mbed library sources. Supersedes mbed-src. Edited target satm32f446 for user USART3 pins

Dependents:   IGLOO_board

Fork of mbed-dev by mbed official

targets/TARGET_NUVOTON/TARGET_M480/lp_ticker.c

Committer:
AnnaBridge
Date:
2017-08-31
Revision:
172:7d866c31b3c5
Child:
179:b0033dcd6934

File content as of revision 172:7d866c31b3c5:

/* mbed Microcontroller Library
 * Copyright (c) 2015-2016 Nuvoton
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "lp_ticker_api.h"

#if DEVICE_LOWPOWERTIMER

#include "sleep_api.h"
#include "nu_modutil.h"
#include "nu_miscutil.h"
#include "mbed_critical.h"

// lp_ticker tick = us = timestamp
#define US_PER_TICK             (1)
#define US_PER_SEC              (1000 * 1000)

#define US_PER_TMR2_INT         (US_PER_SEC * 10)
#define TMR2_CLK_PER_SEC        (__LXT)
#define TMR2_CLK_PER_TMR2_INT   ((uint32_t) ((uint64_t) US_PER_TMR2_INT * TMR2_CLK_PER_SEC / US_PER_SEC))
#define TMR3_CLK_PER_SEC        (__LXT)

static void tmr2_vec(void);
static void tmr3_vec(void);
static void lp_ticker_arm_cd(void);

static int lp_ticker_inited = 0;
static volatile uint32_t counter_major = 0;
static volatile uint32_t cd_major_minor_clks = 0;
static volatile uint32_t cd_minor_clks = 0;
static volatile uint32_t wakeup_tick = (uint32_t) -1;

// NOTE: To wake the system from power down mode, timer clock source must be ether LXT or LIRC.
// NOTE: TIMER_2 for normal counting and TIMER_3 for scheduled wakeup
static const struct nu_modinit_s timer2_modinit = {TIMER_2, TMR2_MODULE, CLK_CLKSEL1_TMR2SEL_LXT, 0, TMR2_RST, TMR2_IRQn, (void *) tmr2_vec};
static const struct nu_modinit_s timer3_modinit = {TIMER_3, TMR3_MODULE, CLK_CLKSEL1_TMR3SEL_LXT, 0, TMR3_RST, TMR3_IRQn, (void *) tmr3_vec};

#define TMR_CMP_MIN         2
#define TMR_CMP_MAX         0xFFFFFFu

void lp_ticker_init(void)
{
    if (lp_ticker_inited) {
        return;
    }
    lp_ticker_inited = 1;

    counter_major = 0;
    cd_major_minor_clks = 0;
    cd_minor_clks = 0;
    wakeup_tick = (uint32_t) -1;

    // Reset module
    SYS_ResetModule(timer2_modinit.rsetidx);
    SYS_ResetModule(timer3_modinit.rsetidx);

    // Select IP clock source
    CLK_SetModuleClock(timer2_modinit.clkidx, timer2_modinit.clksrc, timer2_modinit.clkdiv);
    CLK_SetModuleClock(timer3_modinit.clkidx, timer3_modinit.clksrc, timer3_modinit.clkdiv);
    // Enable IP clock
    CLK_EnableModuleClock(timer2_modinit.clkidx);
    CLK_EnableModuleClock(timer3_modinit.clkidx);

    // Configure clock
    uint32_t clk_timer2 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
    uint32_t prescale_timer2 = clk_timer2 / TMR2_CLK_PER_SEC - 1;
    MBED_ASSERT((prescale_timer2 != (uint32_t) -1) && prescale_timer2 <= 127);
    MBED_ASSERT((clk_timer2 % TMR2_CLK_PER_SEC) == 0);
    uint32_t cmp_timer2 = TMR2_CLK_PER_TMR2_INT;
    MBED_ASSERT(cmp_timer2 >= TMR_CMP_MIN && cmp_timer2 <= TMR_CMP_MAX);
    // Continuous mode
    // NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
    ((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CTL = TIMER_PERIODIC_MODE | prescale_timer2/* | TIMER_CTL_CNTDATEN_Msk*/;
    ((TIMER_T *) NU_MODBASE(timer2_modinit.modname))->CMP = cmp_timer2;

    // Set vector
    NVIC_SetVector(timer2_modinit.irq_n, (uint32_t) timer2_modinit.var);
    NVIC_SetVector(timer3_modinit.irq_n, (uint32_t) timer3_modinit.var);

    NVIC_EnableIRQ(timer2_modinit.irq_n);
    NVIC_EnableIRQ(timer3_modinit.irq_n);

    TIMER_EnableInt((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
    TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer2_modinit.modname));

    // NOTE: TIMER_Start() first and then lp_ticker_set_interrupt(); otherwise, we may get stuck in lp_ticker_read() because
    //       timer is not running.

    // Start timer
    TIMER_Start((TIMER_T *) NU_MODBASE(timer2_modinit.modname));

    // Schedule wakeup to match semantics of lp_ticker_get_compare_match()
    lp_ticker_set_interrupt(wakeup_tick);


}

timestamp_t lp_ticker_read()
{
    if (! lp_ticker_inited) {
        lp_ticker_init();
    }

    TIMER_T * timer2_base = (TIMER_T *) NU_MODBASE(timer2_modinit.modname);

    do {
        uint64_t major_minor_clks;
        uint32_t minor_clks;

        // NOTE: As TIMER_CNT = TIMER_CMP and counter_major has increased by one, TIMER_CNT doesn't change to 0 for one tick time.
        // NOTE: As TIMER_CNT = TIMER_CMP or TIMER_CNT = 0, counter_major (ISR) may not sync with TIMER_CNT. So skip and fetch stable one at the cost of 1 clock delay on this read.
        do {
            core_util_critical_section_enter();

            // NOTE: Order of reading minor_us/carry here is significant.
            minor_clks = TIMER_GetCounter(timer2_base);
            uint32_t carry = (timer2_base->INTSTS & TIMER_INTSTS_TIF_Msk) ? 1 : 0;
            // When TIMER_CNT approaches TIMER_CMP and will wrap soon, we may get carry but TIMER_CNT not wrapped. Handle carefully carry == 1 && TIMER_CNT is near TIMER_CMP.
            if (carry && minor_clks > (TMR2_CLK_PER_TMR2_INT / 2)) {
                major_minor_clks = (counter_major + 1) * TMR2_CLK_PER_TMR2_INT;
            } else {
                major_minor_clks = (counter_major + carry) * TMR2_CLK_PER_TMR2_INT + minor_clks;
            }

            core_util_critical_section_exit();
        } while (minor_clks == 0 || minor_clks == TMR2_CLK_PER_TMR2_INT);

        // Add power-down compensation
        return ((uint64_t) major_minor_clks * US_PER_SEC / TMR2_CLK_PER_SEC / US_PER_TICK);
    } while (0);
}

void lp_ticker_set_interrupt(timestamp_t timestamp)
{
    uint32_t now = lp_ticker_read();
    wakeup_tick = timestamp;

    TIMER_Stop((TIMER_T *) NU_MODBASE(timer3_modinit.modname));

    int delta = (int) (timestamp - now);
    if (delta > 0) {
        cd_major_minor_clks = (uint64_t) delta * US_PER_TICK * TMR3_CLK_PER_SEC / US_PER_SEC;
        lp_ticker_arm_cd();
    } else {
        // NOTE: With lp_ticker_fire_interrupt() introduced, upper layer would handle past event case.
        //       This code fragment gets redundant, but it is still kept here for backward-compatible.
        void lp_ticker_fire_interrupt(void);
        lp_ticker_fire_interrupt();
    }
}

void lp_ticker_fire_interrupt(void)
{
    // NOTE: This event was in the past. Set the interrupt as pending, but don't process it here.
    //       This prevents a recursive loop under heavy load which can lead to a stack overflow.
    cd_major_minor_clks = cd_minor_clks = 0;
    NVIC_SetPendingIRQ(timer3_modinit.irq_n);
}

void lp_ticker_disable_interrupt(void)
{
    TIMER_DisableInt((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
}

void lp_ticker_clear_interrupt(void)
{
    TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
}

static void tmr2_vec(void)
{
    TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
    TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer2_modinit.modname));
    counter_major ++;
}

static void tmr3_vec(void)
{
    TIMER_ClearIntFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
    TIMER_ClearWakeupFlag((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
    cd_major_minor_clks = (cd_major_minor_clks > cd_minor_clks) ? (cd_major_minor_clks - cd_minor_clks) : 0;
    if (cd_major_minor_clks == 0) {
        // NOTE: lp_ticker_set_interrupt() may get called in lp_ticker_irq_handler();
        lp_ticker_irq_handler();
    } else {
        lp_ticker_arm_cd();
    }
}

static void lp_ticker_arm_cd(void)
{
    TIMER_T * timer3_base = (TIMER_T *) NU_MODBASE(timer3_modinit.modname);

    // Reset 8-bit PSC counter, 24-bit up counter value and CNTEN bit
    // NUC472/M451: See TIMER_CTL_RSTCNT_Msk
    // M480
    timer3_base->CNT = 0;
    while (timer3_base->CNT & TIMER_CNT_RSTACT_Msk);
    // One-shot mode, Clock = 1 KHz
    uint32_t clk_timer3 = TIMER_GetModuleClock((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
    uint32_t prescale_timer3 = clk_timer3 / TMR3_CLK_PER_SEC - 1;
    MBED_ASSERT((prescale_timer3 != (uint32_t) -1) && prescale_timer3 <= 127);
    MBED_ASSERT((clk_timer3 % TMR3_CLK_PER_SEC) == 0);
    // NOTE: TIMER_CTL_CNTDATEN_Msk exists in NUC472, but not in M451/M480. In M451/M480, TIMER_CNT is updated continuously by default.
    timer3_base->CTL &= ~(TIMER_CTL_OPMODE_Msk | TIMER_CTL_PSC_Msk/* | TIMER_CTL_CNTDATEN_Msk*/);
    timer3_base->CTL |= TIMER_ONESHOT_MODE | prescale_timer3/* | TIMER_CTL_CNTDATEN_Msk*/;

    cd_minor_clks = cd_major_minor_clks;
    cd_minor_clks = NU_CLAMP(cd_minor_clks, TMR_CMP_MIN, TMR_CMP_MAX);
    timer3_base->CMP = cd_minor_clks;

    TIMER_EnableInt(timer3_base);
    TIMER_EnableWakeup((TIMER_T *) NU_MODBASE(timer3_modinit.modname));
    TIMER_Start(timer3_base);
}
#endif