fealkn
Dependencies: mbed LSM9DS1_Library VL53L0X
Diff: LSM9DS1.cpp
- Revision:
- 1:15e0c8f3d4a0
- Parent:
- 0:ea1c50666fc2
--- a/LSM9DS1.cpp Wed Apr 28 17:44:45 2021 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1197 +0,0 @@ -/****************************************************************************** -SFE_LSM9DS1.cpp -SFE_LSM9DS1 Library Source File -Jim Lindblom @ SparkFun Electronics -Original Creation Date: February 27, 2015 -https://github.com/sparkfun/LSM9DS1_Breakout - -This file implements all functions of the LSM9DS1 class. Functions here range -from higher level stuff, like reading/writing LSM9DS1 registers to low-level, -hardware reads and writes. Both SPI and I2C handler functions can be found -towards the bottom of this file. - -Development environment specifics: - IDE: Arduino 1.6 - Hardware Platform: Arduino Uno - LSM9DS1 Breakout Version: 1.0 - -This code is beerware; if you see me (or any other SparkFun employee) at the -local, and you've found our code helpful, please buy us a round! - -Distributed as-is; no warranty is given. -******************************************************************************/ - -#include "LSM9DS1.h" -#include "LSM9DS1_Registers.h" -#include "LSM9DS1_Types.h" -//#include <Wire.h> // Wire library is used for I2C -//#include <SPI.h> // SPI library is used for...SPI. - -//#if defined(ARDUINO) && ARDUINO >= 100 -// #include "Arduino.h" -//#else -// #include "WProgram.h" -//#endif - -#define LSM9DS1_COMMUNICATION_TIMEOUT 1000 - -float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058}; -extern Serial pc; - -LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) - :i2c(sda, scl) -{ - init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B -} -/* -LSM9DS1::LSM9DS1() -{ - init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1)); -} - -LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) -{ - init(interface, xgAddr, mAddr); -} -*/ - -void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) -{ - settings.device.commInterface = interface; - settings.device.agAddress = xgAddr; - settings.device.mAddress = mAddr; - - settings.gyro.enabled = true; - settings.gyro.enableX = true; - settings.gyro.enableY = true; - settings.gyro.enableZ = true; - // gyro scale can be 245, 500, or 2000 - settings.gyro.scale = 245; - // gyro sample rate: value between 1-6 - // 1 = 14.9 4 = 238 - // 2 = 59.5 5 = 476 - // 3 = 119 6 = 952 - settings.gyro.sampleRate = 6; - // gyro cutoff frequency: value between 0-3 - // Actual value of cutoff frequency depends - // on sample rate. - settings.gyro.bandwidth = 0; - settings.gyro.lowPowerEnable = false; - settings.gyro.HPFEnable = false; - // Gyro HPF cutoff frequency: value between 0-9 - // Actual value depends on sample rate. Only applies - // if gyroHPFEnable is true. - settings.gyro.HPFCutoff = 0; - settings.gyro.flipX = false; - settings.gyro.flipY = false; - settings.gyro.flipZ = false; - settings.gyro.orientation = 0; - settings.gyro.latchInterrupt = true; - - settings.accel.enabled = true; - settings.accel.enableX = true; - settings.accel.enableY = true; - settings.accel.enableZ = true; - // accel scale can be 2, 4, 8, or 16 - settings.accel.scale = 2; - // accel sample rate can be 1-6 - // 1 = 10 Hz 4 = 238 Hz - // 2 = 50 Hz 5 = 476 Hz - // 3 = 119 Hz 6 = 952 Hz - settings.accel.sampleRate = 6; - // Accel cutoff freqeuncy can be any value between -1 - 3. - // -1 = bandwidth determined by sample rate - // 0 = 408 Hz 2 = 105 Hz - // 1 = 211 Hz 3 = 50 Hz - settings.accel.bandwidth = -1; - settings.accel.highResEnable = false; - // accelHighResBandwidth can be any value between 0-3 - // LP cutoff is set to a factor of sample rate - // 0 = ODR/50 2 = ODR/9 - // 1 = ODR/100 3 = ODR/400 - settings.accel.highResBandwidth = 0; - - settings.mag.enabled = true; - // mag scale can be 4, 8, 12, or 16 - settings.mag.scale = 4; - // mag data rate can be 0-7 - // 0 = 0.625 Hz 4 = 10 Hz - // 1 = 1.25 Hz 5 = 20 Hz - // 2 = 2.5 Hz 6 = 40 Hz - // 3 = 5 Hz 7 = 80 Hz - settings.mag.sampleRate = 7; - settings.mag.tempCompensationEnable = false; - // magPerformance can be any value between 0-3 - // 0 = Low power mode 2 = high performance - // 1 = medium performance 3 = ultra-high performance - settings.mag.XYPerformance = 3; - settings.mag.ZPerformance = 3; - settings.mag.lowPowerEnable = false; - // magOperatingMode can be 0-2 - // 0 = continuous conversion - // 1 = single-conversion - // 2 = power down - settings.mag.operatingMode = 0; - - settings.temp.enabled = true; - for (int i=0; i<3; i++) - { - gBias[i] = 0; - aBias[i] = 0; - mBias[i] = 0; - gBiasRaw[i] = 0; - aBiasRaw[i] = 0; - mBiasRaw[i] = 0; - } - _autoCalc = false; -} - - -uint16_t LSM9DS1::begin() -{ - //! Todo: don't use _xgAddress or _mAddress, duplicating memory - _xgAddress = settings.device.agAddress; - _mAddress = settings.device.mAddress; - - constrainScales(); - // Once we have the scale values, we can calculate the resolution - // of each sensor. That's what these functions are for. One for each sensor - calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable - calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable - calcaRes(); // Calculate g / ADC tick, stored in aRes variable - - // Now, initialize our hardware interface. - if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C - initI2C(); // Initialize I2C - else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI - initSPI(); // Initialize SPI - - // To verify communication, we can read from the WHO_AM_I register of - // each device. Store those in a variable so we can return them. - uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I - uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I - pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress); - uint16_t whoAmICombined = (xgTest << 8) | mTest; - - if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP)) - return 0; - - // Gyro initialization stuff: - initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. - - // Accelerometer initialization stuff: - initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. - - // Magnetometer initialization stuff: - initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. - - // Once everything is initialized, return the WHO_AM_I registers we read: - return whoAmICombined; -} - -void LSM9DS1::initGyro() -{ - uint8_t tempRegValue = 0; - - // CTRL_REG1_G (Default value: 0x00) - // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0] - // ODR_G[2:0] - Output data rate selection - // FS_G[1:0] - Gyroscope full-scale selection - // BW_G[1:0] - Gyroscope bandwidth selection - - // To disable gyro, set sample rate bits to 0. We'll only set sample - // rate if the gyro is enabled. - if (settings.gyro.enabled) - { - tempRegValue = (settings.gyro.sampleRate & 0x07) << 5; - } - switch (settings.gyro.scale) - { - case 500: - tempRegValue |= (0x1 << 3); - break; - case 2000: - tempRegValue |= (0x3 << 3); - break; - // Otherwise we'll set it to 245 dps (0x0 << 4) - } - tempRegValue |= (settings.gyro.bandwidth & 0x3); - xgWriteByte(CTRL_REG1_G, tempRegValue); - - // CTRL_REG2_G (Default value: 0x00) - // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0] - // INT_SEL[1:0] - INT selection configuration - // OUT_SEL[1:0] - Out selection configuration - xgWriteByte(CTRL_REG2_G, 0x00); - - // CTRL_REG3_G (Default value: 0x00) - // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G] - // LP_mode - Low-power mode enable (0: disabled, 1: enabled) - // HP_EN - HPF enable (0:disabled, 1: enabled) - // HPCF_G[3:0] - HPF cutoff frequency - tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0; - if (settings.gyro.HPFEnable) - { - tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F); - } - xgWriteByte(CTRL_REG3_G, tempRegValue); - - // CTRL_REG4 (Default value: 0x38) - // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1] - // Zen_G - Z-axis output enable (0:disable, 1:enable) - // Yen_G - Y-axis output enable (0:disable, 1:enable) - // Xen_G - X-axis output enable (0:disable, 1:enable) - // LIR_XL1 - Latched interrupt (0:not latched, 1:latched) - // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used) - tempRegValue = 0; - if (settings.gyro.enableZ) tempRegValue |= (1<<5); - if (settings.gyro.enableY) tempRegValue |= (1<<4); - if (settings.gyro.enableX) tempRegValue |= (1<<3); - if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1); - xgWriteByte(CTRL_REG4, tempRegValue); - - // ORIENT_CFG_G (Default value: 0x00) - // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0] - // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative) - // Orient [2:0] - Directional user orientation selection - tempRegValue = 0; - if (settings.gyro.flipX) tempRegValue |= (1<<5); - if (settings.gyro.flipY) tempRegValue |= (1<<4); - if (settings.gyro.flipZ) tempRegValue |= (1<<3); - xgWriteByte(ORIENT_CFG_G, tempRegValue); -} - -void LSM9DS1::initAccel() -{ - uint8_t tempRegValue = 0; - - // CTRL_REG5_XL (0x1F) (Default value: 0x38) - // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0] - // DEC[0:1] - Decimation of accel data on OUT REG and FIFO. - // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples - // Zen_XL - Z-axis output enabled - // Yen_XL - Y-axis output enabled - // Xen_XL - X-axis output enabled - if (settings.accel.enableZ) tempRegValue |= (1<<5); - if (settings.accel.enableY) tempRegValue |= (1<<4); - if (settings.accel.enableX) tempRegValue |= (1<<3); - - xgWriteByte(CTRL_REG5_XL, tempRegValue); - - // CTRL_REG6_XL (0x20) (Default value: 0x00) - // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0] - // ODR_XL[2:0] - Output data rate & power mode selection - // FS_XL[1:0] - Full-scale selection - // BW_SCAL_ODR - Bandwidth selection - // BW_XL[1:0] - Anti-aliasing filter bandwidth selection - tempRegValue = 0; - // To disable the accel, set the sampleRate bits to 0. - if (settings.accel.enabled) - { - tempRegValue |= (settings.accel.sampleRate & 0x07) << 5; - } - switch (settings.accel.scale) - { - case 4: - tempRegValue |= (0x2 << 3); - break; - case 8: - tempRegValue |= (0x3 << 3); - break; - case 16: - tempRegValue |= (0x1 << 3); - break; - // Otherwise it'll be set to 2g (0x0 << 3) - } - if (settings.accel.bandwidth >= 0) - { - tempRegValue |= (1<<2); // Set BW_SCAL_ODR - tempRegValue |= (settings.accel.bandwidth & 0x03); - } - xgWriteByte(CTRL_REG6_XL, tempRegValue); - - // CTRL_REG7_XL (0x21) (Default value: 0x00) - // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1] - // HR - High resolution mode (0: disable, 1: enable) - // DCF[1:0] - Digital filter cutoff frequency - // FDS - Filtered data selection - // HPIS1 - HPF enabled for interrupt function - tempRegValue = 0; - if (settings.accel.highResEnable) - { - tempRegValue |= (1<<7); // Set HR bit - tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5; - } - xgWriteByte(CTRL_REG7_XL, tempRegValue); -} - -// This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average -// them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch -// for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store -// the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to -// subtract the biases ourselves. This results in a more accurate measurement in general and can -// remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner -// is good practice. -void LSM9DS1::calibrate(bool autoCalc) -{ - uint8_t data[6] = {0, 0, 0, 0, 0, 0}; - uint8_t samples = 0; - int ii; - int32_t aBiasRawTemp[3] = {0, 0, 0}; - int32_t gBiasRawTemp[3] = {0, 0, 0}; - - // Turn on FIFO and set threshold to 32 samples - enableFIFO(true); - setFIFO(FIFO_THS, 0x1F); - while (samples < 0x1F) - { - samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples - } - for(ii = 0; ii < samples ; ii++) - { // Read the gyro data stored in the FIFO - readGyro(); - gBiasRawTemp[0] += gx; - gBiasRawTemp[1] += gy; - gBiasRawTemp[2] += gz; - readAccel(); - aBiasRawTemp[0] += ax; - aBiasRawTemp[1] += ay; - aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up! - } - for (ii = 0; ii < 3; ii++) - { - gBiasRaw[ii] = gBiasRawTemp[ii] / samples; - gBias[ii] = calcGyro(gBiasRaw[ii]); - aBiasRaw[ii] = aBiasRawTemp[ii] / samples; - aBias[ii] = calcAccel(aBiasRaw[ii]); - } - - enableFIFO(false); - setFIFO(FIFO_OFF, 0x00); - - if (autoCalc) _autoCalc = true; -} - -void LSM9DS1::calibrateMag(bool loadIn) -{ - int i, j; - int16_t magMin[3] = {0, 0, 0}; - int16_t magMax[3] = {0, 0, 0}; // The road warrior - - for (i=0; i<128; i++) - { - while (!magAvailable()) - ; - readMag(); - int16_t magTemp[3] = {0, 0, 0}; - magTemp[0] = mx; - magTemp[1] = my; - magTemp[2] = mz; - for (j = 0; j < 3; j++) - { - if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j]; - if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j]; - } - } - for (j = 0; j < 3; j++) - { - mBiasRaw[j] = (magMax[j] + magMin[j]) / 2; - mBias[j] = calcMag(mBiasRaw[j]); - if (loadIn) - magOffset(j, mBiasRaw[j]); - } - -} -void LSM9DS1::magOffset(uint8_t axis, int16_t offset) -{ - if (axis > 2) - return; - uint8_t msb, lsb; - msb = (offset & 0xFF00) >> 8; - lsb = offset & 0x00FF; - mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb); - mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb); -} - -void LSM9DS1::initMag() -{ - uint8_t tempRegValue = 0; - - // CTRL_REG1_M (Default value: 0x10) - // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST] - // TEMP_COMP - Temperature compensation - // OM[1:0] - X & Y axes op mode selection - // 00:low-power, 01:medium performance - // 10: high performance, 11:ultra-high performance - // DO[2:0] - Output data rate selection - // ST - Self-test enable - if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7); - tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5; - tempRegValue |= (settings.mag.sampleRate & 0x7) << 2; - mWriteByte(CTRL_REG1_M, tempRegValue); - - // CTRL_REG2_M (Default value 0x00) - // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0] - // FS[1:0] - Full-scale configuration - // REBOOT - Reboot memory content (0:normal, 1:reboot) - // SOFT_RST - Reset config and user registers (0:default, 1:reset) - tempRegValue = 0; - switch (settings.mag.scale) - { - case 8: - tempRegValue |= (0x1 << 5); - break; - case 12: - tempRegValue |= (0x2 << 5); - break; - case 16: - tempRegValue |= (0x3 << 5); - break; - // Otherwise we'll default to 4 gauss (00) - } - mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss - - // CTRL_REG3_M (Default value: 0x03) - // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0] - // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable) - // LP - Low-power mode cofiguration (1:enable) - // SIM - SPI mode selection (0:write-only, 1:read/write enable) - // MD[1:0] - Operating mode - // 00:continuous conversion, 01:single-conversion, - // 10,11: Power-down - tempRegValue = 0; - if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5); - tempRegValue |= (settings.mag.operatingMode & 0x3); - mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode - - // CTRL_REG4_M (Default value: 0x00) - // [0][0][0][0][OMZ1][OMZ0][BLE][0] - // OMZ[1:0] - Z-axis operative mode selection - // 00:low-power mode, 01:medium performance - // 10:high performance, 10:ultra-high performance - // BLE - Big/little endian data - tempRegValue = 0; - tempRegValue = (settings.mag.ZPerformance & 0x3) << 2; - mWriteByte(CTRL_REG4_M, tempRegValue); - - // CTRL_REG5_M (Default value: 0x00) - // [0][BDU][0][0][0][0][0][0] - // BDU - Block data update for magnetic data - // 0:continuous, 1:not updated until MSB/LSB are read - tempRegValue = 0; - mWriteByte(CTRL_REG5_M, tempRegValue); -} - -uint8_t LSM9DS1::accelAvailable() -{ - uint8_t status = xgReadByte(STATUS_REG_1); - - return (status & (1<<0)); -} - -uint8_t LSM9DS1::gyroAvailable() -{ - uint8_t status = xgReadByte(STATUS_REG_1); - - return ((status & (1<<1)) >> 1); -} - -uint8_t LSM9DS1::tempAvailable() -{ - uint8_t status = xgReadByte(STATUS_REG_1); - - return ((status & (1<<2)) >> 2); -} - -uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis) -{ - uint8_t status; - status = mReadByte(STATUS_REG_M); - - return ((status & (1<<axis)) >> axis); -} - -void LSM9DS1::readAccel() -{ - uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp - xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL - ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax - ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay - az = (temp[5] << 8) | temp[4]; // Store z-axis values into az - if (_autoCalc) - { - ax -= aBiasRaw[X_AXIS]; - ay -= aBiasRaw[Y_AXIS]; - az -= aBiasRaw[Z_AXIS]; - } -} - -int16_t LSM9DS1::readAccel(lsm9ds1_axis axis) -{ - uint8_t temp[2]; - int16_t value; - xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2); - value = (temp[1] << 8) | temp[0]; - - if (_autoCalc) - value -= aBiasRaw[axis]; - - return value; -} - -void LSM9DS1::readMag() -{ - uint8_t temp[6]; // We'll read six bytes from the mag into temp - mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M - mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx - my = (temp[3] << 8) | temp[2]; // Store y-axis values into my - mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz -} - -int16_t LSM9DS1::readMag(lsm9ds1_axis axis) -{ - uint8_t temp[2]; - mReadBytes(OUT_X_L_M + (2 * axis), temp, 2); - return (temp[1] << 8) | temp[0]; -} - -void LSM9DS1::readTemp() -{ - uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp - xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L - temperature = ((int16_t)temp[1] << 8) | temp[0]; -} - -void LSM9DS1::readGyro() -{ - uint8_t temp[6]; // We'll read six bytes from the gyro into temp - xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G - gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx - gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy - gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz - if (_autoCalc) - { - gx -= gBiasRaw[X_AXIS]; - gy -= gBiasRaw[Y_AXIS]; - gz -= gBiasRaw[Z_AXIS]; - } -} - -int16_t LSM9DS1::readGyro(lsm9ds1_axis axis) -{ - uint8_t temp[2]; - int16_t value; - - xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2); - - value = (temp[1] << 8) | temp[0]; - - if (_autoCalc) - value -= gBiasRaw[axis]; - - return value; -} - -float LSM9DS1::calcGyro(int16_t gyro) -{ - // Return the gyro raw reading times our pre-calculated DPS / (ADC tick): - return gRes * gyro; -} - -float LSM9DS1::calcAccel(int16_t accel) -{ - // Return the accel raw reading times our pre-calculated g's / (ADC tick): - return aRes * accel; -} - -float LSM9DS1::calcMag(int16_t mag) -{ - // Return the mag raw reading times our pre-calculated Gs / (ADC tick): - return mRes * mag; -} - -void LSM9DS1::setGyroScale(uint16_t gScl) -{ - // Read current value of CTRL_REG1_G: - uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G); - // Mask out scale bits (3 & 4): - ctrl1RegValue &= 0xE7; - switch (gScl) - { - case 500: - ctrl1RegValue |= (0x1 << 3); - settings.gyro.scale = 500; - break; - case 2000: - ctrl1RegValue |= (0x3 << 3); - settings.gyro.scale = 2000; - break; - default: // Otherwise we'll set it to 245 dps (0x0 << 4) - settings.gyro.scale = 245; - break; - } - xgWriteByte(CTRL_REG1_G, ctrl1RegValue); - - calcgRes(); -} - -void LSM9DS1::setAccelScale(uint8_t aScl) -{ - // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it: - uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL); - // Mask out accel scale bits: - tempRegValue &= 0xE7; - - switch (aScl) - { - case 4: - tempRegValue |= (0x2 << 3); - settings.accel.scale = 4; - break; - case 8: - tempRegValue |= (0x3 << 3); - settings.accel.scale = 8; - break; - case 16: - tempRegValue |= (0x1 << 3); - settings.accel.scale = 16; - break; - default: // Otherwise it'll be set to 2g (0x0 << 3) - settings.accel.scale = 2; - break; - } - xgWriteByte(CTRL_REG6_XL, tempRegValue); - - // Then calculate a new aRes, which relies on aScale being set correctly: - calcaRes(); -} - -void LSM9DS1::setMagScale(uint8_t mScl) -{ - // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it: - uint8_t temp = mReadByte(CTRL_REG2_M); - // Then mask out the mag scale bits: - temp &= 0xFF^(0x3 << 5); - - switch (mScl) - { - case 8: - temp |= (0x1 << 5); - settings.mag.scale = 8; - break; - case 12: - temp |= (0x2 << 5); - settings.mag.scale = 12; - break; - case 16: - temp |= (0x3 << 5); - settings.mag.scale = 16; - break; - default: // Otherwise we'll default to 4 gauss (00) - settings.mag.scale = 4; - break; - } - - // And write the new register value back into CTRL_REG6_XM: - mWriteByte(CTRL_REG2_M, temp); - - // We've updated the sensor, but we also need to update our class variables - // First update mScale: - //mScale = mScl; - // Then calculate a new mRes, which relies on mScale being set correctly: - calcmRes(); -} - -void LSM9DS1::setGyroODR(uint8_t gRate) -{ - // Only do this if gRate is not 0 (which would disable the gyro) - if ((gRate & 0x07) != 0) - { - // We need to preserve the other bytes in CTRL_REG1_G. So, first read it: - uint8_t temp = xgReadByte(CTRL_REG1_G); - // Then mask out the gyro ODR bits: - temp &= 0xFF^(0x7 << 5); - temp |= (gRate & 0x07) << 5; - // Update our settings struct - settings.gyro.sampleRate = gRate & 0x07; - // And write the new register value back into CTRL_REG1_G: - xgWriteByte(CTRL_REG1_G, temp); - } -} - -void LSM9DS1::setAccelODR(uint8_t aRate) -{ - // Only do this if aRate is not 0 (which would disable the accel) - if ((aRate & 0x07) != 0) - { - // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: - uint8_t temp = xgReadByte(CTRL_REG6_XL); - // Then mask out the accel ODR bits: - temp &= 0x1F; - // Then shift in our new ODR bits: - temp |= ((aRate & 0x07) << 5); - settings.accel.sampleRate = aRate & 0x07; - // And write the new register value back into CTRL_REG1_XM: - xgWriteByte(CTRL_REG6_XL, temp); - } -} - -void LSM9DS1::setMagODR(uint8_t mRate) -{ - // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it: - uint8_t temp = mReadByte(CTRL_REG1_M); - // Then mask out the mag ODR bits: - temp &= 0xFF^(0x7 << 2); - // Then shift in our new ODR bits: - temp |= ((mRate & 0x07) << 2); - settings.mag.sampleRate = mRate & 0x07; - // And write the new register value back into CTRL_REG5_XM: - mWriteByte(CTRL_REG1_M, temp); -} - -void LSM9DS1::calcgRes() -{ - gRes = ((float) settings.gyro.scale) / 32768.0; -} - -void LSM9DS1::calcaRes() -{ - aRes = ((float) settings.accel.scale) / 32768.0; -} - -void LSM9DS1::calcmRes() -{ - //mRes = ((float) settings.mag.scale) / 32768.0; - switch (settings.mag.scale) - { - case 4: - mRes = magSensitivity[0]; - break; - case 8: - mRes = magSensitivity[1]; - break; - case 12: - mRes = magSensitivity[2]; - break; - case 16: - mRes = magSensitivity[3]; - break; - } - -} - -void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator, - h_lactive activeLow, pp_od pushPull) -{ - // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of - // those two values. - // [generator] should be an OR'd list of values from the interrupt_generators enum - xgWriteByte(interrupt, generator); - - // Configure CTRL_REG8 - uint8_t temp; - temp = xgReadByte(CTRL_REG8); - - if (activeLow) temp |= (1<<5); - else temp &= ~(1<<5); - - if (pushPull) temp &= ~(1<<4); - else temp |= (1<<4); - - xgWriteByte(CTRL_REG8, temp); -} - -void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn) -{ - uint8_t temp = 0; - - temp = threshold & 0x7F; - if (sleepOn) temp |= (1<<7); - xgWriteByte(ACT_THS, temp); - - xgWriteByte(ACT_DUR, duration); -} - -uint8_t LSM9DS1::getInactivity() -{ - uint8_t temp = xgReadByte(STATUS_REG_0); - temp &= (0x10); - return temp; -} - -void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts) -{ - // Use variables from accel_interrupt_generator, OR'd together to create - // the [generator]value. - uint8_t temp = generator; - if (andInterrupts) temp |= 0x80; - xgWriteByte(INT_GEN_CFG_XL, temp); -} - -void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) -{ - // Write threshold value to INT_GEN_THS_?_XL. - // axis will be 0, 1, or 2 (x, y, z respectively) - xgWriteByte(INT_GEN_THS_X_XL + axis, threshold); - - // Write duration and wait to INT_GEN_DUR_XL - uint8_t temp; - temp = (duration & 0x7F); - if (wait) temp |= 0x80; - xgWriteByte(INT_GEN_DUR_XL, temp); -} - -uint8_t LSM9DS1::getAccelIntSrc() -{ - uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL); - - // Check if the IA_XL (interrupt active) bit is set - if (intSrc & (1<<6)) - { - return (intSrc & 0x3F); - } - - return 0; -} - -void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch) -{ - // Use variables from accel_interrupt_generator, OR'd together to create - // the [generator]value. - uint8_t temp = generator; - if (aoi) temp |= 0x80; - if (latch) temp |= 0x40; - xgWriteByte(INT_GEN_CFG_G, temp); -} - -void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) -{ - uint8_t buffer[2]; - buffer[0] = (threshold & 0x7F00) >> 8; - buffer[1] = (threshold & 0x00FF); - // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G. - // axis will be 0, 1, or 2 (x, y, z respectively) - xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]); - xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]); - - // Write duration and wait to INT_GEN_DUR_XL - uint8_t temp; - temp = (duration & 0x7F); - if (wait) temp |= 0x80; - xgWriteByte(INT_GEN_DUR_G, temp); -} - -uint8_t LSM9DS1::getGyroIntSrc() -{ - uint8_t intSrc = xgReadByte(INT_GEN_SRC_G); - - // Check if the IA_G (interrupt active) bit is set - if (intSrc & (1<<6)) - { - return (intSrc & 0x3F); - } - - return 0; -} - -void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch) -{ - // Mask out non-generator bits (0-4) - uint8_t config = (generator & 0xE0); - // IEA bit is 0 for active-low, 1 for active-high. - if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2); - // IEL bit is 0 for latched, 1 for not-latched - if (!latch) config |= (1<<1); - // As long as we have at least 1 generator, enable the interrupt - if (generator != 0) config |= (1<<0); - - mWriteByte(INT_CFG_M, config); -} - -void LSM9DS1::configMagThs(uint16_t threshold) -{ - // Write high eight bits of [threshold] to INT_THS_H_M - mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8)); - // Write low eight bits of [threshold] to INT_THS_L_M - mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF)); -} - -uint8_t LSM9DS1::getMagIntSrc() -{ - uint8_t intSrc = mReadByte(INT_SRC_M); - - // Check if the INT (interrupt active) bit is set - if (intSrc & (1<<0)) - { - return (intSrc & 0xFE); - } - - return 0; -} - -void LSM9DS1::sleepGyro(bool enable) -{ - uint8_t temp = xgReadByte(CTRL_REG9); - if (enable) temp |= (1<<6); - else temp &= ~(1<<6); - xgWriteByte(CTRL_REG9, temp); -} - -void LSM9DS1::enableFIFO(bool enable) -{ - uint8_t temp = xgReadByte(CTRL_REG9); - if (enable) temp |= (1<<1); - else temp &= ~(1<<1); - xgWriteByte(CTRL_REG9, temp); -} - -void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs) -{ - // Limit threshold - 0x1F (31) is the maximum. If more than that was asked - // limit it to the maximum. - uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F; - xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F)); -} - -uint8_t LSM9DS1::getFIFOSamples() -{ - return (xgReadByte(FIFO_SRC) & 0x3F); -} - -void LSM9DS1::constrainScales() -{ - if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) && - (settings.gyro.scale != 2000)) - { - settings.gyro.scale = 245; - } - - if ((settings.accel.scale != 2) && (settings.accel.scale != 4) && - (settings.accel.scale != 8) && (settings.accel.scale != 16)) - { - settings.accel.scale = 2; - } - - if ((settings.mag.scale != 4) && (settings.mag.scale != 8) && - (settings.mag.scale != 12) && (settings.mag.scale != 16)) - { - settings.mag.scale = 4; - } -} - -void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data) -{ - // Whether we're using I2C or SPI, write a byte using the - // gyro-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) { - printf("yo"); - I2CwriteByte(_xgAddress, subAddress, data); - } else if (settings.device.commInterface == IMU_MODE_SPI) { - SPIwriteByte(_xgAddress, subAddress, data); - } -} - -void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data) -{ - // Whether we're using I2C or SPI, write a byte using the - // accelerometer-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) - return I2CwriteByte(_mAddress, subAddress, data); - else if (settings.device.commInterface == IMU_MODE_SPI) - return SPIwriteByte(_mAddress, subAddress, data); -} - -uint8_t LSM9DS1::xgReadByte(uint8_t subAddress) -{ - // Whether we're using I2C or SPI, read a byte using the - // gyro-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) - return I2CreadByte(_xgAddress, subAddress); - else if (settings.device.commInterface == IMU_MODE_SPI) - return SPIreadByte(_xgAddress, subAddress); -} - -void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) -{ - // Whether we're using I2C or SPI, read multiple bytes using the - // gyro-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) { - I2CreadBytes(_xgAddress, subAddress, dest, count); - } else if (settings.device.commInterface == IMU_MODE_SPI) { - SPIreadBytes(_xgAddress, subAddress, dest, count); - } -} - -uint8_t LSM9DS1::mReadByte(uint8_t subAddress) -{ - // Whether we're using I2C or SPI, read a byte using the - // accelerometer-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) - return I2CreadByte(_mAddress, subAddress); - else if (settings.device.commInterface == IMU_MODE_SPI) - return SPIreadByte(_mAddress, subAddress); -} - -void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) -{ - // Whether we're using I2C or SPI, read multiple bytes using the - // accelerometer-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) - I2CreadBytes(_mAddress, subAddress, dest, count); - else if (settings.device.commInterface == IMU_MODE_SPI) - SPIreadBytes(_mAddress, subAddress, dest, count); -} - -void LSM9DS1::initSPI() -{ - /* - pinMode(_xgAddress, OUTPUT); - digitalWrite(_xgAddress, HIGH); - pinMode(_mAddress, OUTPUT); - digitalWrite(_mAddress, HIGH); - - SPI.begin(); - // Maximum SPI frequency is 10MHz, could divide by 2 here: - SPI.setClockDivider(SPI_CLOCK_DIV2); - // Data is read and written MSb first. - SPI.setBitOrder(MSBFIRST); - // Data is captured on rising edge of clock (CPHA = 0) - // Base value of the clock is HIGH (CPOL = 1) - SPI.setDataMode(SPI_MODE0); - */ -} - -void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data) -{ - /* - digitalWrite(csPin, LOW); // Initiate communication - - // If write, bit 0 (MSB) should be 0 - // If single write, bit 1 should be 0 - SPI.transfer(subAddress & 0x3F); // Send Address - SPI.transfer(data); // Send data - - digitalWrite(csPin, HIGH); // Close communication - */ -} - -uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress) -{ - uint8_t temp; - // Use the multiple read function to read 1 byte. - // Value is returned to `temp`. - SPIreadBytes(csPin, subAddress, &temp, 1); - return temp; -} - -void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress, - uint8_t * dest, uint8_t count) -{ - // To indicate a read, set bit 0 (msb) of first byte to 1 - uint8_t rAddress = 0x80 | (subAddress & 0x3F); - // Mag SPI port is different. If we're reading multiple bytes, - // set bit 1 to 1. The remaining six bytes are the address to be read - if ((csPin == _mAddress) && count > 1) - rAddress |= 0x40; - - /* - digitalWrite(csPin, LOW); // Initiate communication - SPI.transfer(rAddress); - for (int i=0; i<count; i++) - { - dest[i] = SPI.transfer(0x00); // Read into destination array - } - digitalWrite(csPin, HIGH); // Close communication - */ -} - -void LSM9DS1::initI2C() -{ - /* - Wire.begin(); // Initialize I2C library - */ - - //already initialized in constructor! -} - -// Wire.h read and write protocols -void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data) -{ - /* - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.write(data); // Put data in Tx buffer - Wire.endTransmission(); // Send the Tx buffer - */ - char temp_data[2] = {subAddress, data}; - i2c.write(address, temp_data, 2); -} - -uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress) -{ - /* - int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; - uint8_t data; // `data` will store the register data - - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive - Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address - while ((Wire.available() < 1) && (timeout-- > 0)) - delay(1); - - if (timeout <= 0) - return 255; //! Bad! 255 will be misinterpreted as a good value. - - data = Wire.read(); // Fill Rx buffer with result - return data; // Return data read from slave register - */ - char data; - char temp[1] = {subAddress}; - - i2c.write(address, temp, 1); - //i2c.write(address & 0xFE); - temp[1] = 0x00; - i2c.write(address, temp, 1); - //i2c.write( address | 0x01); - int a = i2c.read(address, &data, 1); - return data; -} - -uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count) -{ - /* - int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; - Wire.beginTransmission(address); // Initialize the Tx buffer - // Next send the register to be read. OR with 0x80 to indicate multi-read. - Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer - - Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive - uint8_t i = 0; - Wire.requestFrom(address, count); // Read bytes from slave register address - while ((Wire.available() < count) && (timeout-- > 0)) - delay(1); - if (timeout <= 0) - return -1; - - for (int i=0; i<count;) - { - if (Wire.available()) - { - dest[i++] = Wire.read(); - } - } - return count; - */ - int i; - char temp_dest[count]; - char temp[1] = {subAddress}; - i2c.write(address, temp, 1); - i2c.read(address, temp_dest, count); - - //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion - for (i=0; i < count; i++) { - dest[i] = temp_dest[i]; - } - return count; -}