ICRS Eurobot 2013

Dependencies:   mbed mbed-rtos Servo QEI

Committer:
madcowswe
Date:
Sun Apr 07 19:26:07 2013 +0000
Revision:
19:4b993a9a156e
Parent:
17:6263e90bf3ba
Child:
20:70d651156779
Kalman init almost ready for testing

Who changed what in which revision?

UserRevisionLine numberNew contents of line
madcowswe 16:52250d8d8fce 1 //***************************************************************************************
madcowswe 16:52250d8d8fce 2 //Kalman Filter implementation
madcowswe 16:52250d8d8fce 3 //***************************************************************************************
madcowswe 16:52250d8d8fce 4 #include "Kalman.h"
madcowswe 16:52250d8d8fce 5 #include "rtos.h"
madcowswe 16:52250d8d8fce 6 #include "math.h"
madcowswe 16:52250d8d8fce 7 #include "supportfuncs.h"
madcowswe 16:52250d8d8fce 8 //#include "globals.h"
madcowswe 16:52250d8d8fce 9
madcowswe 16:52250d8d8fce 10 #include <tvmet/Matrix.h>
madcowswe 16:52250d8d8fce 11 using namespace tvmet;
madcowswe 16:52250d8d8fce 12
madcowswe 16:52250d8d8fce 13
madcowswe 16:52250d8d8fce 14
madcowswe 16:52250d8d8fce 15 namespace Kalman
madcowswe 16:52250d8d8fce 16 {
madcowswe 16:52250d8d8fce 17
madcowswe 16:52250d8d8fce 18 //State variables
madcowswe 19:4b993a9a156e 19 Matrix<float, 3, 1> X;
madcowswe 16:52250d8d8fce 20 Matrix<float, 3, 3> P;
madcowswe 16:52250d8d8fce 21 Mutex statelock;
madcowswe 16:52250d8d8fce 22
madcowswe 16:52250d8d8fce 23 float RawReadings[maxmeasure+1];
madcowswe 19:4b993a9a156e 24 float IRpahseOffset;
madcowswe 16:52250d8d8fce 25
madcowswe 16:52250d8d8fce 26 bool Kalman_init = 0;
madcowswe 16:52250d8d8fce 27
madcowswe 16:52250d8d8fce 28 struct measurmentdata {
madcowswe 16:52250d8d8fce 29 measurement_t mtype;
madcowswe 16:52250d8d8fce 30 float value;
madcowswe 16:52250d8d8fce 31 float variance;
madcowswe 19:4b993a9a156e 32 };
madcowswe 16:52250d8d8fce 33
madcowswe 16:52250d8d8fce 34 Mail <measurmentdata, 16> measureMQ;
madcowswe 16:52250d8d8fce 35
madcowswe 16:52250d8d8fce 36
madcowswe 16:52250d8d8fce 37
madcowswe 16:52250d8d8fce 38 //Note: this init function assumes that the robot faces east, theta=0, in the +x direction
madcowswe 16:52250d8d8fce 39 void KalmanInit()
madcowswe 16:52250d8d8fce 40 {
madcowswe 16:52250d8d8fce 41 //solve for our position (assume perfect bias)
madcowswe 17:6263e90bf3ba 42 const float d = beaconpos[0].y - beaconpos[1].y;
madcowswe 17:6263e90bf3ba 43 const float i = beaconpos[0].y - beaconpos[2].y;
madcowswe 17:6263e90bf3ba 44 const float j = beaconpos[0].x - beaconpos[2].x;
madcowswe 19:4b993a9a156e 45 float r1 = RawReadings[SONAR0];
madcowswe 19:4b993a9a156e 46 float r2 = RawReadings[SONAR1];
madcowswe 19:4b993a9a156e 47 float r3 = RawReadings[SONAR2];
madcowswe 17:6263e90bf3ba 48
madcowswe 19:4b993a9a156e 49 float y_coor = (r1*r1-r2*r2+d*d)/(2*d);
madcowswe 17:6263e90bf3ba 50 float x_coor = (r1*r1-r3*r3+i*i+j*j)/(2*j) - (i*y_coor)/j;
madcowswe 17:6263e90bf3ba 51
madcowswe 16:52250d8d8fce 52 //IR
madcowswe 16:52250d8d8fce 53
madcowswe 16:52250d8d8fce 54 float IRMeasuresloc[3];
madcowswe 16:52250d8d8fce 55 IRMeasuresloc[0] = RawReadings[IR0];
madcowswe 16:52250d8d8fce 56 IRMeasuresloc[1] = RawReadings[IR1];
madcowswe 16:52250d8d8fce 57 IRMeasuresloc[2] = RawReadings[IR2];
madcowswe 16:52250d8d8fce 58 //printf("0: %0.4f, 1: %0.4f, 2: %0.4f \n\r", IRMeasuresloc[0]*180/PI, IRMeasuresloc[1]*180/PI, IRMeasuresloc[2]*180/PI);
madcowswe 16:52250d8d8fce 59
madcowswe 17:6263e90bf3ba 60 float IR_Offsets[3];
madcowswe 17:6263e90bf3ba 61 float fromb0offset = 0;
madcowswe 16:52250d8d8fce 62 for (int i = 0; i < 3; i++) {
madcowswe 16:52250d8d8fce 63
madcowswe 16:52250d8d8fce 64 //Compute IR offset
madcowswe 16:52250d8d8fce 65 float angle_est = atan2(beaconpos[i].y - y_coor,beaconpos[i].x - x_coor);
madcowswe 17:6263e90bf3ba 66
madcowswe 16:52250d8d8fce 67 //printf("Angle %d : %f \n\r",i,angle_est*180/PI );
madcowswe 19:4b993a9a156e 68 IR_Offsets[i] = constrainAngle(IRMeasuresloc[i] - angle_est);
madcowswe 16:52250d8d8fce 69
madcowswe 19:4b993a9a156e 70 fromb0offset += constrainAngle(IR_Offsets[i] - IR_Offsets[0]);
madcowswe 16:52250d8d8fce 71 }
madcowswe 19:4b993a9a156e 72
madcowswe 19:4b993a9a156e 73 IRpahseOffset = constrainAngle(IR_Offsets[0] + fromb0offset/3);
madcowswe 16:52250d8d8fce 74
madcowswe 16:52250d8d8fce 75 //debug
madcowswe 19:4b993a9a156e 76 printf("Offsets IR: %0.4f\r\n",IRpahseOffset*180/PI);
madcowswe 16:52250d8d8fce 77
madcowswe 16:52250d8d8fce 78 statelock.lock();
madcowswe 19:4b993a9a156e 79 X(0,0) = x_coor;
madcowswe 19:4b993a9a156e 80 X(1,0) = y_coor;
madcowswe 19:4b993a9a156e 81 X(2,0) = 0;
madcowswe 16:52250d8d8fce 82 statelock.unlock();
madcowswe 16:52250d8d8fce 83 }
madcowswe 16:52250d8d8fce 84
madcowswe 19:4b993a9a156e 85 /*
madcowswe 16:52250d8d8fce 86 void Kalman::predictloop(void* dummy)
madcowswe 16:52250d8d8fce 87 {
madcowswe 16:52250d8d8fce 88
madcowswe 16:52250d8d8fce 89 OLED4 = !ui.regid(0, 3);
madcowswe 16:52250d8d8fce 90 OLED4 = !ui.regid(1, 4);
madcowswe 16:52250d8d8fce 91
madcowswe 16:52250d8d8fce 92 float lastleft = 0;
madcowswe 16:52250d8d8fce 93 float lastright = 0;
madcowswe 16:52250d8d8fce 94
madcowswe 16:52250d8d8fce 95 while (1) {
madcowswe 16:52250d8d8fce 96 Thread::signal_wait(0x1);
madcowswe 16:52250d8d8fce 97 OLED1 = !OLED1;
madcowswe 16:52250d8d8fce 98
madcowswe 16:52250d8d8fce 99 int leftenc = encoders.getEncoder1();
madcowswe 16:52250d8d8fce 100 int rightenc = encoders.getEncoder2();
madcowswe 16:52250d8d8fce 101
madcowswe 16:52250d8d8fce 102 float dleft = encoders.encoderToDistance(leftenc-lastleft)/1000.0f;
madcowswe 16:52250d8d8fce 103 float dright = encoders.encoderToDistance(rightenc-lastright)/1000.0f;
madcowswe 16:52250d8d8fce 104
madcowswe 16:52250d8d8fce 105 lastleft = leftenc;
madcowswe 16:52250d8d8fce 106 lastright = rightenc;
madcowswe 16:52250d8d8fce 107
madcowswe 16:52250d8d8fce 108
madcowswe 16:52250d8d8fce 109 //The below calculation are in body frame (where +x is forward)
madcowswe 16:52250d8d8fce 110 float dxp, dyp,d,r;
madcowswe 16:52250d8d8fce 111 float thetap = (dright - dleft)*PI / (float(robotCircumference)/1000.0f);
madcowswe 16:52250d8d8fce 112 if (abs(thetap) < 0.02) { //if the rotation through the integration step is small, approximate with a straight line to avoid numerical error
madcowswe 16:52250d8d8fce 113 d = (dright + dleft)/2.0f;
madcowswe 16:52250d8d8fce 114 dxp = d*cos(thetap/2.0f);
madcowswe 16:52250d8d8fce 115 dyp = d*sin(thetap/2.0f);
madcowswe 16:52250d8d8fce 116
madcowswe 16:52250d8d8fce 117 } else { //calculate circle arc
madcowswe 16:52250d8d8fce 118 //float r = (right + left) / (4.0f * PI * thetap);
madcowswe 16:52250d8d8fce 119 r = (dright + dleft) / (2.0f*thetap);
madcowswe 16:52250d8d8fce 120 dxp = abs(r)*sin(thetap);
madcowswe 16:52250d8d8fce 121 dyp = r - r*cos(thetap);
madcowswe 16:52250d8d8fce 122 }
madcowswe 16:52250d8d8fce 123
madcowswe 16:52250d8d8fce 124 statelock.lock();
madcowswe 16:52250d8d8fce 125
madcowswe 16:52250d8d8fce 126 float tempX2 = X(2);
madcowswe 16:52250d8d8fce 127 //rotating to cartesian frame and updating state
madcowswe 16:52250d8d8fce 128 X(0) += dxp * cos(X(2)) - dyp * sin(X(2));
madcowswe 16:52250d8d8fce 129 X(1) += dxp * sin(X(2)) + dyp * cos(X(2));
madcowswe 16:52250d8d8fce 130 X(2) = rectifyAng(X(2) + thetap);
madcowswe 16:52250d8d8fce 131
madcowswe 16:52250d8d8fce 132 //Linearising F around X
madcowswe 16:52250d8d8fce 133 float avgX2 = (X(2) + tempX2)/2.0f;
madcowswe 16:52250d8d8fce 134 Matrix<float, 3, 3> F;
madcowswe 16:52250d8d8fce 135 F = 1, 0, (dxp * -sin(avgX2) - dyp * cos(avgX2)),
madcowswe 16:52250d8d8fce 136 0, 1, (dxp * cos(avgX2) - dyp * sin(avgX2)),
madcowswe 16:52250d8d8fce 137 0, 0, 1;
madcowswe 16:52250d8d8fce 138
madcowswe 16:52250d8d8fce 139 //Generating forward and rotational variance
madcowswe 16:52250d8d8fce 140 float varfwd = fwdvarperunit * abs(dright + dleft) / 2.0f;
madcowswe 16:52250d8d8fce 141 float varang = varperang * abs(thetap);
madcowswe 16:52250d8d8fce 142 float varxydt = xyvarpertime * PREDICTPERIOD/1000.0f;
madcowswe 16:52250d8d8fce 143 float varangdt = angvarpertime * PREDICTPERIOD/1000.0f;
madcowswe 16:52250d8d8fce 144
madcowswe 16:52250d8d8fce 145 //Rotating into cartesian frame
madcowswe 16:52250d8d8fce 146 Matrix<float, 2, 2> Qsub,Qsubrot,Qrot;
madcowswe 16:52250d8d8fce 147 Qsub = varfwd + varxydt, 0,
madcowswe 16:52250d8d8fce 148 0, varxydt;
madcowswe 16:52250d8d8fce 149
madcowswe 16:52250d8d8fce 150 Qrot = Rotmatrix(X(2));
madcowswe 16:52250d8d8fce 151
madcowswe 16:52250d8d8fce 152 Qsubrot = Qrot * Qsub * trans(Qrot);
madcowswe 16:52250d8d8fce 153
madcowswe 16:52250d8d8fce 154 //Generate Q
madcowswe 16:52250d8d8fce 155 Matrix<float, 3, 3> Q;//(Qsubrot);
madcowswe 16:52250d8d8fce 156 Q = Qsubrot(0,0), Qsubrot(0,1), 0,
madcowswe 16:52250d8d8fce 157 Qsubrot(1,0), Qsubrot(1,1), 0,
madcowswe 16:52250d8d8fce 158 0, 0, varang + varangdt;
madcowswe 16:52250d8d8fce 159
madcowswe 16:52250d8d8fce 160 P = F * P * trans(F) + Q;
madcowswe 16:52250d8d8fce 161
madcowswe 16:52250d8d8fce 162 //Update UI
madcowswe 16:52250d8d8fce 163 float statecpy[] = {X(0), X(1), X(2)};
madcowswe 16:52250d8d8fce 164 ui.updateval(0, statecpy, 3);
madcowswe 16:52250d8d8fce 165
madcowswe 16:52250d8d8fce 166 float Pcpy[] = {P(0,0), P(0,1), P(1,0), P(1,1)};
madcowswe 16:52250d8d8fce 167 ui.updateval(1, Pcpy, 4);
madcowswe 16:52250d8d8fce 168
madcowswe 16:52250d8d8fce 169 statelock.unlock();
madcowswe 16:52250d8d8fce 170 }
madcowswe 16:52250d8d8fce 171 }
madcowswe 16:52250d8d8fce 172
madcowswe 16:52250d8d8fce 173 void Kalman::runupdate(measurement_t type, float value, float variance)
madcowswe 16:52250d8d8fce 174 {
madcowswe 16:52250d8d8fce 175 if (!Kalman_init)
madcowswe 16:52250d8d8fce 176 RawReadings[type] = value;
madcowswe 16:52250d8d8fce 177 else {
madcowswe 17:6263e90bf3ba 178
madcowswe 16:52250d8d8fce 179 RawReadings[type] = value - SensorOffsets[type];
madcowswe 17:6263e90bf3ba 180
madcowswe 16:52250d8d8fce 181 measurmentdata* measured = (measurmentdata*)measureMQ.alloc();
madcowswe 16:52250d8d8fce 182 if (measured) {
madcowswe 16:52250d8d8fce 183 measured->mtype = type;
madcowswe 16:52250d8d8fce 184 measured->value = value;
madcowswe 16:52250d8d8fce 185 measured->variance = variance;
madcowswe 16:52250d8d8fce 186
madcowswe 16:52250d8d8fce 187 osStatus putret = measureMQ.put(measured);
madcowswe 16:52250d8d8fce 188 if (putret)
madcowswe 16:52250d8d8fce 189 OLED4 = 1;
madcowswe 16:52250d8d8fce 190 // printf("putting in MQ error code %#x\r\n", putret);
madcowswe 16:52250d8d8fce 191 } else {
madcowswe 16:52250d8d8fce 192 OLED4 = 1;
madcowswe 16:52250d8d8fce 193 //printf("MQalloc returned NULL ptr\r\n");
madcowswe 16:52250d8d8fce 194 }
madcowswe 16:52250d8d8fce 195
madcowswe 16:52250d8d8fce 196 }
madcowswe 16:52250d8d8fce 197
madcowswe 16:52250d8d8fce 198 }
madcowswe 16:52250d8d8fce 199
madcowswe 16:52250d8d8fce 200 void Kalman::updateloop(void* dummy)
madcowswe 16:52250d8d8fce 201 {
madcowswe 16:52250d8d8fce 202
madcowswe 16:52250d8d8fce 203 //sonar Y chanels
madcowswe 16:52250d8d8fce 204 ui.regid(2, 1);
madcowswe 16:52250d8d8fce 205 ui.regid(3, 1);
madcowswe 16:52250d8d8fce 206 ui.regid(4, 1);
madcowswe 16:52250d8d8fce 207
madcowswe 16:52250d8d8fce 208 //IR Y chanels
madcowswe 16:52250d8d8fce 209 ui.regid(5, 1);
madcowswe 16:52250d8d8fce 210 ui.regid(6, 1);
madcowswe 16:52250d8d8fce 211 ui.regid(7, 1);
madcowswe 16:52250d8d8fce 212
madcowswe 16:52250d8d8fce 213 measurement_t type;
madcowswe 16:52250d8d8fce 214 float value,variance,rbx,rby,expecdist,Y;
madcowswe 16:52250d8d8fce 215 float dhdx,dhdy;
madcowswe 16:52250d8d8fce 216 bool aborton2stddev = false;
madcowswe 16:52250d8d8fce 217
madcowswe 16:52250d8d8fce 218 Matrix<float, 1, 3> H;
madcowswe 16:52250d8d8fce 219
madcowswe 16:52250d8d8fce 220 float S;
madcowswe 16:52250d8d8fce 221 Matrix<float, 3, 3> I3( identity< Matrix<float, 3, 3> >() );
madcowswe 16:52250d8d8fce 222
madcowswe 16:52250d8d8fce 223
madcowswe 16:52250d8d8fce 224 while (1) {
madcowswe 16:52250d8d8fce 225 OLED2 = !OLED2;
madcowswe 16:52250d8d8fce 226
madcowswe 16:52250d8d8fce 227 osEvent evt = measureMQ.get();
madcowswe 16:52250d8d8fce 228
madcowswe 16:52250d8d8fce 229 if (evt.status == osEventMail) {
madcowswe 16:52250d8d8fce 230
madcowswe 16:52250d8d8fce 231 measurmentdata &measured = *(measurmentdata*)evt.value.p;
madcowswe 16:52250d8d8fce 232 type = measured.mtype; //Note, may support more measurment types than sonar in the future!
madcowswe 16:52250d8d8fce 233 value = measured.value;
madcowswe 16:52250d8d8fce 234 variance = measured.variance;
madcowswe 16:52250d8d8fce 235
madcowswe 16:52250d8d8fce 236 // don't forget to free the memory
madcowswe 16:52250d8d8fce 237 measureMQ.free(&measured);
madcowswe 16:52250d8d8fce 238
madcowswe 16:52250d8d8fce 239 if (type <= maxmeasure) {
madcowswe 16:52250d8d8fce 240
madcowswe 16:52250d8d8fce 241 if (type <= SONAR3) {
madcowswe 16:52250d8d8fce 242
madcowswe 16:52250d8d8fce 243 InitLock.lock();
madcowswe 16:52250d8d8fce 244 float dist = value / 1000.0f - Sonar_Offset; //converting to m from mm,subtract the offset
madcowswe 16:52250d8d8fce 245 InitLock.unlock();
madcowswe 16:52250d8d8fce 246
madcowswe 16:52250d8d8fce 247 int sonarid = type;
madcowswe 16:52250d8d8fce 248 aborton2stddev = true;
madcowswe 16:52250d8d8fce 249
madcowswe 16:52250d8d8fce 250 statelock.lock();
madcowswe 16:52250d8d8fce 251 //update the current sonar readings
madcowswe 16:52250d8d8fce 252 SonarMeasures[sonarid] = dist;
madcowswe 16:52250d8d8fce 253
madcowswe 16:52250d8d8fce 254 rbx = X(0) - beaconpos[sonarid].x/1000.0f;
madcowswe 16:52250d8d8fce 255 rby = X(1) - beaconpos[sonarid].y/1000.0f;
madcowswe 16:52250d8d8fce 256
madcowswe 16:52250d8d8fce 257 expecdist = hypot(rbx, rby);//sqrt(rbx*rbx + rby*rby);
madcowswe 16:52250d8d8fce 258 Y = dist - expecdist;
madcowswe 16:52250d8d8fce 259
madcowswe 16:52250d8d8fce 260 //send to ui
madcowswe 16:52250d8d8fce 261 ui.updateval(sonarid+2, Y);
madcowswe 16:52250d8d8fce 262
madcowswe 16:52250d8d8fce 263 dhdx = rbx / expecdist;
madcowswe 16:52250d8d8fce 264 dhdy = rby / expecdist;
madcowswe 16:52250d8d8fce 265
madcowswe 16:52250d8d8fce 266 H = dhdx, dhdy, 0;
madcowswe 16:52250d8d8fce 267
madcowswe 16:52250d8d8fce 268 } else if (type <= IR3) {
madcowswe 16:52250d8d8fce 269
madcowswe 16:52250d8d8fce 270 aborton2stddev = false;
madcowswe 16:52250d8d8fce 271 int IRidx = type-3;
madcowswe 16:52250d8d8fce 272
madcowswe 16:52250d8d8fce 273 // subtract the IR offset
madcowswe 16:52250d8d8fce 274 InitLock.lock();
madcowswe 16:52250d8d8fce 275 value -= IR_Offset;
madcowswe 16:52250d8d8fce 276 InitLock.unlock();
madcowswe 16:52250d8d8fce 277
madcowswe 16:52250d8d8fce 278 statelock.lock();
madcowswe 16:52250d8d8fce 279 IRMeasures[IRidx] = value;
madcowswe 16:52250d8d8fce 280
madcowswe 16:52250d8d8fce 281 rbx = X(0) - beaconpos[IRidx].x/1000.0f;
madcowswe 16:52250d8d8fce 282 rby = X(1) - beaconpos[IRidx].y/1000.0f;
madcowswe 16:52250d8d8fce 283
madcowswe 16:52250d8d8fce 284 float expecang = atan2(-rby, -rbx) - X(2);
madcowswe 16:52250d8d8fce 285 Y = rectifyAng(value - expecang);
madcowswe 16:52250d8d8fce 286
madcowswe 16:52250d8d8fce 287 //send to ui
madcowswe 16:52250d8d8fce 288 ui.updateval(IRidx + 5, Y);
madcowswe 16:52250d8d8fce 289
madcowswe 16:52250d8d8fce 290 float dstsq = rbx*rbx + rby*rby;
madcowswe 16:52250d8d8fce 291 H = -rby/dstsq, rbx/dstsq, -1;
madcowswe 16:52250d8d8fce 292 }
madcowswe 16:52250d8d8fce 293
madcowswe 16:52250d8d8fce 294 Matrix<float, 3, 1> PH (P * trans(H));
madcowswe 16:52250d8d8fce 295 S = (H * PH)(0,0) + variance;
madcowswe 16:52250d8d8fce 296
madcowswe 16:52250d8d8fce 297 if (aborton2stddev && Y*Y > 4 * S) {
madcowswe 16:52250d8d8fce 298 statelock.unlock();
madcowswe 16:52250d8d8fce 299 continue;
madcowswe 16:52250d8d8fce 300 }
madcowswe 16:52250d8d8fce 301
madcowswe 16:52250d8d8fce 302 Matrix<float, 3, 1> K (PH * (1/S));
madcowswe 16:52250d8d8fce 303
madcowswe 16:52250d8d8fce 304 //Updating state
madcowswe 16:52250d8d8fce 305 X += col(K, 0) * Y;
madcowswe 16:52250d8d8fce 306 X(2) = rectifyAng(X(2));
madcowswe 16:52250d8d8fce 307
madcowswe 16:52250d8d8fce 308 P = (I3 - K * H) * P;
madcowswe 16:52250d8d8fce 309
madcowswe 16:52250d8d8fce 310 statelock.unlock();
madcowswe 16:52250d8d8fce 311
madcowswe 16:52250d8d8fce 312 }
madcowswe 16:52250d8d8fce 313
madcowswe 16:52250d8d8fce 314 } else {
madcowswe 16:52250d8d8fce 315 OLED4 = 1;
madcowswe 16:52250d8d8fce 316 //printf("ERROR: in updateloop, code %#x", evt);
madcowswe 16:52250d8d8fce 317 }
madcowswe 16:52250d8d8fce 318
madcowswe 16:52250d8d8fce 319 }
madcowswe 16:52250d8d8fce 320
madcowswe 16:52250d8d8fce 321 }
madcowswe 16:52250d8d8fce 322
madcowswe 16:52250d8d8fce 323 // reset kalman states
madcowswe 16:52250d8d8fce 324 void Kalman::KalmanReset()
madcowswe 16:52250d8d8fce 325 {
madcowswe 16:52250d8d8fce 326 float SonarMeasuresx1000[3];
madcowswe 16:52250d8d8fce 327 statelock.lock();
madcowswe 16:52250d8d8fce 328 SonarMeasuresx1000[0] = SonarMeasures[0]*1000.0f;
madcowswe 16:52250d8d8fce 329 SonarMeasuresx1000[1] = SonarMeasures[1]*1000.0f;
madcowswe 16:52250d8d8fce 330 SonarMeasuresx1000[2] = SonarMeasures[2]*1000.0f;
madcowswe 16:52250d8d8fce 331 //printf("0: %0.4f, 1: %0.4f, 2: %0.4f \n\r", IRMeasuresloc[0]*180/PI, IRMeasuresloc[1]*180/PI, IRMeasuresloc[2]*180/PI);
madcowswe 16:52250d8d8fce 332
madcowswe 16:52250d8d8fce 333 float d = beaconpos[2].y - beaconpos[1].y;
madcowswe 16:52250d8d8fce 334 float i = beaconpos[0].y - beaconpos[1].y;
madcowswe 16:52250d8d8fce 335 float j = beaconpos[0].x - beaconpos[1].x;
madcowswe 16:52250d8d8fce 336 float origin_x = beaconpos[1].x;
madcowswe 16:52250d8d8fce 337 float y_coor = (SonarMeasuresx1000[1]*SonarMeasuresx1000[1]- SonarMeasuresx1000[2]*SonarMeasuresx1000[2] + d*d) / (2*d);
madcowswe 16:52250d8d8fce 338 float x_coor = origin_x +(SonarMeasuresx1000[1]*SonarMeasuresx1000[1] - SonarMeasuresx1000[0]*SonarMeasuresx1000[0] + i*i + j*j)/(2*j) - i*y_coor/j;
madcowswe 16:52250d8d8fce 339
madcowswe 16:52250d8d8fce 340 //statelock already locked
madcowswe 16:52250d8d8fce 341 X(0) = x_coor/1000.0f;
madcowswe 16:52250d8d8fce 342 X(1) = y_coor/1000.0f;
madcowswe 16:52250d8d8fce 343
madcowswe 16:52250d8d8fce 344 P = 0.05, 0, 0,
madcowswe 16:52250d8d8fce 345 0, 0.05, 0,
madcowswe 16:52250d8d8fce 346 0, 0, 0.04;
madcowswe 16:52250d8d8fce 347
madcowswe 16:52250d8d8fce 348 // unlocks mutexes
madcowswe 16:52250d8d8fce 349 statelock.unlock();
madcowswe 16:52250d8d8fce 350
madcowswe 16:52250d8d8fce 351 }
madcowswe 16:52250d8d8fce 352
madcowswe 19:4b993a9a156e 353 */
madcowswe 19:4b993a9a156e 354
madcowswe 16:52250d8d8fce 355 } //Kalman Namespace
madcowswe 16:52250d8d8fce 356