mbed-src. Edited target satm32f446 for user USART3 pins
Fork of mbed-dev by
targets/TARGET_Freescale/TARGET_K20XX/spi_api.c
- Committer:
- AnnaBridge
- Date:
- 2017-06-21
- Revision:
- 167:e84263d55307
- Parent:
- 149:156823d33999
- Child:
- 170:19eb464bc2be
File content as of revision 167:e84263d55307:
/* mbed Microcontroller Library * Copyright (c) 2015 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include "spi_api.h" #include <math.h> #include "cmsis.h" #include "pinmap.h" #include "clk_freqs.h" #include "PeripheralPins.h" void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // determine the SPI to use SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); obj->spi = (SPI_Type*)pinmap_merge(spi_data, spi_cntl); MBED_ASSERT((int)obj->spi != NC); SIM->SCGC5 |= SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTD_MASK; SIM->SCGC6 |= SIM_SCGC6_SPI0_MASK; obj->spi->MCR &= ~(SPI_MCR_MDIS_MASK | SPI_MCR_HALT_MASK); //obj->spi->MCR |= SPI_MCR_DIS_RXF_MASK | SPI_MCR_DIS_TXF_MASK; // not halt in the debug mode obj->spi->SR |= SPI_SR_EOQF_MASK; // pin out the spi pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); if (ssel != NC) { pinmap_pinout(ssel, PinMap_SPI_SSEL); } } void spi_free(spi_t *obj) { // [TODO] } void spi_format(spi_t *obj, int bits, int mode, int slave) { MBED_ASSERT((bits > 4) || (bits < 16)); MBED_ASSERT((mode >= 0) && (mode <= 3)); uint8_t polarity = (mode & 0x2) ? 1 : 0; uint8_t phase = (mode & 0x1) ? 1 : 0; uint8_t old_polarity = (obj->spi->CTAR[0] & SPI_CTAR_CPOL_MASK) != 0; // set master/slave if (slave) { obj->spi->MCR &= ~SPI_MCR_MSTR_MASK; } else { obj->spi->MCR |= (1UL << SPI_MCR_MSTR_SHIFT); } // CTAR0 is used obj->spi->CTAR[0] &= ~(SPI_CTAR_CPHA_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_FMSZ_MASK); obj->spi->CTAR[0] |= (polarity << SPI_CTAR_CPOL_SHIFT) | (phase << SPI_CTAR_CPHA_SHIFT) | ((bits - 1) << SPI_CTAR_FMSZ_SHIFT); //If clk idle state was changed, start a dummy transmission //This is a 'feature' in DSPI: https://community.freescale.com/thread/105526 if ((old_polarity != polarity) && (slave == 0)) { //Start transfer (CS should be high, so shouldn't matter) spi_master_write(obj, 0xFFFF); } } static const uint8_t baudrate_prescaler[] = {2,3,5,7}; static const uint16_t baudrate_scaler[] = {2,4,6,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768}; void spi_frequency(spi_t *obj, int hz) { uint32_t f_error = 0; uint32_t p_error = 0xffffffff; uint32_t ref = 0; uint32_t br = 0; uint32_t ref_spr = 0; uint32_t ref_prescaler = 0; uint32_t ref_dr = 0; // bus clk uint32_t PCLK = bus_frequency(); for (uint32_t i = 0; i < 4; i++) { for (br = 0; br <= 15; br++) { for (uint32_t dr = 0; dr < 2; dr++) { ref = (PCLK * (1U + dr) / baudrate_prescaler[i]) / baudrate_scaler[br]; if (ref > (uint32_t)hz) continue; f_error = hz - ref; if (f_error < p_error) { ref_spr = br; ref_prescaler = i; ref_dr = dr; p_error = f_error; } } } } // set PBR and BR obj->spi->CTAR[0] &= ~(SPI_CTAR_PBR_MASK | SPI_CTAR_BR_MASK | SPI_CTAR_DBR_MASK); obj->spi->CTAR[0] |= (ref_prescaler << SPI_CTAR_PBR_SHIFT) | (ref_spr << SPI_CTAR_BR_SHIFT) | (ref_dr << SPI_CTAR_DBR_SHIFT); } static inline int spi_writeable(spi_t *obj) { return (obj->spi->SR & SPI_SR_TFFF_MASK) ? 1 : 0; } static inline int spi_readable(spi_t *obj) { return (obj->spi->SR & SPI_SR_RFDF_MASK) ? 1 : 0; } int spi_master_write(spi_t *obj, int value) { //clear RX buffer flag obj->spi->SR |= SPI_SR_RFDF_MASK; // wait tx buffer empty while(!spi_writeable(obj)); obj->spi->PUSHR = SPI_PUSHR_TXDATA(value & 0xffff) /*| SPI_PUSHR_EOQ_MASK*/; // wait rx buffer full while (!spi_readable(obj)); return obj->spi->POPR; } int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length) { int total = (tx_length > rx_length) ? tx_length : rx_length; for (int i = 0; i < total; i++) { char out = (i < tx_length) ? tx_buffer[i] : 0xff; char in = spi_master_write(obj, out); if (i < rx_length) { rx_buffer[i] = in; } } return total; } int spi_slave_receive(spi_t *obj) { return spi_readable(obj); } int spi_slave_read(spi_t *obj) { obj->spi->SR |= SPI_SR_RFDF_MASK; return obj->spi->POPR; } void spi_slave_write(spi_t *obj, int value) { while (!spi_writeable(obj)); }