Neil Thiessen / SDFileSystem. FATFileSystem updated.
Dependents: SDFileSystemMPUBMP_20200729 SDFileSystemMPUBMP_20200805 SDFileSystemMPUBMP_20200805xx sdcard_momo ... more
SDFileSystem.cpp
- Committer:
- neilt6
- Date:
- 2016-02-24
- Revision:
- 22:3fa5eaf48e81
- Parent:
- 21:d10a519c0910
- Child:
- 23:6bb3c1987511
File content as of revision 22:3fa5eaf48e81:
/* SD/MMC File System Library * Copyright (c) 2016 Neil Thiessen * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "SDFileSystem.h" #include "diskio.h" #include "pinmap.h" #include "SDCRC.h" SDFileSystem::SDFileSystem(PinName mosi, PinName miso, PinName sclk, PinName cs, const char* name, PinName cd, SwitchType cdtype, int hz) : FATFileSystem(name), m_Spi(mosi, miso, sclk), m_Cs(cs, 1), m_Cd(cd), m_FREQ(hz) { //Initialize the member variables m_CardType = CARD_NONE; m_Crc = true; m_LargeFrames = false; m_WriteValidation = true; m_Status = STA_NOINIT; //Enable the internal pull-up resistor on MISO pin_mode(miso, PullUp); //Configure the SPI bus m_Spi.format(8, 0); //Configure the card detect pin if (cdtype == SWITCH_POS_NO) { m_Cd.mode(PullDown); m_CdAssert = 1; m_Cd.fall(this, &SDFileSystem::onCardRemoval); } else if (cdtype == SWITCH_POS_NC) { m_Cd.mode(PullDown); m_CdAssert = 0; m_Cd.rise(this, &SDFileSystem::onCardRemoval); } else if (cdtype == SWITCH_NEG_NO) { m_Cd.mode(PullUp); m_CdAssert = 0; m_Cd.rise(this, &SDFileSystem::onCardRemoval); } else if (cdtype == SWITCH_NEG_NC) { m_Cd.mode(PullUp); m_CdAssert = 1; m_Cd.fall(this, &SDFileSystem::onCardRemoval); } else { m_CdAssert = -1; } } bool SDFileSystem::card_present() { //Check the card socket checkSocket(); //Return whether or not a card is present return !(m_Status & STA_NODISK); } SDFileSystem::CardType SDFileSystem::card_type() { //Check the card socket checkSocket(); //Return the card type return m_CardType; } bool SDFileSystem::crc() { //Return whether or not CRC is enabled return m_Crc; } void SDFileSystem::crc(bool enabled) { //Check the card socket checkSocket(); //Just update the member variable if the card isn't initialized if (m_Status & STA_NOINIT) { m_Crc = enabled; return; } //Enable or disable CRC if (enabled && !m_Crc) { //Send CMD59(0x00000001) to enable CRC m_Crc = true; commandTransaction(CMD59, 0x00000001); } else if (!enabled && m_Crc) { //Send CMD59(0x00000000) to disable CRC commandTransaction(CMD59, 0x00000000); m_Crc = false; } } bool SDFileSystem::large_frames() { //Return whether or not 16-bit frames are enabled return m_LargeFrames; } void SDFileSystem::large_frames(bool enabled) { //Set whether or not 16-bit frames are enabled m_LargeFrames = enabled; } bool SDFileSystem::write_validation() { //Return whether or not write validation is enabled return m_WriteValidation; } void SDFileSystem::write_validation(bool enabled) { //Set whether or not write validation is enabled m_WriteValidation = enabled; } int SDFileSystem::unmount() { //Unmount the filesystem FATFileSystem::unmount(); //Change the status to not initialized, and the card type to unknown m_Status |= STA_NOINIT; m_CardType = CARD_UNKNOWN; //Always succeeds return 0; } int SDFileSystem::disk_initialize() { char token; unsigned int resp; //Make sure there's a card in the socket before proceeding checkSocket(); if (m_Status & STA_NODISK) return m_Status; //Make sure we're not already initialized before proceeding if (!(m_Status & STA_NOINIT)) return m_Status; //Set the SPI frequency to 400kHz for initialization m_Spi.frequency(400000); //Send 80 dummy clocks with /CS deasserted and DI held high m_Cs = 1; for (int i = 0; i < 10; i++) m_Spi.write(0xFF); //Send CMD0(0x00000000) to reset the card if (commandTransaction(CMD0, 0x00000000) != 0x01) { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } //Send CMD59(0x00000001) to enable CRC if necessary if (m_Crc) { if (commandTransaction(CMD59, 0x00000001) != 0x01) { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } } //Send CMD8(0x000001AA) to see if this is an SDCv2 card if (commandTransaction(CMD8, 0x000001AA, &resp) == 0x01) { //This is an SDCv2 card, get the 32-bit return value and verify the voltage range/check pattern if ((resp & 0xFFF) != 0x1AA) { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } //Send CMD58(0x00000000) to read the OCR, and verify that the card supports 3.2-3.3V if (commandTransaction(CMD58, 0x00000000, &resp) != 0x01 || !(resp & (1 << 20))) { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } //Try to initialize the card using ACMD41(0x00100000) for (int i = 0; i < 1000; i++) { token = commandTransaction(ACMD41, 0x40100000); if (token != 0x01) { break; } } //Check if the card initialized if (token != 0x00) { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } //Send CMD58(0x00000000) to read the OCR if (commandTransaction(CMD58, 0x00000000, &resp) == 0x00) { //Check the CCS bit to determine if this is a high capacity card if (resp & (1 << 30)) m_CardType = CARD_SDHC; else m_CardType = CARD_SD; //Increase the SPI frequency to full speed (up to 25MHz for SDCv2) if (m_FREQ > 25000000) m_Spi.frequency(25000000); else m_Spi.frequency(m_FREQ); } else { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } } else { //Didn't respond or illegal command, this is either an SDCv1 or MMC card //Send CMD58(0x00000000) to read the OCR, and verify that the card supports 3.2-3.3V if (commandTransaction(CMD58, 0x00000000, &resp) != 0x01 || !(resp & (1 << 20))) { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } //Try to initialize the card using ACMD41(0x00100000) for (int i = 0; i < 1000; i++) { token = commandTransaction(ACMD41, 0x40100000); if (token != 0x01) { break; } } //Check if the card initialized if (token == 0x00) { //This is an SDCv1 standard capacity card m_CardType = CARD_SD; //Increase the SPI frequency to full speed (up to 25MHz for SDCv1) if (m_FREQ > 25000000) m_Spi.frequency(25000000); else m_Spi.frequency(m_FREQ); } else { //Try to initialize the card using CMD1(0x00100000) for (int i = 0; i < 1000; i++) { token = commandTransaction(CMD1, 0x00100000); if (token != 0x01) { break; } } //Check if the card initialized if (token == 0x00) { //This is an MMCv3 card m_CardType = CARD_MMC; //Increase the SPI frequency to full speed (up to 20MHz for MMCv3) if (m_FREQ > 20000000) m_Spi.frequency(20000000); else m_Spi.frequency(m_FREQ); } else { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } } } //Send ACMD42(0x00000000) to disconnect the internal pull-up resistor on pin 1 if necessary if (m_CardType != CARD_MMC) { if (commandTransaction(ACMD42, 0x00000000) != 0x00) { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } } //Send CMD16(0x00000200) to force the block size to 512B if necessary if (m_CardType != CARD_SDHC) { if (commandTransaction(CMD16, 0x00000200) != 0x00) { //Initialization failed m_CardType = CARD_UNKNOWN; return m_Status; } } //The card is now initialized m_Status &= ~STA_NOINIT; //Return the disk status return m_Status; } int SDFileSystem::disk_status() { //Check the card socket checkSocket(); //Return the disk status return m_Status; } int SDFileSystem::disk_read(uint8_t* buffer, uint32_t sector, uint32_t count) { //Make sure the card is initialized before proceeding if (m_Status & STA_NOINIT) return RES_NOTRDY; //Read a single block, or multiple blocks if (count > 1) { return readBlocks((char*)buffer, sector, count) ? RES_OK : RES_ERROR; } else { return readBlock((char*)buffer, sector) ? RES_OK : RES_ERROR; } } int SDFileSystem::disk_write(const uint8_t* buffer, uint32_t sector, uint32_t count) { //Make sure the card is initialized before proceeding if (m_Status & STA_NOINIT) return RES_NOTRDY; //Make sure the card isn't write protected before proceeding if (m_Status & STA_PROTECT) return RES_WRPRT; //Write a single block, or multiple blocks if (count > 1) { return writeBlocks((const char*)buffer, sector, count) ? RES_OK : RES_ERROR; } else { return writeBlock((const char*)buffer, sector) ? RES_OK : RES_ERROR; } } int SDFileSystem::disk_sync() { //Select the card so we're forced to wait for the end of any internal write processes if (select()) { deselect(); return RES_OK; } else { return RES_ERROR; } } uint32_t SDFileSystem::disk_sectors() { //Make sure the card is initialized before proceeding if (m_Status & STA_NOINIT) return 0; //Try to read the CSD register up to 3 times for (int f = 0; f < 3; f++) { //Select the card, and wait for ready if(!select()) break; //Send CMD9(0x00000000) to read the CSD register if (writeCommand(CMD9, 0x00000000) == 0x00) { //Read the 16B CSD data block char csd[16]; bool success = readData(csd, 16); deselect(); if (success) { //Calculate the sector count based on the card type if ((csd[0] >> 6) == 0x01) { //Calculate the sector count for a high capacity card unsigned int size = (((csd[7] & 0x3F) << 16) | (csd[8] << 8) | csd[9]) + 1; return size << 10; } else { //Calculate the sector count for a standard capacity card unsigned int size = (((csd[6] & 0x03) << 10) | (csd[7] << 2) | ((csd[8] & 0xC0) >> 6)) + 1; size <<= ((((csd[9] & 0x03) << 1) | ((csd[10] & 0x80) >> 7)) + 2); size <<= (csd[5] & 0x0F); return size >> 9; } } } else { //The command failed, get out break; } } //The read operation failed 3 times deselect(); return 0; } void SDFileSystem::onCardRemoval() { //Check the card socket checkSocket(); } inline void SDFileSystem::checkSocket() { //Use the card detect switch (if available) to determine if the socket is occupied if (m_CdAssert != -1) { if (m_Status & STA_NODISK) { if (m_Cd == m_CdAssert) { //The socket is now occupied m_Status &= ~STA_NODISK; m_CardType = CARD_UNKNOWN; } } else { if (m_Cd != m_CdAssert) { //The socket is now empty m_Status |= (STA_NODISK | STA_NOINIT); m_CardType = CARD_NONE; } } } } inline bool SDFileSystem::waitReady(int timeout) { char resp; //Keep sending dummy clocks with DI held high until the card releases the DO line m_Timer.start(); do { resp = m_Spi.write(0xFF); } while (resp == 0x00 && m_Timer.read_ms() < timeout); m_Timer.stop(); m_Timer.reset(); //Return success/failure return (resp > 0x00); } inline bool SDFileSystem::select() { //Assert /CS m_Cs = 0; //Send 8 dummy clocks with DI held high to enable DO m_Spi.write(0xFF); //Wait for up to 500ms for the card to become ready if (waitReady(500)) { return true; } else { //We timed out, deselect and return false deselect(); return false; } } inline void SDFileSystem::deselect() { //Deassert /CS m_Cs = 1; //Send 8 dummy clocks with DI held high to disable DO m_Spi.write(0xFF); } inline char SDFileSystem::commandTransaction(char cmd, unsigned int arg, unsigned int* resp) { //Select the card, and wait for ready if(!select()) return 0xFF; //Perform the command transaction char token = writeCommand(cmd, arg, resp); //Deselect the card, and return the R1 response token deselect(); return token; } char SDFileSystem::writeCommand(char cmd, unsigned int arg, unsigned int* resp) { char token; //Try to send the command up to 3 times for (int f = 0; f < 3; f++) { //Send CMD55(0x00000000) prior to an application specific command if (cmd == ACMD22 || cmd == ACMD23 || cmd == ACMD41 || cmd == ACMD42) { token = writeCommand(CMD55, 0x00000000); if (token > 0x01) return token; //Deselect and reselect the card between CMD55 and an ACMD deselect(); if(!select()) return 0xFF; } //Prepare the command packet char cmdPacket[6]; cmdPacket[0] = cmd; cmdPacket[1] = arg >> 24; cmdPacket[2] = arg >> 16; cmdPacket[3] = arg >> 8; cmdPacket[4] = arg; if (m_Crc || cmd == CMD0 || cmd == CMD8) cmdPacket[5] = (SDCRC::crc7(cmdPacket, 5) << 1) | 0x01; else cmdPacket[5] = 0x01; //Send the command packet for (int i = 0; i < 6; i++) m_Spi.write(cmdPacket[i]); //Discard the stuff byte immediately following CMD12 if (cmd == CMD12) m_Spi.write(0xFF); //Allow up to 8 bytes of delay for the R1 response token for (int i = 0; i < 9; i++) { token = m_Spi.write(0xFF); if (!(token & 0x80)) break; } //Verify the R1 response token if (token == 0xFF) { //No data was received, get out early break; } else if (token & (1 << 3)) { //There was a CRC error, try again continue; } else if (token > 0x01) { //An error occured, get out early break; } //Handle R2 and R3/R7 response tokens if (cmd == CMD13 && resp != NULL) { //Read the R2 response value *resp = m_Spi.write(0xFF); } else if ((cmd == CMD8 || cmd == CMD58) && resp != NULL) { //Read the R3/R7 response value *resp = (m_Spi.write(0xFF) << 24); *resp |= (m_Spi.write(0xFF) << 16); *resp |= (m_Spi.write(0xFF) << 8); *resp |= m_Spi.write(0xFF); } //The command was successful break; } //Return the R1 response token return token; } bool SDFileSystem::readData(char* buffer, int length) { char token; unsigned short crc; //Wait for up to 500ms for a token to arrive m_Timer.start(); do { token = m_Spi.write(0xFF); } while (token == 0xFF && m_Timer.read_ms() < 500); m_Timer.stop(); m_Timer.reset(); //Check if a valid start block token was received if (token != 0xFE) return false; //Check if large frames are enabled or not if (m_LargeFrames) { //Switch to 16-bit frames for better performance m_Spi.format(16, 0); //Read the data block into the buffer unsigned short dataWord; for (int i = 0; i < length; i += 2) { dataWord = m_Spi.write(0xFFFF); buffer[i] = dataWord >> 8; buffer[i + 1] = dataWord; } //Read the CRC16 checksum for the data block crc = m_Spi.write(0xFFFF); //Switch back to 8-bit frames m_Spi.format(8, 0); } else { //Read the data into the buffer for (int i = 0; i < length; i++) buffer[i] = m_Spi.write(0xFF); //Read the CRC16 checksum for the data block crc = (m_Spi.write(0xFF) << 8); crc |= m_Spi.write(0xFF); } //Return the validity of the CRC16 checksum (if enabled) return (!m_Crc || crc == SDCRC::crc16(buffer, length)); } char SDFileSystem::writeData(const char* buffer, char token) { //Calculate the CRC16 checksum for the data block (if enabled) unsigned short crc = (m_Crc) ? SDCRC::crc16(buffer, 512) : 0xFFFF; //Wait for up to 500ms for the card to become ready if (!waitReady(500)) return false; //Send the start block token m_Spi.write(token); //Check if large frames are enabled or not if (m_LargeFrames) { //Switch to 16-bit frames for better performance m_Spi.format(16, 0); //Write the data block from the buffer for (int i = 0; i < 512; i += 2) m_Spi.write((buffer[i] << 8) | buffer[i + 1]); //Send the CRC16 checksum for the data block m_Spi.write(crc); //Switch back to 8-bit frames m_Spi.format(8, 0); } else { //Write the data block from the buffer for (int i = 0; i < 512; i++) m_Spi.write(buffer[i]); //Send the CRC16 checksum for the data block m_Spi.write(crc >> 8); m_Spi.write(crc); } //Return the data response token return (m_Spi.write(0xFF) & 0x1F); } inline bool SDFileSystem::readBlock(char* buffer, unsigned int lba) { //Try to read the block up to 3 times for (int f = 0; f < 3; f++) { //Select the card, and wait for ready if(!select()) break; //Send CMD17(block) to read a single block if (writeCommand(CMD17, (m_CardType == CARD_SDHC) ? lba : lba << 9) == 0x00) { //Try to read the block, and deselect the card bool success = readData(buffer, 512); deselect(); //Return if successful if (success) return true; } else { //The command failed, get out break; } } //The single block read failed deselect(); return false; } inline bool SDFileSystem::readBlocks(char* buffer, unsigned int lba, unsigned int count) { //Try to read each block up to 3 times for (int f = 0; f < 3;) { //Select the card, and wait for ready if(!select()) break; //Send CMD18(block) to read multiple blocks if (writeCommand(CMD18, (m_CardType == CARD_SDHC) ? lba : lba << 9) == 0x00) { //Try to read all of the data blocks do { //Read the next block, and break on errors if (!readData(buffer, 512)) { f++; break; } //Update the variables lba++; buffer += 512; f = 0; } while (--count); //Send CMD12(0x00000000) to stop the transmission if (writeCommand(CMD12, 0x00000000) != 0x00) { //The command failed, get out break; } //Deselect the card, and return if successful deselect(); if (count == 0) return true; } else { //The command failed, get out break; } } //The multiple block read failed deselect(); return false; } inline bool SDFileSystem::writeBlock(const char* buffer, unsigned int lba) { //Try to write the block up to 3 times for (int f = 0; f < 3; f++) { //Select the card, and wait for ready if(!select()) break; //Send CMD24(block) to write a single block if (writeCommand(CMD24, (m_CardType == CARD_SDHC) ? lba : lba << 9) == 0x00) { //Try to write the block, and deselect the card char token = writeData(buffer, 0xFE); deselect(); //Check the data response token if (token == 0x0A) { //A CRC error occured, try again continue; } else if (token == 0x0C) { //A write error occured, get out break; } //Send CMD13(0x00000000) to verify that the programming was successful if enabled if (m_WriteValidation) { unsigned int resp; if (commandTransaction(CMD13, 0x00000000, &resp) != 0x00 || resp != 0x00) { //Some manner of unrecoverable write error occured during programming, get out break; } } //The data was written successfully return true; } else { //The command failed, get out break; } } //The single block write failed deselect(); return false; } inline bool SDFileSystem::writeBlocks(const char* buffer, unsigned int lba, unsigned int count) { char token; const char* currentBuffer = buffer; unsigned int currentLba = lba; int currentCount = count; //Try to write each block up to 3 times for (int f = 0; f < 3;) { //If this is an SD card, send ACMD23(count) to set the number of blocks to pre-erase if (m_CardType != CARD_MMC) { if (commandTransaction(ACMD23, currentCount) != 0x00) { //The command failed, get out break; } } //Select the card, and wait for ready if(!select()) break; //Send CMD25(block) to write multiple blocks if (writeCommand(CMD25, (m_CardType == CARD_SDHC) ? currentLba : currentLba << 9) == 0x00) { //Try to write all of the data blocks do { //Write the next block and break on errors token = writeData(currentBuffer, 0xFC); if (token != 0x05) { f++; break; } //Update the variables currentBuffer += 512; f = 0; } while (--currentCount); //Wait for up to 500ms for the card to finish processing the last block if (!waitReady(500)) break; //Finalize the transmission if (currentCount == 0) { //Send the stop tran token, and deselect the card m_Spi.write(0xFD); deselect(); //Send CMD13(0x00000000) to verify that the programming was successful if enabled if (m_WriteValidation) { unsigned int resp; if (commandTransaction(CMD13, 0x00000000, &resp) != 0x00 || resp != 0x00) { //Some manner of unrecoverable write error occured during programming, get out break; } } //The data was written successfully return true; } else { //Send CMD12(0x00000000) to abort the transmission if (writeCommand(CMD12, 0x00000000) != 0x00) { //The command failed, get out break; } //Deselect the card deselect(); //Check the error token if (token == 0x0A) { //Determine the number of well written blocks if possible unsigned int writtenBlocks = 0; if (m_CardType != CARD_MMC && select()) { //Send ACMD22(0x00000000) to get the number of well written blocks if (writeCommand(ACMD22, 0x00000000) == 0x00) { //Read the data char acmdData[4]; if (readData(acmdData, 4)) { //Extract the number of well written blocks writtenBlocks = acmdData[0] << 24; writtenBlocks |= acmdData[1] << 16; writtenBlocks |= acmdData[2] << 8; writtenBlocks |= acmdData[3]; } } deselect(); } //Roll back the variables based on the number of well written blocks currentBuffer = buffer + (writtenBlocks << 9); currentLba = lba + writtenBlocks; currentCount = count - writtenBlocks; //Try again continue; } else { //A write error occured, get out break; } } } else { //The command failed, get out break; } } //The multiple block write failed deselect(); return false; }