ICRS Eurobot 2013

Dependencies:   mbed mbed-rtos Servo QEI

Committer:
madcowswe
Date:
Tue Apr 09 15:33:36 2013 +0000
Revision:
20:70d651156779
Parent:
15:9c5aaeda36dc
Predict loop running, update loop not done.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
madcowswe 15:9c5aaeda36dc 1 /*
madcowswe 15:9c5aaeda36dc 2 * Tiny Vector Matrix Library
madcowswe 15:9c5aaeda36dc 3 * Dense Vector Matrix Libary of Tiny size using Expression Templates
madcowswe 15:9c5aaeda36dc 4 *
madcowswe 15:9c5aaeda36dc 5 * Copyright (C) 2001 - 2007 Olaf Petzold <opetzold@users.sourceforge.net>
madcowswe 15:9c5aaeda36dc 6 *
madcowswe 15:9c5aaeda36dc 7 * This library is free software; you can redistribute it and/or
madcowswe 15:9c5aaeda36dc 8 * modify it under the terms of the GNU Lesser General Public
madcowswe 15:9c5aaeda36dc 9 * License as published by the Free Software Foundation; either
madcowswe 15:9c5aaeda36dc 10 * version 2.1 of the License, or (at your option) any later version.
madcowswe 15:9c5aaeda36dc 11 *
madcowswe 15:9c5aaeda36dc 12 * This library is distributed in the hope that it will be useful,
madcowswe 15:9c5aaeda36dc 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
madcowswe 15:9c5aaeda36dc 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
madcowswe 15:9c5aaeda36dc 15 * Lesser General Public License for more details.
madcowswe 15:9c5aaeda36dc 16 *
madcowswe 15:9c5aaeda36dc 17 * You should have received a copy of the GNU Lesser General Public
madcowswe 15:9c5aaeda36dc 18 * License along with this library; if not, write to the Free Software
madcowswe 15:9c5aaeda36dc 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
madcowswe 15:9c5aaeda36dc 20 *
madcowswe 15:9c5aaeda36dc 21 * $Id: VectorFunctions.h,v 1.21 2007-06-23 15:59:00 opetzold Exp $
madcowswe 15:9c5aaeda36dc 22 */
madcowswe 15:9c5aaeda36dc 23
madcowswe 15:9c5aaeda36dc 24 #ifndef TVMET_XPR_VECTOR_FUNCTIONS_H
madcowswe 15:9c5aaeda36dc 25 #define TVMET_XPR_VECTOR_FUNCTIONS_H
madcowswe 15:9c5aaeda36dc 26
madcowswe 15:9c5aaeda36dc 27 namespace tvmet {
madcowswe 15:9c5aaeda36dc 28
madcowswe 15:9c5aaeda36dc 29
madcowswe 15:9c5aaeda36dc 30 /* forwards */
madcowswe 15:9c5aaeda36dc 31 template<class T, std::size_t Sz> class Vector;
madcowswe 15:9c5aaeda36dc 32
madcowswe 15:9c5aaeda36dc 33
madcowswe 15:9c5aaeda36dc 34 /*********************************************************
madcowswe 15:9c5aaeda36dc 35 * PART I: DECLARATION
madcowswe 15:9c5aaeda36dc 36 *********************************************************/
madcowswe 15:9c5aaeda36dc 37
madcowswe 15:9c5aaeda36dc 38
madcowswe 15:9c5aaeda36dc 39 /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
madcowswe 15:9c5aaeda36dc 40 * Vector arithmetic functions add, sub, mul and div
madcowswe 15:9c5aaeda36dc 41 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
madcowswe 15:9c5aaeda36dc 42
madcowswe 15:9c5aaeda36dc 43
madcowswe 15:9c5aaeda36dc 44 /*
madcowswe 15:9c5aaeda36dc 45 * function(XprVector<E1, Sz>, XprVector<E2, Sz>)
madcowswe 15:9c5aaeda36dc 46 */
madcowswe 15:9c5aaeda36dc 47 #define TVMET_DECLARE_MACRO(NAME) \
madcowswe 15:9c5aaeda36dc 48 template<class E1, class E2, std::size_t Sz> \
madcowswe 15:9c5aaeda36dc 49 XprVector< \
madcowswe 15:9c5aaeda36dc 50 XprBinOp< \
madcowswe 15:9c5aaeda36dc 51 Fcnl_##NAME<typename E1::value_type, typename E2::value_type>, \
madcowswe 15:9c5aaeda36dc 52 XprVector<E1, Sz>, \
madcowswe 15:9c5aaeda36dc 53 XprVector<E2, Sz> \
madcowswe 15:9c5aaeda36dc 54 >, \
madcowswe 15:9c5aaeda36dc 55 Sz \
madcowswe 15:9c5aaeda36dc 56 > \
madcowswe 15:9c5aaeda36dc 57 NAME (const XprVector<E1, Sz>& lhs, \
madcowswe 15:9c5aaeda36dc 58 const XprVector<E2, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 59
madcowswe 15:9c5aaeda36dc 60 TVMET_DECLARE_MACRO(add) // per se element wise
madcowswe 15:9c5aaeda36dc 61 TVMET_DECLARE_MACRO(sub) // per se element wise
madcowswe 15:9c5aaeda36dc 62 TVMET_DECLARE_MACRO(mul) // per se element wise
madcowswe 15:9c5aaeda36dc 63 namespace element_wise {
madcowswe 15:9c5aaeda36dc 64 TVMET_DECLARE_MACRO(div) // not defined for vectors
madcowswe 15:9c5aaeda36dc 65 }
madcowswe 15:9c5aaeda36dc 66
madcowswe 15:9c5aaeda36dc 67 #undef TVMET_DECLARE_MACRO
madcowswe 15:9c5aaeda36dc 68
madcowswe 15:9c5aaeda36dc 69
madcowswe 15:9c5aaeda36dc 70 /*
madcowswe 15:9c5aaeda36dc 71 * function(XprVector<E, Sz>, POD)
madcowswe 15:9c5aaeda36dc 72 * function(POD, XprVector<E, Sz>)
madcowswe 15:9c5aaeda36dc 73 * Note: - operations +,-,*,/ are per se element wise
madcowswe 15:9c5aaeda36dc 74 */
madcowswe 15:9c5aaeda36dc 75 #define TVMET_DECLARE_MACRO(NAME, POD) \
madcowswe 15:9c5aaeda36dc 76 template<class E, std::size_t Sz> \
madcowswe 15:9c5aaeda36dc 77 XprVector< \
madcowswe 15:9c5aaeda36dc 78 XprBinOp< \
madcowswe 15:9c5aaeda36dc 79 Fcnl_##NAME< typename E::value_type, POD >, \
madcowswe 15:9c5aaeda36dc 80 XprVector<E, Sz>, \
madcowswe 15:9c5aaeda36dc 81 XprLiteral< POD > \
madcowswe 15:9c5aaeda36dc 82 >, \
madcowswe 15:9c5aaeda36dc 83 Sz \
madcowswe 15:9c5aaeda36dc 84 > \
madcowswe 15:9c5aaeda36dc 85 NAME (const XprVector<E, Sz>& lhs, \
madcowswe 15:9c5aaeda36dc 86 POD rhs) TVMET_CXX_ALWAYS_INLINE; \
madcowswe 15:9c5aaeda36dc 87 \
madcowswe 15:9c5aaeda36dc 88 template<class E, std::size_t Sz> \
madcowswe 15:9c5aaeda36dc 89 XprVector< \
madcowswe 15:9c5aaeda36dc 90 XprBinOp< \
madcowswe 15:9c5aaeda36dc 91 Fcnl_##NAME< POD, typename E::value_type>, \
madcowswe 15:9c5aaeda36dc 92 XprLiteral< POD >, \
madcowswe 15:9c5aaeda36dc 93 XprVector<E, Sz> \
madcowswe 15:9c5aaeda36dc 94 >, \
madcowswe 15:9c5aaeda36dc 95 Sz \
madcowswe 15:9c5aaeda36dc 96 > \
madcowswe 15:9c5aaeda36dc 97 NAME (POD lhs, \
madcowswe 15:9c5aaeda36dc 98 const XprVector<E, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 99
madcowswe 15:9c5aaeda36dc 100 TVMET_DECLARE_MACRO(add, int)
madcowswe 15:9c5aaeda36dc 101 TVMET_DECLARE_MACRO(sub, int)
madcowswe 15:9c5aaeda36dc 102 TVMET_DECLARE_MACRO(mul, int)
madcowswe 15:9c5aaeda36dc 103 TVMET_DECLARE_MACRO(div, int)
madcowswe 15:9c5aaeda36dc 104
madcowswe 15:9c5aaeda36dc 105 #if defined(TVMET_HAVE_LONG_LONG)
madcowswe 15:9c5aaeda36dc 106 TVMET_DECLARE_MACRO(add, long long int)
madcowswe 15:9c5aaeda36dc 107 TVMET_DECLARE_MACRO(sub, long long int)
madcowswe 15:9c5aaeda36dc 108 TVMET_DECLARE_MACRO(mul, long long int)
madcowswe 15:9c5aaeda36dc 109 TVMET_DECLARE_MACRO(div, long long int)
madcowswe 15:9c5aaeda36dc 110 #endif
madcowswe 15:9c5aaeda36dc 111
madcowswe 15:9c5aaeda36dc 112 TVMET_DECLARE_MACRO(add, float)
madcowswe 15:9c5aaeda36dc 113 TVMET_DECLARE_MACRO(sub, float)
madcowswe 15:9c5aaeda36dc 114 TVMET_DECLARE_MACRO(mul, float)
madcowswe 15:9c5aaeda36dc 115 TVMET_DECLARE_MACRO(div, float)
madcowswe 15:9c5aaeda36dc 116
madcowswe 15:9c5aaeda36dc 117 TVMET_DECLARE_MACRO(add, double)
madcowswe 15:9c5aaeda36dc 118 TVMET_DECLARE_MACRO(sub, double)
madcowswe 15:9c5aaeda36dc 119 TVMET_DECLARE_MACRO(mul, double)
madcowswe 15:9c5aaeda36dc 120 TVMET_DECLARE_MACRO(div, double)
madcowswe 15:9c5aaeda36dc 121
madcowswe 15:9c5aaeda36dc 122 #if defined(TVMET_HAVE_LONG_DOUBLE)
madcowswe 15:9c5aaeda36dc 123 TVMET_DECLARE_MACRO(add, long double)
madcowswe 15:9c5aaeda36dc 124 TVMET_DECLARE_MACRO(sub, long double)
madcowswe 15:9c5aaeda36dc 125 TVMET_DECLARE_MACRO(mul, long double)
madcowswe 15:9c5aaeda36dc 126 TVMET_DECLARE_MACRO(div, long double)
madcowswe 15:9c5aaeda36dc 127 #endif
madcowswe 15:9c5aaeda36dc 128
madcowswe 15:9c5aaeda36dc 129 #undef TVMET_DECLARE_MACRO
madcowswe 15:9c5aaeda36dc 130
madcowswe 15:9c5aaeda36dc 131
madcowswe 15:9c5aaeda36dc 132 #if defined(TVMET_HAVE_COMPLEX)
madcowswe 15:9c5aaeda36dc 133 /*
madcowswe 15:9c5aaeda36dc 134 * function(XprMatrix<E, Rows, Cols>, complex<T>)
madcowswe 15:9c5aaeda36dc 135 * function(complex<T>, XprMatrix<E, Rows, Cols>)
madcowswe 15:9c5aaeda36dc 136 * Note: - operations +,-,*,/ are per se element wise
madcowswe 15:9c5aaeda36dc 137 * \todo type promotion
madcowswe 15:9c5aaeda36dc 138 */
madcowswe 15:9c5aaeda36dc 139 #define TVMET_DECLARE_MACRO(NAME) \
madcowswe 15:9c5aaeda36dc 140 template<class E, std::size_t Sz, class T> \
madcowswe 15:9c5aaeda36dc 141 XprVector< \
madcowswe 15:9c5aaeda36dc 142 XprBinOp< \
madcowswe 15:9c5aaeda36dc 143 Fcnl_##NAME< typename E::value_type, std::complex<T> >, \
madcowswe 15:9c5aaeda36dc 144 XprVector<E, Sz>, \
madcowswe 15:9c5aaeda36dc 145 XprLiteral< std::complex<T> > \
madcowswe 15:9c5aaeda36dc 146 >, \
madcowswe 15:9c5aaeda36dc 147 Sz \
madcowswe 15:9c5aaeda36dc 148 > \
madcowswe 15:9c5aaeda36dc 149 NAME (const XprVector<E, Sz>& lhs, \
madcowswe 15:9c5aaeda36dc 150 const std::complex<T>& rhs) TVMET_CXX_ALWAYS_INLINE; \
madcowswe 15:9c5aaeda36dc 151 \
madcowswe 15:9c5aaeda36dc 152 template<class E, std::size_t Sz, class T> \
madcowswe 15:9c5aaeda36dc 153 XprVector< \
madcowswe 15:9c5aaeda36dc 154 XprBinOp< \
madcowswe 15:9c5aaeda36dc 155 Fcnl_##NAME< std::complex<T>, typename E::value_type>, \
madcowswe 15:9c5aaeda36dc 156 XprLiteral< std::complex<T> >, \
madcowswe 15:9c5aaeda36dc 157 XprVector<E, Sz> \
madcowswe 15:9c5aaeda36dc 158 >, \
madcowswe 15:9c5aaeda36dc 159 Sz \
madcowswe 15:9c5aaeda36dc 160 > \
madcowswe 15:9c5aaeda36dc 161 NAME (const std::complex<T>& lhs, \
madcowswe 15:9c5aaeda36dc 162 const XprVector<E, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 163
madcowswe 15:9c5aaeda36dc 164 TVMET_DECLARE_MACRO(add)
madcowswe 15:9c5aaeda36dc 165 TVMET_DECLARE_MACRO(sub)
madcowswe 15:9c5aaeda36dc 166 TVMET_DECLARE_MACRO(mul)
madcowswe 15:9c5aaeda36dc 167 TVMET_DECLARE_MACRO(div)
madcowswe 15:9c5aaeda36dc 168
madcowswe 15:9c5aaeda36dc 169 #undef TVMET_DECLARE_MACRO
madcowswe 15:9c5aaeda36dc 170
madcowswe 15:9c5aaeda36dc 171 #endif // defined(TVMET_HAVE_COMPLEX)
madcowswe 15:9c5aaeda36dc 172
madcowswe 15:9c5aaeda36dc 173
madcowswe 15:9c5aaeda36dc 174 /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
madcowswe 15:9c5aaeda36dc 175 * vector specific functions
madcowswe 15:9c5aaeda36dc 176 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
madcowswe 15:9c5aaeda36dc 177
madcowswe 15:9c5aaeda36dc 178
madcowswe 15:9c5aaeda36dc 179 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 180 typename NumericTraits<typename E::value_type>::sum_type
madcowswe 15:9c5aaeda36dc 181 sum(const XprVector<E, Sz>& v) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 182
madcowswe 15:9c5aaeda36dc 183
madcowswe 15:9c5aaeda36dc 184 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 185 typename NumericTraits<typename E::value_type>::sum_type
madcowswe 15:9c5aaeda36dc 186 product(const XprVector<E, Sz>& v) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 187
madcowswe 15:9c5aaeda36dc 188
madcowswe 15:9c5aaeda36dc 189 template<class E1, class E2, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 190 typename PromoteTraits<
madcowswe 15:9c5aaeda36dc 191 typename E1::value_type,
madcowswe 15:9c5aaeda36dc 192 typename E2::value_type
madcowswe 15:9c5aaeda36dc 193 >::value_type
madcowswe 15:9c5aaeda36dc 194 dot(const XprVector<E1, Sz>& lhs,
madcowswe 15:9c5aaeda36dc 195 const XprVector<E2, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 196
madcowswe 15:9c5aaeda36dc 197
madcowswe 15:9c5aaeda36dc 198 template<class T, class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 199 typename PromoteTraits<T, typename E::value_type>::value_type
madcowswe 15:9c5aaeda36dc 200 dot(const Vector<T, Sz>& lhs,
madcowswe 15:9c5aaeda36dc 201 const XprVector<E, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 202
madcowswe 15:9c5aaeda36dc 203
madcowswe 15:9c5aaeda36dc 204 template<class E, class T, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 205 typename PromoteTraits<T, typename E::value_type>::value_type
madcowswe 15:9c5aaeda36dc 206 dot(const XprVector<E, Sz>& lhs,
madcowswe 15:9c5aaeda36dc 207 const Vector<T, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 208
madcowswe 15:9c5aaeda36dc 209
madcowswe 15:9c5aaeda36dc 210 template<class E1, class E2>
madcowswe 15:9c5aaeda36dc 211 Vector<
madcowswe 15:9c5aaeda36dc 212 typename PromoteTraits<
madcowswe 15:9c5aaeda36dc 213 typename E1::value_type,
madcowswe 15:9c5aaeda36dc 214 typename E2::value_type
madcowswe 15:9c5aaeda36dc 215 >::value_type,
madcowswe 15:9c5aaeda36dc 216 3
madcowswe 15:9c5aaeda36dc 217 >
madcowswe 15:9c5aaeda36dc 218 cross(const XprVector<E1, 3>& lhs,
madcowswe 15:9c5aaeda36dc 219 const XprVector<E2, 3>& rhs) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 220
madcowswe 15:9c5aaeda36dc 221
madcowswe 15:9c5aaeda36dc 222 template<class T, class E>
madcowswe 15:9c5aaeda36dc 223 Vector<
madcowswe 15:9c5aaeda36dc 224 typename PromoteTraits<T, typename E::value_type>::value_type, 3>
madcowswe 15:9c5aaeda36dc 225 cross(const Vector<T, 3>& lhs,
madcowswe 15:9c5aaeda36dc 226 const XprVector<E, 3>& rhs) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 227
madcowswe 15:9c5aaeda36dc 228
madcowswe 15:9c5aaeda36dc 229 template<class E, class T>
madcowswe 15:9c5aaeda36dc 230 Vector<
madcowswe 15:9c5aaeda36dc 231 typename PromoteTraits<T, typename E::value_type>::value_type, 3>
madcowswe 15:9c5aaeda36dc 232 cross(const XprVector<E, 3>& lhs,
madcowswe 15:9c5aaeda36dc 233 const Vector<T, 3>& rhs) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 234
madcowswe 15:9c5aaeda36dc 235
madcowswe 15:9c5aaeda36dc 236 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 237 typename NumericTraits<typename E::value_type>::sum_type
madcowswe 15:9c5aaeda36dc 238 norm1(const XprVector<E, Sz>& v) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 239
madcowswe 15:9c5aaeda36dc 240
madcowswe 15:9c5aaeda36dc 241 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 242 typename NumericTraits<typename E::value_type>::sum_type
madcowswe 15:9c5aaeda36dc 243 norm2(const XprVector<E, Sz>& v) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 244
madcowswe 15:9c5aaeda36dc 245
madcowswe 15:9c5aaeda36dc 246 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 247 XprVector<
madcowswe 15:9c5aaeda36dc 248 XprBinOp<
madcowswe 15:9c5aaeda36dc 249 Fcnl_div<typename E::value_type, typename E::value_type>,
madcowswe 15:9c5aaeda36dc 250 XprVector<E, Sz>,
madcowswe 15:9c5aaeda36dc 251 XprLiteral<typename E::value_type>
madcowswe 15:9c5aaeda36dc 252 >,
madcowswe 15:9c5aaeda36dc 253 Sz
madcowswe 15:9c5aaeda36dc 254 >
madcowswe 15:9c5aaeda36dc 255 normalize(const XprVector<E, Sz>& v) TVMET_CXX_ALWAYS_INLINE;
madcowswe 15:9c5aaeda36dc 256
madcowswe 15:9c5aaeda36dc 257
madcowswe 15:9c5aaeda36dc 258 /*********************************************************
madcowswe 15:9c5aaeda36dc 259 * PART II: IMPLEMENTATION
madcowswe 15:9c5aaeda36dc 260 *********************************************************/
madcowswe 15:9c5aaeda36dc 261
madcowswe 15:9c5aaeda36dc 262
madcowswe 15:9c5aaeda36dc 263 /*
madcowswe 15:9c5aaeda36dc 264 * function(XprVector<E1, Sz>, XprVector<E2, Sz>)
madcowswe 15:9c5aaeda36dc 265 */
madcowswe 15:9c5aaeda36dc 266 #define TVMET_IMPLEMENT_MACRO(NAME) \
madcowswe 15:9c5aaeda36dc 267 template<class E1, class E2, std::size_t Sz> \
madcowswe 15:9c5aaeda36dc 268 inline \
madcowswe 15:9c5aaeda36dc 269 XprVector< \
madcowswe 15:9c5aaeda36dc 270 XprBinOp< \
madcowswe 15:9c5aaeda36dc 271 Fcnl_##NAME<typename E1::value_type, typename E2::value_type>, \
madcowswe 15:9c5aaeda36dc 272 XprVector<E1, Sz>, \
madcowswe 15:9c5aaeda36dc 273 XprVector<E2, Sz> \
madcowswe 15:9c5aaeda36dc 274 >, \
madcowswe 15:9c5aaeda36dc 275 Sz \
madcowswe 15:9c5aaeda36dc 276 > \
madcowswe 15:9c5aaeda36dc 277 NAME (const XprVector<E1, Sz>& lhs, const XprVector<E2, Sz>& rhs) { \
madcowswe 15:9c5aaeda36dc 278 typedef XprBinOp< \
madcowswe 15:9c5aaeda36dc 279 Fcnl_##NAME<typename E1::value_type, typename E2::value_type>, \
madcowswe 15:9c5aaeda36dc 280 XprVector<E1, Sz>, \
madcowswe 15:9c5aaeda36dc 281 XprVector<E2, Sz> \
madcowswe 15:9c5aaeda36dc 282 > expr_type; \
madcowswe 15:9c5aaeda36dc 283 return XprVector<expr_type, Sz>(expr_type(lhs, rhs)); \
madcowswe 15:9c5aaeda36dc 284 }
madcowswe 15:9c5aaeda36dc 285
madcowswe 15:9c5aaeda36dc 286 TVMET_IMPLEMENT_MACRO(add) // per se element wise
madcowswe 15:9c5aaeda36dc 287 TVMET_IMPLEMENT_MACRO(sub) // per se element wise
madcowswe 15:9c5aaeda36dc 288 TVMET_IMPLEMENT_MACRO(mul) // per se element wise
madcowswe 15:9c5aaeda36dc 289 namespace element_wise {
madcowswe 15:9c5aaeda36dc 290 TVMET_IMPLEMENT_MACRO(div) // not defined for vectors
madcowswe 15:9c5aaeda36dc 291 }
madcowswe 15:9c5aaeda36dc 292
madcowswe 15:9c5aaeda36dc 293 #undef TVMET_IMPLEMENT_MACRO
madcowswe 15:9c5aaeda36dc 294
madcowswe 15:9c5aaeda36dc 295
madcowswe 15:9c5aaeda36dc 296 /*
madcowswe 15:9c5aaeda36dc 297 * function(XprVector<E, Sz>, POD)
madcowswe 15:9c5aaeda36dc 298 * function(POD, XprVector<E, Sz>)
madcowswe 15:9c5aaeda36dc 299 * Note: - operations +,-,*,/ are per se element wise
madcowswe 15:9c5aaeda36dc 300 */
madcowswe 15:9c5aaeda36dc 301 #define TVMET_IMPLEMENT_MACRO(NAME, POD) \
madcowswe 15:9c5aaeda36dc 302 template<class E, std::size_t Sz> \
madcowswe 15:9c5aaeda36dc 303 inline \
madcowswe 15:9c5aaeda36dc 304 XprVector< \
madcowswe 15:9c5aaeda36dc 305 XprBinOp< \
madcowswe 15:9c5aaeda36dc 306 Fcnl_##NAME< typename E::value_type, POD >, \
madcowswe 15:9c5aaeda36dc 307 XprVector<E, Sz>, \
madcowswe 15:9c5aaeda36dc 308 XprLiteral< POD > \
madcowswe 15:9c5aaeda36dc 309 >, \
madcowswe 15:9c5aaeda36dc 310 Sz \
madcowswe 15:9c5aaeda36dc 311 > \
madcowswe 15:9c5aaeda36dc 312 NAME (const XprVector<E, Sz>& lhs, POD rhs) { \
madcowswe 15:9c5aaeda36dc 313 typedef XprBinOp< \
madcowswe 15:9c5aaeda36dc 314 Fcnl_##NAME< typename E::value_type, POD >, \
madcowswe 15:9c5aaeda36dc 315 XprVector<E, Sz>, \
madcowswe 15:9c5aaeda36dc 316 XprLiteral< POD > \
madcowswe 15:9c5aaeda36dc 317 > expr_type; \
madcowswe 15:9c5aaeda36dc 318 return XprVector<expr_type, Sz>( \
madcowswe 15:9c5aaeda36dc 319 expr_type(lhs, XprLiteral< POD >(rhs))); \
madcowswe 15:9c5aaeda36dc 320 } \
madcowswe 15:9c5aaeda36dc 321 \
madcowswe 15:9c5aaeda36dc 322 template<class E, std::size_t Sz> \
madcowswe 15:9c5aaeda36dc 323 inline \
madcowswe 15:9c5aaeda36dc 324 XprVector< \
madcowswe 15:9c5aaeda36dc 325 XprBinOp< \
madcowswe 15:9c5aaeda36dc 326 Fcnl_##NAME< POD, typename E::value_type>, \
madcowswe 15:9c5aaeda36dc 327 XprLiteral< POD >, \
madcowswe 15:9c5aaeda36dc 328 XprVector<E, Sz> \
madcowswe 15:9c5aaeda36dc 329 >, \
madcowswe 15:9c5aaeda36dc 330 Sz \
madcowswe 15:9c5aaeda36dc 331 > \
madcowswe 15:9c5aaeda36dc 332 NAME (POD lhs, const XprVector<E, Sz>& rhs) { \
madcowswe 15:9c5aaeda36dc 333 typedef XprBinOp< \
madcowswe 15:9c5aaeda36dc 334 Fcnl_##NAME< POD, typename E::value_type>, \
madcowswe 15:9c5aaeda36dc 335 XprLiteral< POD >, \
madcowswe 15:9c5aaeda36dc 336 XprVector<E, Sz> \
madcowswe 15:9c5aaeda36dc 337 > expr_type; \
madcowswe 15:9c5aaeda36dc 338 return XprVector<expr_type, Sz>( \
madcowswe 15:9c5aaeda36dc 339 expr_type(XprLiteral< POD >(lhs), rhs)); \
madcowswe 15:9c5aaeda36dc 340 }
madcowswe 15:9c5aaeda36dc 341
madcowswe 15:9c5aaeda36dc 342 TVMET_IMPLEMENT_MACRO(add, int)
madcowswe 15:9c5aaeda36dc 343 TVMET_IMPLEMENT_MACRO(sub, int)
madcowswe 15:9c5aaeda36dc 344 TVMET_IMPLEMENT_MACRO(mul, int)
madcowswe 15:9c5aaeda36dc 345 TVMET_IMPLEMENT_MACRO(div, int)
madcowswe 15:9c5aaeda36dc 346
madcowswe 15:9c5aaeda36dc 347 #if defined(TVMET_HAVE_LONG_LONG)
madcowswe 15:9c5aaeda36dc 348 TVMET_IMPLEMENT_MACRO(add, long long int)
madcowswe 15:9c5aaeda36dc 349 TVMET_IMPLEMENT_MACRO(sub, long long int)
madcowswe 15:9c5aaeda36dc 350 TVMET_IMPLEMENT_MACRO(mul, long long int)
madcowswe 15:9c5aaeda36dc 351 TVMET_IMPLEMENT_MACRO(div, long long int)
madcowswe 15:9c5aaeda36dc 352 #endif
madcowswe 15:9c5aaeda36dc 353
madcowswe 15:9c5aaeda36dc 354 TVMET_IMPLEMENT_MACRO(add, float)
madcowswe 15:9c5aaeda36dc 355 TVMET_IMPLEMENT_MACRO(sub, float)
madcowswe 15:9c5aaeda36dc 356 TVMET_IMPLEMENT_MACRO(mul, float)
madcowswe 15:9c5aaeda36dc 357 TVMET_IMPLEMENT_MACRO(div, float)
madcowswe 15:9c5aaeda36dc 358
madcowswe 15:9c5aaeda36dc 359 TVMET_IMPLEMENT_MACRO(add, double)
madcowswe 15:9c5aaeda36dc 360 TVMET_IMPLEMENT_MACRO(sub, double)
madcowswe 15:9c5aaeda36dc 361 TVMET_IMPLEMENT_MACRO(mul, double)
madcowswe 15:9c5aaeda36dc 362 TVMET_IMPLEMENT_MACRO(div, double)
madcowswe 15:9c5aaeda36dc 363
madcowswe 15:9c5aaeda36dc 364 #if defined(TVMET_HAVE_LONG_DOUBLE)
madcowswe 15:9c5aaeda36dc 365 TVMET_IMPLEMENT_MACRO(add, long double)
madcowswe 15:9c5aaeda36dc 366 TVMET_IMPLEMENT_MACRO(sub, long double)
madcowswe 15:9c5aaeda36dc 367 TVMET_IMPLEMENT_MACRO(mul, long double)
madcowswe 15:9c5aaeda36dc 368 TVMET_IMPLEMENT_MACRO(div, long double)
madcowswe 15:9c5aaeda36dc 369 #endif
madcowswe 15:9c5aaeda36dc 370
madcowswe 15:9c5aaeda36dc 371 #undef TVMET_IMPLEMENT_MACRO
madcowswe 15:9c5aaeda36dc 372
madcowswe 15:9c5aaeda36dc 373
madcowswe 15:9c5aaeda36dc 374 #if defined(TVMET_HAVE_COMPLEX)
madcowswe 15:9c5aaeda36dc 375 /*
madcowswe 15:9c5aaeda36dc 376 * function(XprMatrix<E, Rows, Cols>, complex<T>)
madcowswe 15:9c5aaeda36dc 377 * function(complex<T>, XprMatrix<E, Rows, Cols>)
madcowswe 15:9c5aaeda36dc 378 * Note: - operations +,-,*,/ are per se element wise
madcowswe 15:9c5aaeda36dc 379 * \todo type promotion
madcowswe 15:9c5aaeda36dc 380 */
madcowswe 15:9c5aaeda36dc 381 #define TVMET_IMPLEMENT_MACRO(NAME) \
madcowswe 15:9c5aaeda36dc 382 template<class E, std::size_t Sz, class T> \
madcowswe 15:9c5aaeda36dc 383 inline \
madcowswe 15:9c5aaeda36dc 384 XprVector< \
madcowswe 15:9c5aaeda36dc 385 XprBinOp< \
madcowswe 15:9c5aaeda36dc 386 Fcnl_##NAME< typename E::value_type, std::complex<T> >, \
madcowswe 15:9c5aaeda36dc 387 XprVector<E, Sz>, \
madcowswe 15:9c5aaeda36dc 388 XprLiteral< std::complex<T> > \
madcowswe 15:9c5aaeda36dc 389 >, \
madcowswe 15:9c5aaeda36dc 390 Sz \
madcowswe 15:9c5aaeda36dc 391 > \
madcowswe 15:9c5aaeda36dc 392 NAME (const XprVector<E, Sz>& lhs, const std::complex<T>& rhs) { \
madcowswe 15:9c5aaeda36dc 393 typedef XprBinOp< \
madcowswe 15:9c5aaeda36dc 394 Fcnl_##NAME< typename E::value_type, std::complex<T> >, \
madcowswe 15:9c5aaeda36dc 395 XprVector<E, Sz>, \
madcowswe 15:9c5aaeda36dc 396 XprLiteral< std::complex<T> > \
madcowswe 15:9c5aaeda36dc 397 > expr_type; \
madcowswe 15:9c5aaeda36dc 398 return XprVector<expr_type, Sz>( \
madcowswe 15:9c5aaeda36dc 399 expr_type(lhs, XprLiteral< std::complex<T> >(rhs))); \
madcowswe 15:9c5aaeda36dc 400 } \
madcowswe 15:9c5aaeda36dc 401 \
madcowswe 15:9c5aaeda36dc 402 template<class E, std::size_t Sz, class T> \
madcowswe 15:9c5aaeda36dc 403 inline \
madcowswe 15:9c5aaeda36dc 404 XprVector< \
madcowswe 15:9c5aaeda36dc 405 XprBinOp< \
madcowswe 15:9c5aaeda36dc 406 Fcnl_##NAME< std::complex<T>, typename E::value_type>, \
madcowswe 15:9c5aaeda36dc 407 XprLiteral< std::complex<T> >, \
madcowswe 15:9c5aaeda36dc 408 XprVector<E, Sz> \
madcowswe 15:9c5aaeda36dc 409 >, \
madcowswe 15:9c5aaeda36dc 410 Sz \
madcowswe 15:9c5aaeda36dc 411 > \
madcowswe 15:9c5aaeda36dc 412 NAME (const std::complex<T>& lhs, const XprVector<E, Sz>& rhs) { \
madcowswe 15:9c5aaeda36dc 413 typedef XprBinOp< \
madcowswe 15:9c5aaeda36dc 414 Fcnl_##NAME< std::complex<T>, typename E::value_type>, \
madcowswe 15:9c5aaeda36dc 415 XprLiteral< std::complex<T> >, \
madcowswe 15:9c5aaeda36dc 416 XprVector<E, Sz> \
madcowswe 15:9c5aaeda36dc 417 > expr_type; \
madcowswe 15:9c5aaeda36dc 418 return XprVector<expr_type, Sz>( \
madcowswe 15:9c5aaeda36dc 419 expr_type(XprLiteral< std::complex<T> >(lhs), rhs)); \
madcowswe 15:9c5aaeda36dc 420 }
madcowswe 15:9c5aaeda36dc 421
madcowswe 15:9c5aaeda36dc 422 TVMET_IMPLEMENT_MACRO(add)
madcowswe 15:9c5aaeda36dc 423 TVMET_IMPLEMENT_MACRO(sub)
madcowswe 15:9c5aaeda36dc 424 TVMET_IMPLEMENT_MACRO(mul)
madcowswe 15:9c5aaeda36dc 425 TVMET_IMPLEMENT_MACRO(div)
madcowswe 15:9c5aaeda36dc 426
madcowswe 15:9c5aaeda36dc 427 #undef TVMET_IMPLEMENT_MACRO
madcowswe 15:9c5aaeda36dc 428
madcowswe 15:9c5aaeda36dc 429 #endif // defined(TVMET_HAVE_COMPLEX)
madcowswe 15:9c5aaeda36dc 430
madcowswe 15:9c5aaeda36dc 431
madcowswe 15:9c5aaeda36dc 432 /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
madcowswe 15:9c5aaeda36dc 433 * vector specific functions
madcowswe 15:9c5aaeda36dc 434 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
madcowswe 15:9c5aaeda36dc 435
madcowswe 15:9c5aaeda36dc 436
madcowswe 15:9c5aaeda36dc 437 /**
madcowswe 15:9c5aaeda36dc 438 * \fn sum(const XprVector<E, Sz>& v)
madcowswe 15:9c5aaeda36dc 439 * \brief Compute the sum of the vector expression.
madcowswe 15:9c5aaeda36dc 440 * \ingroup _unary_function
madcowswe 15:9c5aaeda36dc 441 *
madcowswe 15:9c5aaeda36dc 442 * Simply compute the sum of the given vector as:
madcowswe 15:9c5aaeda36dc 443 * \f[
madcowswe 15:9c5aaeda36dc 444 * \sum_{i = 0}^{Sz-1} v[i]
madcowswe 15:9c5aaeda36dc 445 * \f]
madcowswe 15:9c5aaeda36dc 446 */
madcowswe 15:9c5aaeda36dc 447 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 448 inline
madcowswe 15:9c5aaeda36dc 449 typename NumericTraits<typename E::value_type>::sum_type
madcowswe 15:9c5aaeda36dc 450 sum(const XprVector<E, Sz>& v) {
madcowswe 15:9c5aaeda36dc 451 return meta::Vector<Sz>::sum(v);
madcowswe 15:9c5aaeda36dc 452 }
madcowswe 15:9c5aaeda36dc 453
madcowswe 15:9c5aaeda36dc 454
madcowswe 15:9c5aaeda36dc 455 /**
madcowswe 15:9c5aaeda36dc 456 * \fn product(const XprVector<E, Sz>& v)
madcowswe 15:9c5aaeda36dc 457 * \brief Compute the product of the vector elements.
madcowswe 15:9c5aaeda36dc 458 * \ingroup _unary_function
madcowswe 15:9c5aaeda36dc 459 *
madcowswe 15:9c5aaeda36dc 460 * Simply computer the product of the given vector expression as:
madcowswe 15:9c5aaeda36dc 461 * \f[
madcowswe 15:9c5aaeda36dc 462 * \prod_{i = 0}^{Sz - 1} v[i]
madcowswe 15:9c5aaeda36dc 463 * \f]
madcowswe 15:9c5aaeda36dc 464 */
madcowswe 15:9c5aaeda36dc 465 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 466 inline
madcowswe 15:9c5aaeda36dc 467 typename NumericTraits<typename E::value_type>::sum_type
madcowswe 15:9c5aaeda36dc 468 product(const XprVector<E, Sz>& v) {
madcowswe 15:9c5aaeda36dc 469 return meta::Vector<Sz>::product(v);
madcowswe 15:9c5aaeda36dc 470 }
madcowswe 15:9c5aaeda36dc 471
madcowswe 15:9c5aaeda36dc 472
madcowswe 15:9c5aaeda36dc 473 /**
madcowswe 15:9c5aaeda36dc 474 * \fn dot(const XprVector<E1, Sz>& lhs, const XprVector<E2, Sz>& rhs)
madcowswe 15:9c5aaeda36dc 475 * \brief Compute the dot/inner product
madcowswe 15:9c5aaeda36dc 476 * \ingroup _binary_function
madcowswe 15:9c5aaeda36dc 477 *
madcowswe 15:9c5aaeda36dc 478 * Compute the dot product as:
madcowswe 15:9c5aaeda36dc 479 * \f[
madcowswe 15:9c5aaeda36dc 480 * \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] )
madcowswe 15:9c5aaeda36dc 481 * \f]
madcowswe 15:9c5aaeda36dc 482 * where lhs is a column vector and rhs is a row vector, both vectors
madcowswe 15:9c5aaeda36dc 483 * have the same dimension.
madcowswe 15:9c5aaeda36dc 484 */
madcowswe 15:9c5aaeda36dc 485 template<class E1, class E2, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 486 inline
madcowswe 15:9c5aaeda36dc 487 typename PromoteTraits<
madcowswe 15:9c5aaeda36dc 488 typename E1::value_type,
madcowswe 15:9c5aaeda36dc 489 typename E2::value_type
madcowswe 15:9c5aaeda36dc 490 >::value_type
madcowswe 15:9c5aaeda36dc 491 dot(const XprVector<E1, Sz>& lhs, const XprVector<E2, Sz>& rhs) {
madcowswe 15:9c5aaeda36dc 492 return meta::Vector<Sz>::dot(lhs, rhs);
madcowswe 15:9c5aaeda36dc 493 }
madcowswe 15:9c5aaeda36dc 494
madcowswe 15:9c5aaeda36dc 495
madcowswe 15:9c5aaeda36dc 496 /**
madcowswe 15:9c5aaeda36dc 497 * \fn dot(const Vector<T, Sz>& lhs, const XprVector<E, Sz>& rhs)
madcowswe 15:9c5aaeda36dc 498 * \brief Compute the dot/inner product
madcowswe 15:9c5aaeda36dc 499 * \ingroup _binary_function
madcowswe 15:9c5aaeda36dc 500 *
madcowswe 15:9c5aaeda36dc 501 * Compute the dot product as:
madcowswe 15:9c5aaeda36dc 502 * \f[
madcowswe 15:9c5aaeda36dc 503 * \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] )
madcowswe 15:9c5aaeda36dc 504 * \f]
madcowswe 15:9c5aaeda36dc 505 * where lhs is a column vector and rhs is a row vector, both vectors
madcowswe 15:9c5aaeda36dc 506 * have the same dimension.
madcowswe 15:9c5aaeda36dc 507 */
madcowswe 15:9c5aaeda36dc 508 template<class T, class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 509 inline
madcowswe 15:9c5aaeda36dc 510 typename PromoteTraits<T, typename E::value_type>::value_type
madcowswe 15:9c5aaeda36dc 511 dot(const Vector<T, Sz>& lhs, const XprVector<E, Sz>& rhs) {
madcowswe 15:9c5aaeda36dc 512 return meta::Vector<Sz>::dot(lhs, rhs);
madcowswe 15:9c5aaeda36dc 513 }
madcowswe 15:9c5aaeda36dc 514
madcowswe 15:9c5aaeda36dc 515
madcowswe 15:9c5aaeda36dc 516 /**
madcowswe 15:9c5aaeda36dc 517 * \fn dot(const XprVector<E, Sz>& lhs, const Vector<T, Sz>& rhs)
madcowswe 15:9c5aaeda36dc 518 * \brief Compute the dot/inner product
madcowswe 15:9c5aaeda36dc 519 * \ingroup _binary_function
madcowswe 15:9c5aaeda36dc 520 *
madcowswe 15:9c5aaeda36dc 521 * Compute the dot product as:
madcowswe 15:9c5aaeda36dc 522 * \f[
madcowswe 15:9c5aaeda36dc 523 * \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] )
madcowswe 15:9c5aaeda36dc 524 * \f]
madcowswe 15:9c5aaeda36dc 525 * where lhs is a column vector and rhs is a row vector, both vectors
madcowswe 15:9c5aaeda36dc 526 * have the same dimension.
madcowswe 15:9c5aaeda36dc 527 */
madcowswe 15:9c5aaeda36dc 528 template<class E, class T, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 529 inline
madcowswe 15:9c5aaeda36dc 530 typename PromoteTraits<T, typename E::value_type>::value_type
madcowswe 15:9c5aaeda36dc 531 dot(const XprVector<E, Sz>& lhs, const Vector<T, Sz>& rhs) {
madcowswe 15:9c5aaeda36dc 532 return meta::Vector<Sz>::dot(lhs, rhs);
madcowswe 15:9c5aaeda36dc 533 }
madcowswe 15:9c5aaeda36dc 534
madcowswe 15:9c5aaeda36dc 535
madcowswe 15:9c5aaeda36dc 536 /**
madcowswe 15:9c5aaeda36dc 537 * \fn cross(const XprVector<E1, 3>& lhs, const XprVector<E2, 3>& rhs)
madcowswe 15:9c5aaeda36dc 538 * \brief Compute the cross/outer product
madcowswe 15:9c5aaeda36dc 539 * \ingroup _binary_function
madcowswe 15:9c5aaeda36dc 540 * \note working only for vectors of size = 3
madcowswe 15:9c5aaeda36dc 541 * \todo Implement vector outer product as ET and MT, returning a XprVector
madcowswe 15:9c5aaeda36dc 542 */
madcowswe 15:9c5aaeda36dc 543 template<class E1, class E2>
madcowswe 15:9c5aaeda36dc 544 inline
madcowswe 15:9c5aaeda36dc 545 Vector<
madcowswe 15:9c5aaeda36dc 546 typename PromoteTraits<
madcowswe 15:9c5aaeda36dc 547 typename E1::value_type,
madcowswe 15:9c5aaeda36dc 548 typename E2::value_type
madcowswe 15:9c5aaeda36dc 549 >::value_type,
madcowswe 15:9c5aaeda36dc 550 3
madcowswe 15:9c5aaeda36dc 551 >
madcowswe 15:9c5aaeda36dc 552 cross(const XprVector<E1, 3>& lhs, const XprVector<E2, 3>& rhs) {
madcowswe 15:9c5aaeda36dc 553 typedef typename PromoteTraits<
madcowswe 15:9c5aaeda36dc 554 typename E1::value_type,
madcowswe 15:9c5aaeda36dc 555 typename E2::value_type
madcowswe 15:9c5aaeda36dc 556 >::value_type value_type;
madcowswe 15:9c5aaeda36dc 557 return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),
madcowswe 15:9c5aaeda36dc 558 rhs(0)*lhs(2) - lhs(0)*rhs(2),
madcowswe 15:9c5aaeda36dc 559 lhs(0)*rhs(1) - rhs(0)*lhs(1));
madcowswe 15:9c5aaeda36dc 560 }
madcowswe 15:9c5aaeda36dc 561
madcowswe 15:9c5aaeda36dc 562
madcowswe 15:9c5aaeda36dc 563 /**
madcowswe 15:9c5aaeda36dc 564 * \fn cross(const XprVector<E, 3>& lhs, const Vector<T, 3>& rhs)
madcowswe 15:9c5aaeda36dc 565 * \brief Compute the cross/outer product
madcowswe 15:9c5aaeda36dc 566 * \ingroup _binary_function
madcowswe 15:9c5aaeda36dc 567 * \note working only for vectors of size = 3
madcowswe 15:9c5aaeda36dc 568 * \todo Implement vector outer product as ET and MT, returning a XprVector
madcowswe 15:9c5aaeda36dc 569 */
madcowswe 15:9c5aaeda36dc 570 template<class E, class T>
madcowswe 15:9c5aaeda36dc 571 inline
madcowswe 15:9c5aaeda36dc 572 Vector<
madcowswe 15:9c5aaeda36dc 573 typename PromoteTraits<T, typename E::value_type>::value_type, 3>
madcowswe 15:9c5aaeda36dc 574 cross(const XprVector<E, 3>& lhs, const Vector<T, 3>& rhs) {
madcowswe 15:9c5aaeda36dc 575 typedef typename PromoteTraits<
madcowswe 15:9c5aaeda36dc 576 typename E::value_type, T>::value_type value_type;
madcowswe 15:9c5aaeda36dc 577 return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),
madcowswe 15:9c5aaeda36dc 578 rhs(0)*lhs(2) - lhs(0)*rhs(2),
madcowswe 15:9c5aaeda36dc 579 lhs(0)*rhs(1) - rhs(0)*lhs(1));
madcowswe 15:9c5aaeda36dc 580 }
madcowswe 15:9c5aaeda36dc 581
madcowswe 15:9c5aaeda36dc 582
madcowswe 15:9c5aaeda36dc 583 /**
madcowswe 15:9c5aaeda36dc 584 * \fn cross(const Vector<T, 3>& lhs, const XprVector<E, 3>& rhs)
madcowswe 15:9c5aaeda36dc 585 * \brief Compute the cross/outer product
madcowswe 15:9c5aaeda36dc 586 * \ingroup _binary_function
madcowswe 15:9c5aaeda36dc 587 * \note working only for vectors of size = 3
madcowswe 15:9c5aaeda36dc 588 * \todo Implement vector outer product as ET and MT, returning a XprVector
madcowswe 15:9c5aaeda36dc 589 */
madcowswe 15:9c5aaeda36dc 590 template<class T1, class E2>
madcowswe 15:9c5aaeda36dc 591 inline
madcowswe 15:9c5aaeda36dc 592 Vector<
madcowswe 15:9c5aaeda36dc 593 typename PromoteTraits<T1, typename E2::value_type>::value_type, 3>
madcowswe 15:9c5aaeda36dc 594 cross(const Vector<T1, 3>& lhs, const XprVector<E2, 3>& rhs) {
madcowswe 15:9c5aaeda36dc 595 typedef typename PromoteTraits<
madcowswe 15:9c5aaeda36dc 596 typename E2::value_type, T1>::value_type value_type;
madcowswe 15:9c5aaeda36dc 597 return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2),
madcowswe 15:9c5aaeda36dc 598 rhs(0)*lhs(2) - lhs(0)*rhs(2),
madcowswe 15:9c5aaeda36dc 599 lhs(0)*rhs(1) - rhs(0)*lhs(1));
madcowswe 15:9c5aaeda36dc 600 }
madcowswe 15:9c5aaeda36dc 601
madcowswe 15:9c5aaeda36dc 602
madcowswe 15:9c5aaeda36dc 603 /**
madcowswe 15:9c5aaeda36dc 604 * \fn norm1(const XprVector<E, Sz>& v)
madcowswe 15:9c5aaeda36dc 605 * \brief The \f$l_1\f$ norm of a vector expression.
madcowswe 15:9c5aaeda36dc 606 * \ingroup _unary_function
madcowswe 15:9c5aaeda36dc 607 * The norm of any vector is just the square root of the dot product of
madcowswe 15:9c5aaeda36dc 608 * a vector with itself, or
madcowswe 15:9c5aaeda36dc 609 *
madcowswe 15:9c5aaeda36dc 610 * \f[
madcowswe 15:9c5aaeda36dc 611 * |Vector<T, Sz> v| = |v| = \sum_{i=0}^{Sz-1}\,|v[i]|
madcowswe 15:9c5aaeda36dc 612 * \f]
madcowswe 15:9c5aaeda36dc 613 */
madcowswe 15:9c5aaeda36dc 614 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 615 inline
madcowswe 15:9c5aaeda36dc 616 typename NumericTraits<typename E::value_type>::sum_type
madcowswe 15:9c5aaeda36dc 617 norm1(const XprVector<E, Sz>& v) {
madcowswe 15:9c5aaeda36dc 618 return sum(abs(v));
madcowswe 15:9c5aaeda36dc 619 }
madcowswe 15:9c5aaeda36dc 620
madcowswe 15:9c5aaeda36dc 621
madcowswe 15:9c5aaeda36dc 622 /**
madcowswe 15:9c5aaeda36dc 623 * \fn norm2(const XprVector<E, Sz>& v)
madcowswe 15:9c5aaeda36dc 624 * \brief The euklidian norm (or \f$l_2\f$ norm) of a vector expression.
madcowswe 15:9c5aaeda36dc 625 * \ingroup _unary_function
madcowswe 15:9c5aaeda36dc 626 * The norm of any vector is just the square root of the dot product of
madcowswe 15:9c5aaeda36dc 627 * a vector with itself, or
madcowswe 15:9c5aaeda36dc 628 *
madcowswe 15:9c5aaeda36dc 629 * \f[
madcowswe 15:9c5aaeda36dc 630 * |Vector<T, Sz> v| = |v| = \sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 }
madcowswe 15:9c5aaeda36dc 631 * \f]
madcowswe 15:9c5aaeda36dc 632 *
madcowswe 15:9c5aaeda36dc 633 * \note The internal cast for Vector<int> avoids warnings on sqrt.
madcowswe 15:9c5aaeda36dc 634 */
madcowswe 15:9c5aaeda36dc 635 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 636 inline
madcowswe 15:9c5aaeda36dc 637 typename NumericTraits<typename E::value_type>::sum_type
madcowswe 15:9c5aaeda36dc 638 norm2(const XprVector<E, Sz>& v) {
madcowswe 15:9c5aaeda36dc 639 typedef typename E::value_type value_type;
madcowswe 15:9c5aaeda36dc 640 return static_cast<value_type>( std::sqrt(static_cast<value_type>(dot(v, v))) );
madcowswe 15:9c5aaeda36dc 641 }
madcowswe 15:9c5aaeda36dc 642
madcowswe 15:9c5aaeda36dc 643
madcowswe 15:9c5aaeda36dc 644 /**
madcowswe 15:9c5aaeda36dc 645 * \fn normalize(const XprVector<E, Sz>& v)
madcowswe 15:9c5aaeda36dc 646 * \brief Normalize the given vector expression.
madcowswe 15:9c5aaeda36dc 647 * \ingroup _unary_function
madcowswe 15:9c5aaeda36dc 648 * \sa norm2
madcowswe 15:9c5aaeda36dc 649 *
madcowswe 15:9c5aaeda36dc 650 * using the equation:
madcowswe 15:9c5aaeda36dc 651 * \f[
madcowswe 15:9c5aaeda36dc 652 * \frac{Vector<T, Sz> v}{\sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 }}
madcowswe 15:9c5aaeda36dc 653 * \f]
madcowswe 15:9c5aaeda36dc 654 */
madcowswe 15:9c5aaeda36dc 655 template<class E, std::size_t Sz>
madcowswe 15:9c5aaeda36dc 656 inline
madcowswe 15:9c5aaeda36dc 657 XprVector<
madcowswe 15:9c5aaeda36dc 658 XprBinOp<
madcowswe 15:9c5aaeda36dc 659 Fcnl_div<typename E::value_type, typename E::value_type>,
madcowswe 15:9c5aaeda36dc 660 XprVector<E, Sz>,
madcowswe 15:9c5aaeda36dc 661 XprLiteral<typename E::value_type>
madcowswe 15:9c5aaeda36dc 662 >,
madcowswe 15:9c5aaeda36dc 663 Sz
madcowswe 15:9c5aaeda36dc 664 >
madcowswe 15:9c5aaeda36dc 665 normalize(const XprVector<E, Sz>& v) {
madcowswe 15:9c5aaeda36dc 666 typedef typename E::value_type value_type;
madcowswe 15:9c5aaeda36dc 667 typedef XprBinOp<
madcowswe 15:9c5aaeda36dc 668 Fcnl_div<value_type, value_type>,
madcowswe 15:9c5aaeda36dc 669 XprVector<E, Sz>,
madcowswe 15:9c5aaeda36dc 670 XprLiteral<value_type>
madcowswe 15:9c5aaeda36dc 671 > expr_type;
madcowswe 15:9c5aaeda36dc 672 return XprVector<expr_type, Sz>(
madcowswe 15:9c5aaeda36dc 673 expr_type(v, XprLiteral< value_type >(norm2(v))));
madcowswe 15:9c5aaeda36dc 674 }
madcowswe 15:9c5aaeda36dc 675
madcowswe 15:9c5aaeda36dc 676
madcowswe 15:9c5aaeda36dc 677 } // namespace tvmet
madcowswe 15:9c5aaeda36dc 678
madcowswe 15:9c5aaeda36dc 679 #endif // TVMET_XPR_VECTOR_FUNCTIONS_H
madcowswe 15:9c5aaeda36dc 680
madcowswe 15:9c5aaeda36dc 681 // Local Variables:
madcowswe 15:9c5aaeda36dc 682 // mode:C++
madcowswe 15:9c5aaeda36dc 683 // tab-width:8
madcowswe 15:9c5aaeda36dc 684 // End: