An in-development library to provide effective access to all features of the FXOS8700CQ on the FRDM-K64F mbed-enabled development board. As of 28 May 2014 1325EDT, the code should be generally usable and modifiable.
Dependents: fxos8700cq_example frdm_fxos8700_logger AVC_test1 frdm_accel ... more
A basic implementation of accessing the FXOS8700CQ. This should be useable, but as the Apache License says, don't expect it to be good at doing anything, even what it's supposed to do.
FXOS8700CQ.cpp
- Committer:
- trm
- Date:
- 2014-05-28
- Revision:
- 3:2ce85aa45d7d
- Parent:
- 2:4c2f8a3549a9
File content as of revision 3:2ce85aa45d7d:
#include "FXOS8700CQ.h" uint8_t status_reg; // Status register contents uint8_t raw[FXOS8700CQ_READ_LEN]; // Buffer for reading out stored data // Construct class and its contents FXOS8700CQ::FXOS8700CQ(PinName sda, PinName scl, int addr) : dev_i2c(sda, scl), dev_addr(addr) { // Initialization of the FXOS8700CQ dev_i2c.frequency(I2C_400K); // Use maximum I2C frequency uint8_t data[6] = {0, 0, 0, 0, 0, 0}; // to write over I2C: device register, up to 5 bytes data // TODO: verify WHOAMI? // Place peripheral in standby for configuration, resetting CTRL_REG1 data[0] = FXOS8700CQ_CTRL_REG1; data[1] = 0x00; // this will unset CTRL_REG1:active write_regs(data, 2); // Now that the device is in standby, configure registers at will // Setup for write-though for CTRL_REG series // Keep data[0] as FXOS8700CQ_CTRL_REG1 data[1] = FXOS8700CQ_CTRL_REG1_ASLP_RATE2(1) | // 0b01 gives sleep rate of 12.5Hz FXOS8700CQ_CTRL_REG1_DR3(1); // 0x001 gives ODR of 400Hz/200Hz hybrid // FXOS8700CQ_CTRL_REG2; data[2] = FXOS8700CQ_CTRL_REG2_SMODS2(3) | // 0b11 gives low power sleep oversampling mode FXOS8700CQ_CTRL_REG2_MODS2(1); // 0b01 gives low noise, low power oversampling mode // No configuration changes from default 0x00 in CTRL_REG3 // Interrupts will be active low, their outputs in push-pull mode data[3] = 0x00; // FXOS8700CQ_CTRL_REG4; data[4] = FXOS8700CQ_CTRL_REG4_INT_EN_DRDY; // Enable the Data-Ready interrupt // No configuration changes from default 0x00 in CTRL_REG5 // Data-Ready interrupt will appear on INT2 data[5] = 0x00; // Write to the 5 CTRL_REG registers write_regs(data, 6); // FXOS8700CQ_XYZ_DATA_CFG data[0] = FXOS8700CQ_XYZ_DATA_CFG; data[1] = FXOS8700CQ_XYZ_DATA_CFG_FS2(1); // 0x01 gives 4g full range, 0.488mg/LSB write_regs(data, 2); // Setup for write-through for M_CTRL_REG series data[0] = FXOS8700CQ_M_CTRL_REG1; data[1] = FXOS8700CQ_M_CTRL_REG1_M_ACAL | // set automatic calibration FXOS8700CQ_M_CTRL_REG1_MO_OS3(7) | // use maximum magnetic oversampling FXOS8700CQ_M_CTRL_REG1_M_HMS2(3); // enable hybrid sampling (both sensors) // FXOS8700CQ_M_CTRL_REG2 data[2] = FXOS8700CQ_M_CTRL_REG2_HYB_AUTOINC_MODE; // FXOS8700CQ_M_CTRL_REG3 data[3] = FXOS8700CQ_M_CTRL_REG3_M_ASLP_OS3(7); // maximum sleep magnetic oversampling // Write to the 3 M_CTRL_REG registers write_regs(data, 4); // Peripheral is configured, but disabled enabled = false; } // Destruct class FXOS8700CQ::~FXOS8700CQ(void) {} void FXOS8700CQ::enable(void) { uint8_t data[2]; read_regs( FXOS8700CQ_CTRL_REG1, &data[1], 1); data[1] |= FXOS8700CQ_CTRL_REG1_ACTIVE; data[0] = FXOS8700CQ_CTRL_REG1; write_regs(data, 2); // write back enabled = true; } void FXOS8700CQ::disable(void) { uint8_t data[2]; read_regs( FXOS8700CQ_CTRL_REG1, &data[1], 1); data[0] = FXOS8700CQ_CTRL_REG1; data[1] &= ~FXOS8700CQ_CTRL_REG1_ACTIVE; write_regs(data, 2); // write back enabled = false; } uint8_t FXOS8700CQ::status(void) { read_regs(FXOS8700CQ_STATUS, &status_reg, 1); return status_reg; } uint8_t FXOS8700CQ::get_whoami(void) { uint8_t databyte = 0x00; read_regs(FXOS8700CQ_WHOAMI, &databyte, 1); return databyte; } uint8_t FXOS8700CQ::get_data(SRAWDATA *accel_data, SRAWDATA *magn_data) { if(!enabled) { return 1; } read_regs(FXOS8700CQ_M_OUT_X_MSB, raw, FXOS8700CQ_READ_LEN); // Pull out 16-bit, 2's complement magnetometer data magn_data->x = (raw[0] << 8) | raw[1]; magn_data->y = (raw[2] << 8) | raw[3]; magn_data->z = (raw[4] << 8) | raw[5]; // Pull out 14-bit, 2's complement, right-justified accelerometer data accel_data->x = (raw[6] << 8) | raw[7]; accel_data->y = (raw[8] << 8) | raw[9]; accel_data->z = (raw[10] << 8) | raw[11]; // Have to apply corrections to make the int16_t correct if(accel_data->x > UINT14_MAX/2) { accel_data->x -= UINT14_MAX; } if(accel_data->y > UINT14_MAX/2) { accel_data->y -= UINT14_MAX; } if(accel_data->z > UINT14_MAX/2) { accel_data->z -= UINT14_MAX; } return 0; } uint8_t FXOS8700CQ::get_accel_scale(void) { uint8_t data = 0x00; read_regs(FXOS8700CQ_XYZ_DATA_CFG, &data, 1); data &= FXOS8700CQ_XYZ_DATA_CFG_FS2(3); // mask with 0b11 // Choose output value based on masked data switch(data) { case FXOS8700CQ_XYZ_DATA_CFG_FS2(0): return 2; case FXOS8700CQ_XYZ_DATA_CFG_FS2(1): return 4; case FXOS8700CQ_XYZ_DATA_CFG_FS2(2): return 8; default: return 0; } } // Private methods // Excepting the call to dev_i2c.frequency() in the constructor, // the use of the mbed I2C class is restricted to these methods void FXOS8700CQ::read_regs(int reg_addr, uint8_t* data, int len) { char t[1] = {reg_addr}; dev_i2c.write(dev_addr, t, 1, true); dev_i2c.read(dev_addr, (char *)data, len); } void FXOS8700CQ::write_regs(uint8_t* data, int len) { dev_i2c.write(dev_addr, (char*)data, len); }