Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of d7a_1x by
src/d7a_com.cpp
- Committer:
- Jeej
- Date:
- 2016-08-30
- Revision:
- 43:28202405094d
- Parent:
- 37:e04613e021f2
- Child:
- 44:8ebe6b70f932
File content as of revision 43:28202405094d:
#include "mbed.h"
#include "rtos.h"
#include "dbg.h"
#include "d7a_com.h"
#include "d7a_common.h"
#include "d7a_fs.h"
#include "d7a_modem.h"
#include "d7a_sys.h"
#define XON_SIGNAL (0x0001 << 0)
#define START_SIGNAL (0x0001 << 1)
typedef struct {
uint32_t len;
uint8_t* buf;
} d7a_com_tx_buf_t;
enum {
SEARCH_HEADER,
PARSE_HEADER,
SEARCH_BODY,
PARSE_BODY,
};
typedef struct {
bool rx_started;
bool tx_started;
uint8_t state;
DigitalOut* rts;
InterruptIn* cts;
// RX buffer address
uint8_t* rx_buffer;
// RX buffer size
uint16_t rx_buffer_size;
// Write index in RX buffer
volatile uint16_t write_idx;
// Read index in RX buffer
uint16_t read_idx;
// Number of bytes available in RX buffer
volatile uint16_t data_available;
// min data in buffer before parsing body
d7a_com_rx_msg_t msg;
// Number of skipped bytes while parsing
uint16_t skipped_bytes;
// Port TX sequence number
uint8_t tx_seq;
// Port RX sequence number
uint8_t rx_seq;
// Response to command maximum time
uint32_t timeout;
// Waiting for data available in RX buffer
Semaphore* data_parsing;
// CTS management
Semaphore* cts_int;
// Data treatment threads
Thread* rx_thread;
Serial* serial;
// Tx Thread
Thread* tx_thread;
Queue<d7a_com_tx_buf_t, 32> tx_queue;
Timer tim;
} d7a_com_ctx_t;
static d7a_com_ctx_t g_com_ctx;
/**
Thread for parsing packets from RX buffer.
@param void
@return void
*/
void d7a_com_rx_thread( void const *p );
void d7a_com_tx_thread( void const *p );
/**
Serial Rx Interrupt Service Routine.
Add recevied bytes to the RX buffer.
@param void
@return void
*/
void rx_isr()
{
// Loop just in case more than one character is in UART's receive FIFO buffer
// Stop if buffer full
while (g_com_ctx.serial->readable())
{
g_com_ctx.rx_buffer[g_com_ctx.write_idx] = g_com_ctx.serial->getc();
//PRINT("-");
//if (g_com_ctx.rx_started)
{
g_com_ctx.data_available++;
g_com_ctx.write_idx = (g_com_ctx.write_idx >= (g_com_ctx.rx_buffer_size-1))? 0 : g_com_ctx.write_idx+1;
//g_com_ctx.write_idx = (g_com_ctx.write_idx + 1) % g_com_ctx.rx_buffer_size;
// unlock data parsing thread
if (g_com_ctx.state == SEARCH_HEADER && g_com_ctx.data_available >= KAL_COM_HEADER_LEN)
{
g_com_ctx.state = PARSE_HEADER;
g_com_ctx.data_parsing->release();
}
else if (g_com_ctx.state == SEARCH_BODY && g_com_ctx.data_available >= g_com_ctx.msg.blen)
{
g_com_ctx.state = PARSE_BODY;
g_com_ctx.data_parsing->release();
}
}
}
ASSERT(g_com_ctx.data_available <= g_com_ctx.rx_buffer_size, "RX Buffer overflow! (%d/%d)\r\n", g_com_ctx.data_available, g_com_ctx.rx_buffer_size);
}
/**
CTS pin Interrupt Service Routine.
For flow control (not yet inplemented)
@param void
@return void
*/
void cts_isr()
{
//PRINT("CTS_INT\r\n");
//g_com_ctx.cts_int->release();
}
// D7a_com constructor.
// Opens a serial port and monitors the input for ALP packets.
// Pins are those of the host, not the modem:
// TX-host -> RX-modem
// RX-host <- TX-modem
// RTS-host -> CTS-modem
// CTS-host <- RTS-modem
void d7a_com_open( const d7a_com_config_t* config )
{
FPRINT("\r\n");
g_com_ctx.rx_started = false;
g_com_ctx.tx_started = false;
g_com_ctx.state = SEARCH_HEADER;
g_com_ctx.rx_buffer_size = config->rx_buffer_size;
g_com_ctx.rx_buffer = (uint8_t*)MALLOC(g_com_ctx.rx_buffer_size);
g_com_ctx.data_available = 0;
g_com_ctx.skipped_bytes = 0;
g_com_ctx.write_idx = 0;
g_com_ctx.read_idx = 0;
g_com_ctx.tx_seq = 0;
g_com_ctx.rx_seq = 0;
g_com_ctx.serial = new Serial(config->tx, config->rx);
g_com_ctx.rts = new DigitalOut(config->rts);
g_com_ctx.cts = new InterruptIn(config->cts);
g_com_ctx.data_parsing = new Semaphore(0);
g_com_ctx.cts_int = new Semaphore(0);
g_com_ctx.cts->rise(&cts_isr);
/* XXX: Unknown bug:
Baud rate can be found with high error rate (> 4%).
It is here manualy corrected after an oscilloscope measure.
Normal Baudrate should be 115200.
*/
//g_com_ctx.serial->baud(117000); // XXX
g_com_ctx.serial->baud(115200); // XXX
//g_com_ctx.serial->baud(57600); // XXX
g_com_ctx.serial->format(8, SerialBase::None, 1);
g_com_ctx.serial->attach(&rx_isr, Serial::RxIrq);
g_com_ctx.tx_thread = new Thread(d7a_com_tx_thread, NULL, osPriorityHigh, DEFAULT_STACK_SIZE);
g_com_ctx.rx_thread = new Thread(d7a_com_rx_thread, NULL, osPriorityHigh, DEFAULT_STACK_SIZE);
}
// Destructor
void d7a_com_close()
{
FPRINT("\r\n");
g_com_ctx.rx_thread->terminate();
g_com_ctx.tx_thread->terminate();
delete g_com_ctx.data_parsing;
delete g_com_ctx.cts_int;
delete g_com_ctx.serial;
delete g_com_ctx.rts;
delete g_com_ctx.cts;
FREE(g_com_ctx.rx_buffer);
}
void d7a_com_start_rx(void)
{
FPRINT("\r\n");
g_com_ctx.rx_started = true;
g_com_ctx.rx_thread->signal_set(START_SIGNAL);
}
void d7a_com_stop_rx(void)
{
FPRINT("\r\n");
g_com_ctx.rx_started = false;
}
void d7a_com_start_tx(void)
{
FPRINT("\r\n");
g_com_ctx.tx_started = true;
g_com_ctx.tx_thread->signal_set(START_SIGNAL);
}
void d7a_com_stop_tx(void)
{
FPRINT("\r\n");
g_com_ctx.tx_started = false;
}
void d7a_com_restart(void)
{
FPRINT("\r\n");
d7a_com_stop_rx();
d7a_com_stop_tx();
g_com_ctx.state = SEARCH_HEADER;
g_com_ctx.data_available = 0;
g_com_ctx.skipped_bytes = 0;
g_com_ctx.write_idx = 0;
g_com_ctx.read_idx = 0;
g_com_ctx.tx_seq = 0;
g_com_ctx.rx_seq = 0;
d7a_com_tx_buf_t* msg;
d7a_com_rx_msg_t* pkt;
osEvent evt;
// Flush TX queue
do
{
// wait for data
evt = g_com_ctx.tx_queue.get(1);
msg = (evt.status == osEventMessage)? (d7a_com_tx_buf_t*)evt.value.p : NULL;
// free message
if (msg != NULL)
{
FREE(msg->buf);
FREE(msg);
}
} while (msg != NULL);
// Flush RX
for (int i = 0 ; i < 3 ; i++)
{
do
{
// wait for data
if (i == 0)
{
pkt = d7a_modem_wait_pkt(1);
}
else if (i == 1)
{
pkt = d7a_fs_wait_pkt(1);
}
else
{
pkt = d7a_sys_wait_pkt(1);
}
// free message
if (pkt != NULL)
{
FREE(pkt);
}
} while (pkt != NULL);
}
d7a_com_start_rx();
d7a_com_start_tx();
}
static void d7a_com_copy_to_linear(uint8_t* linear_buffer, uint16_t read_start, uint16_t length)
{
uint16_t first_part_size;
uint16_t second_part_size;
ASSERT(length <= g_com_ctx.rx_buffer_size, "Length too long (%d) for buffer size (%d)\r\n", length, g_com_ctx.rx_buffer_size);
read_start %= g_com_ctx.rx_buffer_size;
first_part_size = (length > (g_com_ctx.rx_buffer_size - read_start))? g_com_ctx.rx_buffer_size - read_start : length;
memcpy((void*)&linear_buffer[0], (const void*)&g_com_ctx.rx_buffer[read_start], first_part_size);
// The circular buffer is wrapping
if (length > first_part_size)
{
second_part_size = length - first_part_size;
memcpy((void*)&linear_buffer[first_part_size], (const void*)&g_com_ctx.rx_buffer[0], second_part_size);
}
}
/**
Wakes-up modem and send data throught Serial.
@param const uint8_t* Pointer to data buffer
@param int Data length
@return void
*/
static void d7a_com_send(const uint8_t* buffer, int length)
{
FPRINT("(len:%d)\r\n", length);
*(g_com_ctx.rts) = 1;
//dbg_print_data("%02X ", (uint8_t*)buffer, length);
//DPRINT("\r\n");
Thread::wait(2);
for (uint32_t i=0 ; i<length ; i++)
{
g_com_ctx.serial->putc(buffer[i]);
}
//Thread::wait(2);
*(g_com_ctx.rts) = 0;
}
static void d7a_com_post_tx(uint8_t* buffer, uint32_t length)
{
FPRINT("(len:%d)\r\n", length);
d7a_com_tx_buf_t* tx_buf = (d7a_com_tx_buf_t*)MALLOC(sizeof(d7a_com_tx_buf_t));
tx_buf->len = length;
tx_buf->buf = buffer;
g_com_ctx.tx_queue.put(tx_buf);
}
// Formats and send packet throught Serial.
void d7a_com_send_msg(d7a_com_tx_msg_t* msg)
{
uint8_t* buf;
uint16_t len = msg->alen + msg->plen;
FPRINT("(len:%d)\r\n", len);
buf = (uint8_t*)MALLOC(KAL_COM_HEADER_LEN + len);
// construct serial header
// concatenate and update tx_seq ID
buf[0] = (uint8_t)KAL_COM_SYNC_BYTE_0;
buf[1] = (uint8_t)KAL_COM_SYNC_BYTE_1;
buf[2] = (uint8_t)len;
buf[3] = (uint8_t)g_com_ctx.tx_seq++;
buf[4] = (uint8_t)msg->id;
len += KAL_COM_HEADER_LEN;
// copy payload and parameters
memcpy(buf + KAL_COM_HEADER_LEN, msg->pbuf, msg->plen);
memcpy(buf + KAL_COM_HEADER_LEN + msg->plen, msg->abuf, msg->alen);
DPRINT("<-- (0x%02X) %d\r\n", buf[4], (len - KAL_COM_HEADER_LEN));
d7a_com_send(buf, len);
}
void d7a_com_post_msg(d7a_com_tx_msg_t* msg)
{
uint8_t* buf;
uint16_t len = msg->alen + msg->plen;
FPRINT("(len:%d)\r\n", len);
buf = (uint8_t*)MALLOC(KAL_COM_HEADER_LEN + len);
// construct serial header
// concatenate and update tx_seq ID
buf[0] = (uint8_t)KAL_COM_SYNC_BYTE_0;
buf[1] = (uint8_t)KAL_COM_SYNC_BYTE_1;
buf[2] = (uint8_t)len;
buf[3] = (uint8_t)g_com_ctx.tx_seq++;
buf[4] = (uint8_t)msg->id;
len += KAL_COM_HEADER_LEN;
// copy payload and parameters
memcpy(buf + KAL_COM_HEADER_LEN, msg->pbuf, msg->plen);
memcpy(buf + KAL_COM_HEADER_LEN + msg->plen, msg->abuf, msg->alen);
d7a_com_post_tx(buf, len);
}
void d7a_com_dump(uint8_t* buf, uint8_t len, d7a_com_flow_t flow)
{
d7a_com_tx_msg_t msg;
msg.id = flow;
msg.pbuf = buf;
msg.plen = len;
msg.alen = 0;
d7a_com_post_msg(&msg);
}
void d7a_com_force_dump(uint8_t* buf, uint8_t len, d7a_com_flow_t flow)
{
d7a_com_tx_msg_t msg;
msg.id = flow;
msg.pbuf = buf;
msg.plen = len;
msg.alen = 0;
d7a_com_send_msg(&msg);
}
static void d7a_com_new_pkt(d7a_com_rx_msg_t* pkt)
{
//FPRINT("\r\n");
DPRINT("--> (0x%02X) %d\r\n", pkt->id, pkt->blen);
// Distribute packet types to processes
switch (KAL_COM_FLOWID(pkt->id))
{
case KAL_COM_FLOWID_FS:
d7a_fs_new_pkt(pkt);
break;
case KAL_COM_FLOWID_CMD:
d7a_modem_new_pkt(pkt);
break;
case KAL_COM_FLOWID_SYS:
// This has to be here to avoid going to another process
if (pkt->id == KAL_COM_FLOW_SYS_XON)
{
DPRINT("XON\r\n");
g_com_ctx.tx_thread->signal_set(XON_SIGNAL);
FREE(pkt);
}
else if (pkt->id == KAL_COM_FLOW_SYS_XOFF)
{
DPRINT("XOFF\r\n");
d7a_sys_xack();
FREE(pkt);
}
else
{
if (KAL_COM_FLOW_SYS_PONG == pkt->id)
{
g_com_ctx.tim.stop();
uint32_t time_us = g_com_ctx.tim.read_us();
IPRINT("Ping in %d.%03dms\r\n", time_us/1000, time_us%1000);
}
d7a_sys_new_pkt(pkt);
}
break;
default:
EPRINT("Untreated pkt type 0x%02X\r\n", pkt->id);
FREE(pkt);
break;
}
}
void d7a_com_forward_buffer(uint8_t size)
{
g_com_ctx.read_idx = (g_com_ctx.read_idx + size) % g_com_ctx.rx_buffer_size;
g_com_ctx.data_available -= size;
}
/**
Reads the Rx buffer, parses the packets
@param void
@return void
*/
static void parse_packet_header(void)
{
uint8_t header[KAL_COM_HEADER_LEN];
uint8_t seqnum;
ASSERT(g_com_ctx.data_available >= KAL_COM_HEADER_LEN, "Not enough data for header\r\n");
g_com_ctx.skipped_bytes = 0;
// Lookup fist sync byte
while (g_com_ctx.data_available >= KAL_COM_HEADER_LEN)
{
if(KAL_COM_SYNC_BYTE_0 == g_com_ctx.rx_buffer[g_com_ctx.read_idx])
{
// copy following data
d7a_com_copy_to_linear(header, g_com_ctx.read_idx, KAL_COM_HEADER_LEN);
if (KAL_COM_SYNC_BYTE_1 == header[1])
{
// Fill temp header
g_com_ctx.msg.blen = header[2];
seqnum = header[3];
g_com_ctx.msg.id = header[4];
// Update seqnum
WARNING(g_com_ctx.rx_seq == seqnum, "COM Bad seqnum expected:%d got:%d\r\n", g_com_ctx.rx_seq, seqnum);
g_com_ctx.rx_seq = seqnum + 1;
// search for body
d7a_com_forward_buffer(KAL_COM_HEADER_LEN);
g_com_ctx.state = SEARCH_BODY;
// Start parsing if data is already available
if (g_com_ctx.data_available >= g_com_ctx.msg.blen)
{
g_com_ctx.state = PARSE_BODY;
g_com_ctx.data_parsing->release();
}
DPRINT("COM header found (body %d/%d bytes)\r\n", g_com_ctx.data_available, g_com_ctx.msg.blen);
break;
}
}
// byte skipped
WARNING(g_com_ctx.skipped_bytes != 1, "COM not sync. Searching for header.\r\n");
d7a_com_forward_buffer(1);
}
if (g_com_ctx.skipped_bytes)
{
WARNING(false, "Skipped %d bytes.\r\n", g_com_ctx.skipped_bytes);
#if 0
uint8_t* temp = (uint8_t*)MALLOC(g_com_ctx.skipped_bytes);
d7a_com_copy_to_linear(temp, g_com_ctx.read_idx - g_com_ctx.skipped_bytes, g_com_ctx.skipped_bytes);
PRINT_DATA("", "%02X ", temp, g_com_ctx.skipped_bytes, "\r\n");
FREE(temp);
#endif
g_com_ctx.skipped_bytes = 0;
}
}
/**
Reads the Rx buffer, parses the packets
@param void
@return void
*/
static void parse_packet_body(void)
{
ASSERT(g_com_ctx.data_available >= g_com_ctx.msg.blen, "Not enough data for body\r\n");
if (KAL_COM_FLOWID(g_com_ctx.msg.id) != KAL_COM_FLOWID_TRC)
{
//DPRINT("Got packet id 0x%02X len %d\r\n", id, len);
d7a_com_rx_msg_t* pkt = NULL;
pkt = (d7a_com_rx_msg_t*)MALLOC(sizeof(d7a_com_rx_msg_t) - 1 + g_com_ctx.msg.blen);
// copy data to buffer
pkt->blen = g_com_ctx.msg.blen;
pkt->id = g_com_ctx.msg.id;
d7a_com_copy_to_linear(pkt->buffer, g_com_ctx.read_idx, g_com_ctx.msg.blen);
// add packet to queue
d7a_com_new_pkt(pkt);
}
else
{
// Ignore packet
}
// update buffer indexes
d7a_com_forward_buffer(g_com_ctx.msg.blen);
g_com_ctx.state = SEARCH_HEADER;
// Start parsing if data is already available
if (g_com_ctx.data_available >= KAL_COM_HEADER_LEN)
{
g_com_ctx.state = PARSE_HEADER;
g_com_ctx.data_parsing->release();
}
}
// Thread for parsing packets from RX buffer.
void d7a_com_rx_thread( void const *p )
{
FPRINT("\r\n");
while (true)
{
if (!g_com_ctx.rx_started)
{
g_com_ctx.rx_thread->signal_wait(START_SIGNAL);
}
// wait for data available
g_com_ctx.data_parsing->wait();
if (g_com_ctx.state == PARSE_HEADER)
{
parse_packet_header();
}
else if (g_com_ctx.state == PARSE_BODY)
{
parse_packet_body();
}
}
}
void d7a_com_tx_thread( void const *p )
{
FPRINT("\r\n");
d7a_com_tx_buf_t* msg;
osEvent evt;
uint8_t flow_id;
while (true)
{
if (!g_com_ctx.tx_started)
{
g_com_ctx.tx_thread->signal_wait(START_SIGNAL);
}
// wait for data to send
evt = g_com_ctx.tx_queue.get();
msg = (evt.status == osEventMessage)? (d7a_com_tx_buf_t*)evt.value.p : NULL;
// send message
if (msg != NULL)
{
flow_id = msg->buf[4];
DPRINT("<-- (0x%02X) %d\r\n", flow_id, (msg->len - KAL_COM_HEADER_LEN));
d7a_com_send(msg->buf, msg->len);
FREE(msg->buf);
FREE(msg);
if (KAL_COM_FLOW_SYS_PING == flow_id)
{
g_com_ctx.tim.reset();
g_com_ctx.tim.start();
}
if (KAL_COM_FLOW_SYS_XACK == flow_id)
{
DPRINT("XACK\r\n");
g_com_ctx.tx_thread->signal_wait(XON_SIGNAL);
}
}
}
}
