mbed library sources. Supersedes mbed-src. Edited target satm32f446 for user USART3 pins
Fork of mbed-dev by
targets/TARGET_NXP/TARGET_LPC15XX/spi_api.c
- Committer:
- ua1arn
- Date:
- 2018-07-30
- Revision:
- 188:3f10722804f9
- Parent:
- 170:19eb464bc2be
File content as of revision 188:3f10722804f9:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include <math.h> #include "spi_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" static const SWM_Map SWM_SPI_SSEL[] = { {4, 0}, {5, 24}, }; static const SWM_Map SWM_SPI_SCLK[] = { {3, 8}, {5, 0}, }; static const SWM_Map SWM_SPI_MOSI[] = { {3, 16}, {5, 8}, }; static const SWM_Map SWM_SPI_MISO[] = { {3, 24}, {5, 16}, }; // bit flags for used SPIs static unsigned char spi_used = 0; static int get_available_spi(PinName mosi, PinName miso, PinName sclk, PinName ssel) { if (spi_used == 0) { return 0; // The first user } const SWM_Map *swm; uint32_t regVal; // Investigate if same pins as the used SPI0/1 - to be able to reuse it for (int spi_n = 0; spi_n < 2; spi_n++) { if (spi_used & (1<<spi_n)) { if (sclk != NC) { swm = &SWM_SPI_SCLK[spi_n]; regVal = LPC_SWM->PINASSIGN[swm->n] & (0xFF << swm->offset); if (regVal != (sclk << swm->offset)) { // Existing pin is not the same as the one we want continue; } } if (mosi != NC) { swm = &SWM_SPI_MOSI[spi_n]; regVal = LPC_SWM->PINASSIGN[swm->n] & (0xFF << swm->offset); if (regVal != (mosi << swm->offset)) { // Existing pin is not the same as the one we want continue; } } if (miso != NC) { swm = &SWM_SPI_MISO[spi_n]; regVal = LPC_SWM->PINASSIGN[swm->n] & (0xFF << swm->offset); if (regVal != (miso << swm->offset)) { // Existing pin is not the same as the one we want continue; } } if (ssel != NC) { swm = &SWM_SPI_SSEL[spi_n]; regVal = LPC_SWM->PINASSIGN[swm->n] & (0xFF << swm->offset); if (regVal != (ssel << swm->offset)) { // Existing pin is not the same as the one we want continue; } } // The pins for the currently used SPIx are the same as the // ones we want so we will reuse it return spi_n; } } // None of the existing SPIx pin setups match the pins we want // so the last hope is to select one unused SPIx if ((spi_used & 1) == 0) { return 0; } else if ((spi_used & 2) == 0) { return 1; } // No matching setup and no free SPIx return -1; } static inline void spi_disable(spi_t *obj); static inline void spi_enable(spi_t *obj); void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { int spi_n = get_available_spi(mosi, miso, sclk, ssel); if (spi_n == -1) { error("No available SPI"); } obj->spi_n = spi_n; spi_used |= (1 << spi_n); obj->spi = (spi_n) ? (LPC_SPI0_Type *)(LPC_SPI1_BASE) : (LPC_SPI0_Type *)(LPC_SPI0_BASE); const SWM_Map *swm; uint32_t regVal; if (sclk != NC) { swm = &SWM_SPI_SCLK[obj->spi_n]; regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset); LPC_SWM->PINASSIGN[swm->n] = regVal | (sclk << swm->offset); } if (mosi != NC) { swm = &SWM_SPI_MOSI[obj->spi_n]; regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset); LPC_SWM->PINASSIGN[swm->n] = regVal | (mosi << swm->offset); } if (miso != NC) { swm = &SWM_SPI_MISO[obj->spi_n]; regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset); LPC_SWM->PINASSIGN[swm->n] = regVal | (miso << swm->offset); } if (ssel != NC) { swm = &SWM_SPI_SSEL[obj->spi_n]; regVal = LPC_SWM->PINASSIGN[swm->n] & ~(0xFF << swm->offset); LPC_SWM->PINASSIGN[swm->n] = regVal | (ssel << swm->offset); } // clear interrupts obj->spi->INTENCLR = 0x3f; // enable power and clocking LPC_SYSCON->SYSAHBCLKCTRL1 |= (0x1 << (obj->spi_n + 9)); LPC_SYSCON->PRESETCTRL1 |= (0x1 << (obj->spi_n + 9)); LPC_SYSCON->PRESETCTRL1 &= ~(0x1 << (obj->spi_n + 9)); } void spi_free(spi_t *obj) { } void spi_format(spi_t *obj, int bits, int mode, int slave) { spi_disable(obj); MBED_ASSERT((bits >= 1 && bits <= 16) && (mode >= 0 && mode <= 3)); int polarity = (mode & 0x2) ? 1 : 0; int phase = (mode & 0x1) ? 1 : 0; // set it up int LEN = bits - 1; // LEN - Data Length int CPOL = (polarity) ? 1 : 0; // CPOL - Clock Polarity select int CPHA = (phase) ? 1 : 0; // CPHA - Clock Phase select uint32_t tmp = obj->spi->CFG; tmp &= ~((1 << 5) | (1 << 4) | (1 << 2)); tmp |= (CPOL << 5) | (CPHA << 4) | ((slave ? 0 : 1) << 2); obj->spi->CFG = tmp; // select frame length tmp = obj->spi->TXCTL; tmp &= ~(0xf << 24); tmp |= (LEN << 24); obj->spi->TXCTL = tmp; spi_enable(obj); } void spi_frequency(spi_t *obj, int hz) { spi_disable(obj); // rise DIV value if it cannot be divided obj->spi->DIV = (SystemCoreClock + (hz - 1))/hz - 1; obj->spi->DLY = 0; spi_enable(obj); } static inline void spi_disable(spi_t *obj) { obj->spi->CFG &= ~(1 << 0); } static inline void spi_enable(spi_t *obj) { obj->spi->CFG |= (1 << 0); } static inline int spi_readable(spi_t *obj) { return obj->spi->STAT & (1 << 0); } static inline int spi_writeable(spi_t *obj) { return obj->spi->STAT & (1 << 1); } static inline void spi_write(spi_t *obj, int value) { while (!spi_writeable(obj)); // end of transfer obj->spi->TXCTL |= (1 << 20); obj->spi->TXDAT = (value & 0xffff); } static inline int spi_read(spi_t *obj) { while (!spi_readable(obj)); return obj->spi->RXDAT & 0xffff; // Only the lower 16 bits contain data } int spi_busy(spi_t *obj) { // checking RXOV(Receiver Overrun interrupt flag) return obj->spi->STAT & (1 << 2); } int spi_master_write(spi_t *obj, int value) { spi_write(obj, value); return spi_read(obj); } int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, char write_fill) { int total = (tx_length > rx_length) ? tx_length : rx_length; for (int i = 0; i < total; i++) { char out = (i < tx_length) ? tx_buffer[i] : write_fill; char in = spi_master_write(obj, out); if (i < rx_length) { rx_buffer[i] = in; } } return total; } int spi_slave_receive(spi_t *obj) { return (spi_readable(obj) && !spi_busy(obj)) ? (1) : (0); } int spi_slave_read(spi_t *obj) { return obj->spi->RXDAT & 0xffff; // Only the lower 16 bits contain data } void spi_slave_write(spi_t *obj, int value) { while (spi_writeable(obj) == 0) ; obj->spi->TXDAT = value; }