mbed library sources. Supersedes mbed-src. Edited target satm32f446 for user USART3 pins
Fork of mbed-dev by
targets/TARGET_TOSHIBA/TARGET_TMPM46B/pwmout_api.c
- Committer:
- ua1arn
- Date:
- 2018-07-30
- Revision:
- 188:3f10722804f9
- Parent:
- 184:08ed48f1de7f
File content as of revision 188:3f10722804f9:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "pwmout_api.h" #include "PeripheralNames.h" #include "pinmap.h" #include "tmpm46b_tmrb.h" #define MAX_COUNTER_16B 0xFFFF static TMRB_InitTypeDef m_tmrb; static TMRB_FFOutputTypeDef FFStruct; static const PinMap PinMap_PWM[] = { {PE4, PWM_0, PIN_DATA(5, 1)}, {PB6, PWM_1, PIN_DATA(4, 1)}, {PH1, PWM_2, PIN_DATA(2, 1)}, {PH0, PWM_3, PIN_DATA(2, 1)}, {PK1, PWM_4, PIN_DATA(4, 1)}, {PA7, PWM_5, PIN_DATA(5, 1)}, {NC, NC, 0} }; static const uint32_t prescale_tbl[] = { 2, 8, 32, 64, 128, 256, 512 }; #define CLOCK_FREQUENCY (48000000) // Input source clock void pwmout_init(pwmout_t *obj, PinName pin) { // Determine the pwm channel PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM); //Assert input is valid MBED_ASSERT(pwm != (PWMName)NC); switch (pwm) { case PWM_0: obj->channel = TSB_TB2; break; case PWM_1: obj->channel = TSB_TB3; break; case PWM_2: obj->channel = TSB_TB4; break; case PWM_3: obj->channel = TSB_TB5; break; case PWM_4: obj->channel = TSB_TB6; break; case PWM_5: obj->channel = TSB_TB7; break; default: obj->channel = NULL; break; } CG_SetFcPeriphA((0x01U << (15U + pwm)), ENABLE); TMRB_SetIdleMode(TSB_TB0, DISABLE); // Set pin function as PWM pinmap_pinout(pin, PinMap_PWM); // Default to 20ms, 0% duty cycle pwmout_period_ms(obj, 20); } void pwmout_free(pwmout_t *obj) { // Stops and clear count operation TMRB_SetRunState(obj->channel, TMRB_STOP); pwmout_write(obj,0); obj->channel = NULL; obj->trailing_timing = 0; obj->leading_timing = 0; obj->divisor = 0; TMRB_SetIdleMode(TSB_TB0, ENABLE); } void pwmout_write(pwmout_t *obj, float value) { // Stop timer for setting clock again TMRB_SetRunState(obj->channel, TMRB_STOP); // values outside this range will be saturated to 0.0f or 1.0f // Disable flip-flop reverse trigger when leading_timing and trailing_timing are duplicated if (value <= 0.0f) { value = 0; FFStruct.FlipflopCtrl = TMRB_FLIPFLOP_CLEAR; FFStruct.FlipflopReverseTrg = TMRB_DISABLE_FLIPFLOP; } else if (value >= 1.0f) { value = 1; FFStruct.FlipflopCtrl = TMRB_FLIPFLOP_SET; FFStruct.FlipflopReverseTrg = TMRB_DISABLE_FLIPFLOP; } else { FFStruct.FlipflopCtrl = TMRB_FLIPFLOP_CLEAR; FFStruct.FlipflopReverseTrg = (TMRB_FLIPFLOP_MATCH_TRAILING | TMRB_FLIPFLOP_MATCH_LEADING); } TMRB_SetFlipFlop(obj->channel, &FFStruct); if (obj->period > 0.7) { value = 1; //TMPM46B duty cycle should be < 700ms, above 700ms fixed 50% duty cycle } // Store the new leading_timing value obj->leading_timing = obj->trailing_timing - (uint16_t)(obj->trailing_timing * value); // Setting TBxRG0 register TMRB_ChangeLeadingTiming(obj->channel, obj->leading_timing); TMRB_SetRunState(obj->channel, TMRB_RUN); } float pwmout_read(pwmout_t *obj) { float duty_cycle = (float)(obj->trailing_timing - obj->leading_timing) / obj->trailing_timing; return duty_cycle; } void pwmout_period(pwmout_t *obj, float seconds) { pwmout_period_us(obj, (int)(seconds * 1000000.0f)); } void pwmout_period_ms(pwmout_t *obj, int ms) { pwmout_period_us(obj, (ms * 1000)); } // Set the PWM period, keeping the duty cycle the same. void pwmout_period_us(pwmout_t *obj, int us) { float seconds = 0; uint32_t cycles = 0; int ClkDiv = 0; int i = 0; float duty_cycle = 0; uint32_t clk_freq = 0; seconds = (float)((us) / 1000000.0f); obj->period = seconds; if (obj->period > 0.7) { clk_freq = (CLOCK_FREQUENCY / 2); } else { clk_freq = CLOCK_FREQUENCY; } // Select highest timer resolution for (i = 0; i < 7; ++i) { cycles = (int)((clk_freq / prescale_tbl[i]) * seconds); if (cycles <= MAX_COUNTER_16B) { ClkDiv = i + 1; // range 1:6 break; } else { cycles = MAX_COUNTER_16B; ClkDiv = 7; } } // Stops and clear count operation TMRB_SetRunState(obj->channel, TMRB_STOP); // Restore the duty-cycle duty_cycle = (float)((obj->trailing_timing - obj->leading_timing) / obj->trailing_timing); obj->trailing_timing = cycles; obj->leading_timing = ((cycles)- (uint16_t)(cycles * duty_cycle)); // Change the source clock division and period m_tmrb.Mode = TMRB_INTERVAL_TIMER; m_tmrb.ClkDiv = ClkDiv; m_tmrb.UpCntCtrl = TMRB_AUTO_CLEAR; m_tmrb.TrailingTiming = obj->trailing_timing; m_tmrb.LeadingTiming = obj->leading_timing; FFStruct.FlipflopCtrl = TMRB_FLIPFLOP_SET; FFStruct.FlipflopReverseTrg = (TMRB_FLIPFLOP_MATCH_TRAILING | TMRB_FLIPFLOP_MATCH_LEADING); // Enable channel TMRB_Enable(obj->channel); // Disable double buffering TMRB_SetDoubleBuf(obj->channel, DISABLE, TMRB_WRITE_REG_SEPARATE); // Init timer function TMRB_Init(obj->channel, &m_tmrb); // Enable double buffering TMRB_SetDoubleBuf(obj->channel, ENABLE, TMRB_WRITE_REG_SEPARATE); TMRB_SetFlipFlop(obj->channel, &FFStruct); // Start timer function TMRB_SetRunState(obj->channel, TMRB_RUN); } void pwmout_pulsewidth(pwmout_t *obj, float seconds) { pwmout_pulsewidth_us(obj, (seconds * 1000000.0f)); } void pwmout_pulsewidth_ms(pwmout_t *obj, int ms) { pwmout_pulsewidth_us(obj, (ms * 1000)); } void pwmout_pulsewidth_us(pwmout_t *obj, int us) { float seconds = 0; float value = 0; seconds = (float)(us / 1000000.0f); value = (((seconds / obj->period) * 100.0f) / 100.0f); pwmout_write(obj, value); }