project for nrf51822 qfab
Dependencies: eddystone_URL mbed
Fork of eddystone_URL by
nRF51822/nordic/nrf-sdk/s110/nrf_soc.h
- Committer:
- tridung141196
- Date:
- 2017-11-23
- Revision:
- 5:267bdacf5508
- Parent:
- 0:76dfa9657d9d
File content as of revision 5:267bdacf5508:
/* Copyright (c) 2011 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is confidential property of Nordic Semiconductor. The use, * copying, transfer or disclosure of such information is prohibited except by express written * agreement with Nordic Semiconductor. * */ /** * @defgroup nrf_soc_api SoC Library API * @{ * * @brief APIs for the SoC library. * */ #ifndef NRF_SOC_H__ #define NRF_SOC_H__ #include <stdint.h> #include <stdbool.h> #include "nrf_svc.h" #include "nrf51.h" #include "nrf51_bitfields.h" #include "nrf_error_soc.h" /** @addtogroup NRF_SOC_DEFINES Defines * @{ */ /**@brief The number of the lowest SVC number reserved for the SoC library. */ #define SOC_SVC_BASE (0x20) #define SOC_SVC_BASE_NOT_AVAILABLE (0x23) /**@brief Guranteed time for application to process radio inactive notification. */ #define NRF_RADIO_NOTIFICATION_INACTIVE_GUARANTEED_TIME_US (62) /**@brief The minimum allowed timeslot extension time. */ #define NRF_RADIO_MINIMUM_TIMESLOT_LENGTH_EXTENSION_TIME_US (200) #define SOC_ECB_KEY_LENGTH (16) /**< ECB key length. */ #define SOC_ECB_CLEARTEXT_LENGTH (16) /**< ECB cleartext length. */ #define SOC_ECB_CIPHERTEXT_LENGTH (SOC_ECB_CLEARTEXT_LENGTH) /**< ECB ciphertext length. */ #define SD_EVT_IRQn (SWI2_IRQn) /**< SoftDevice Event IRQ number. Used for both protocol events and SoC events. */ #define SD_EVT_IRQHandler (SWI2_IRQHandler) /**< SoftDevice Event IRQ handler. Used for both protocol events and SoC events. */ #define RADIO_NOTIFICATION_IRQn (SWI1_IRQn) /**< The radio notification IRQ number. */ #define RADIO_NOTIFICATION_IRQHandler (SWI1_IRQHandler) /**< The radio notification IRQ handler. */ #define NRF_RADIO_LENGTH_MIN_US (100) /**< The shortest allowed radio timeslot, in microseconds. */ #define NRF_RADIO_LENGTH_MAX_US (100000) /**< The longest allowed radio timeslot, in microseconds. */ #define NRF_RADIO_DISTANCE_MAX_US (128000000UL - 1UL) /**< The longest timeslot distance, in microseconds, allowed for the distance parameter (see @ref nrf_radio_request_normal_t) in the request. */ #define NRF_RADIO_EARLIEST_TIMEOUT_MAX_US (128000000UL - 1UL) /**< The longest timeout, in microseconds, allowed when requesting the earliest possible timeslot. */ #define NRF_RADIO_START_JITTER_US (2) /**< The maximum jitter in NRF_RADIO_CALLBACK_SIGNAL_TYPE_START relative to the requested start time. */ /** @} */ /** @addtogroup NRF_SOC_TYPES Types * @{ */ /**@brief The SVC numbers used by the SVC functions in the SoC library. */ enum NRF_SOC_SVCS { SD_FLASH_PAGE_ERASE = SOC_SVC_BASE, SD_FLASH_WRITE, SD_FLASH_PROTECT, SD_MUTEX_NEW = SOC_SVC_BASE_NOT_AVAILABLE, SD_MUTEX_ACQUIRE, SD_MUTEX_RELEASE, SD_NVIC_ENABLEIRQ, SD_NVIC_DISABLEIRQ, SD_NVIC_GETPENDINGIRQ, SD_NVIC_SETPENDINGIRQ, SD_NVIC_CLEARPENDINGIRQ, SD_NVIC_SETPRIORITY, SD_NVIC_GETPRIORITY, SD_NVIC_SYSTEMRESET, SD_NVIC_CRITICAL_REGION_ENTER, SD_NVIC_CRITICAL_REGION_EXIT, SD_RAND_APPLICATION_POOL_CAPACITY, SD_RAND_APPLICATION_BYTES_AVAILABLE, SD_RAND_APPLICATION_GET_VECTOR, SD_POWER_MODE_SET, SD_POWER_SYSTEM_OFF, SD_POWER_RESET_REASON_GET, SD_POWER_RESET_REASON_CLR, SD_POWER_POF_ENABLE, SD_POWER_POF_THRESHOLD_SET, SD_POWER_RAMON_SET, SD_POWER_RAMON_CLR, SD_POWER_RAMON_GET, SD_POWER_GPREGRET_SET, SD_POWER_GPREGRET_CLR, SD_POWER_GPREGRET_GET, SD_POWER_DCDC_MODE_SET, SD_APP_EVT_WAIT, SD_CLOCK_HFCLK_REQUEST, SD_CLOCK_HFCLK_RELEASE, SD_CLOCK_HFCLK_IS_RUNNING, SD_PPI_CHANNEL_ENABLE_GET, SD_PPI_CHANNEL_ENABLE_SET, SD_PPI_CHANNEL_ENABLE_CLR, SD_PPI_CHANNEL_ASSIGN, SD_PPI_GROUP_TASK_ENABLE, SD_PPI_GROUP_TASK_DISABLE, SD_PPI_GROUP_ASSIGN, SD_PPI_GROUP_GET, SD_RADIO_NOTIFICATION_CFG_SET, SD_ECB_BLOCK_ENCRYPT, SD_RADIO_SESSION_OPEN, SD_RADIO_SESSION_CLOSE, SD_RADIO_REQUEST, SD_EVT_GET, SD_TEMP_GET, SVC_SOC_LAST }; /**@brief Possible values of a ::nrf_mutex_t. */ enum NRF_MUTEX_VALUES { NRF_MUTEX_FREE, NRF_MUTEX_TAKEN }; /**@brief Possible values of ::nrf_app_irq_priority_t. */ enum NRF_APP_PRIORITIES { NRF_APP_PRIORITY_HIGH = 1, NRF_APP_PRIORITY_LOW = 3 }; /**@brief Possible values of ::nrf_power_mode_t. */ enum NRF_POWER_MODES { NRF_POWER_MODE_CONSTLAT, /**< Constant latency mode. See power management in the reference manual. */ NRF_POWER_MODE_LOWPWR /**< Low power mode. See power management in the reference manual. */ }; /**@brief Possible values of ::nrf_power_failure_threshold_t */ enum NRF_POWER_THRESHOLDS { NRF_POWER_THRESHOLD_V21, /**< 2.1 Volts power failure threshold. */ NRF_POWER_THRESHOLD_V23, /**< 2.3 Volts power failure threshold. */ NRF_POWER_THRESHOLD_V25, /**< 2.5 Volts power failure threshold. */ NRF_POWER_THRESHOLD_V27 /**< 2.7 Volts power failure threshold. */ }; /**@brief Possible values of ::nrf_power_dcdc_mode_t. */ enum NRF_POWER_DCDC_MODES { NRF_POWER_DCDC_MODE_OFF, /**< The DCDC is always off. */ NRF_POWER_DCDC_MODE_ON, /**< The DCDC is always on. */ NRF_POWER_DCDC_MODE_AUTOMATIC /**< The DCDC is automatically managed. */ }; /**@brief Possible values of ::nrf_radio_notification_distance_t. */ enum NRF_RADIO_NOTIFICATION_DISTANCES { NRF_RADIO_NOTIFICATION_DISTANCE_NONE = 0, /**< The event does not have a notification. */ NRF_RADIO_NOTIFICATION_DISTANCE_800US, /**< The distance from the active notification to start of radio activity. */ NRF_RADIO_NOTIFICATION_DISTANCE_1740US, /**< The distance from the active notification to start of radio activity. */ NRF_RADIO_NOTIFICATION_DISTANCE_2680US, /**< The distance from the active notification to start of radio activity. */ NRF_RADIO_NOTIFICATION_DISTANCE_3620US, /**< The distance from the active notification to start of radio activity. */ NRF_RADIO_NOTIFICATION_DISTANCE_4560US, /**< The distance from the active notification to start of radio activity. */ NRF_RADIO_NOTIFICATION_DISTANCE_5500US /**< The distance from the active notification to start of radio activity. */ }; /**@brief Possible values of ::nrf_radio_notification_type_t. */ enum NRF_RADIO_NOTIFICATION_TYPES { NRF_RADIO_NOTIFICATION_TYPE_NONE = 0, /**< The event does not have a radio notification signal. */ NRF_RADIO_NOTIFICATION_TYPE_INT_ON_ACTIVE, /**< Using interrupt for notification when the radio will be enabled. */ NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE, /**< Using interrupt for notification when the radio has been disabled. */ NRF_RADIO_NOTIFICATION_TYPE_INT_ON_BOTH, /**< Using interrupt for notification both when the radio will be enabled and disabled. */ }; /**@brief SoC Events. */ enum NRF_SOC_EVTS { NRF_EVT_HFCLKSTARTED, /**< Event indicating that the HFCLK has started. */ NRF_EVT_POWER_FAILURE_WARNING, /**< Event indicating that a power failure warning has occurred. */ NRF_EVT_FLASH_OPERATION_SUCCESS, /**< Event indicating that the ongoing flash operation has completed successfully. */ NRF_EVT_FLASH_OPERATION_ERROR, /**< Event indicating that the ongoing flash operation has timed out with an error. */ NRF_EVT_RADIO_BLOCKED, /**< Event indicating that a radio timeslot was blocked. */ NRF_EVT_RADIO_CANCELED, /**< Event indicating that a radio timeslot was canceled by SoftDevice. */ NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN, /**< Event indicating that a radio signal callback handler return was invalid. */ NRF_EVT_RADIO_SESSION_IDLE, /**< Event indicating that a radio session is idle. */ NRF_EVT_RADIO_SESSION_CLOSED, /**< Event indicating that a radio session is closed. */ NRF_EVT_NUMBER_OF_EVTS }; /** @} */ /** @addtogroup NRF_SOC_TYPES Types * @{ */ /**@brief Represents a mutex for use with the nrf_mutex functions. * @note Accessing the value directly is not safe, use the mutex functions! */ typedef volatile uint8_t nrf_mutex_t; /**@brief The interrupt priorities available to the application while the softdevice is active. */ typedef uint8_t nrf_app_irq_priority_t; /**@brief Represents a power mode, used in power mode functions */ typedef uint8_t nrf_power_mode_t; /**@brief Represents a power failure threshold value. */ typedef uint8_t nrf_power_failure_threshold_t; /**@brief Represents a DCDC mode value. */ typedef uint32_t nrf_power_dcdc_mode_t; /**@brief Radio notification distances. */ typedef uint8_t nrf_radio_notification_distance_t; /**@brief Radio notification types. */ typedef uint8_t nrf_radio_notification_type_t; /** @brief The Radio signal callback types. */ enum NRF_RADIO_CALLBACK_SIGNAL_TYPE { NRF_RADIO_CALLBACK_SIGNAL_TYPE_START, /**< This signal indicates the start of the radio timeslot. */ NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0, /**< This signal indicates the NRF_TIMER0 interrupt. */ NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO, /**< This signal indicates the NRF_RADIO interrupt. */ NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_FAILED, /**< This signal indicates extend action failed. */ NRF_RADIO_CALLBACK_SIGNAL_TYPE_EXTEND_SUCCEEDED /**< This signal indicates extend action succeeded. */ }; /** @brief The actions requested by the signal callback. * * This code gives the SOC instructions about what action to take when the signal callback has * returned. */ enum NRF_RADIO_SIGNAL_CALLBACK_ACTION { NRF_RADIO_SIGNAL_CALLBACK_ACTION_NONE, /**< Return without action. */ NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND, /**< Request an extension of the current timeslot (maximum execution time for this action is when the extension succeeded). */ NRF_RADIO_SIGNAL_CALLBACK_ACTION_END, /**< End the current radio timeslot. */ NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END /**< Request a new radio timeslot and end the current timeslot. */ }; /**@brief Radio timeslot high frequency clock source configuration. */ enum NRF_RADIO_HFCLK_CFG { NRF_RADIO_HFCLK_CFG_DEFAULT, /**< Use the currently selected oscillator as HF clock source during the timeslot (i.e. the source is not specified). */ NRF_RADIO_HFCLK_CFG_FORCE_XTAL, /**< Force external crystal to be used as HF clock source during whole the timeslot. */ }; /** @brief Radio timeslot priorities. */ enum NRF_RADIO_PRIORITY { NRF_RADIO_PRIORITY_HIGH, /**< High (equal priority as the normal connection priority of the SoftDevice stack(s)). */ NRF_RADIO_PRIORITY_NORMAL, /**< Normal (equal priority as the priority of secondary activites of the SoftDevice stack(s)). */ }; /** @brief Radio timeslot request type. */ enum NRF_RADIO_REQUEST_TYPE { NRF_RADIO_REQ_TYPE_EARLIEST, /**< Request timeslot as early as possible. This should always be used for the first request in a session. */ NRF_RADIO_REQ_TYPE_NORMAL /**< Normal timeslot request. */ }; /** @brief Parameters for a request for a timeslot as early as possible. */ typedef struct { uint8_t hfclk; /**< High frequency clock source, see @ref NRF_RADIO_HFCLK_CFG. */ uint8_t priority; /**< The radio timeslot priority, see @ref NRF_RADIO_PRIORITY. */ uint32_t length_us; /**< The radio timeslot length (in the range 100 to 100,000] microseconds). */ uint32_t timeout_us; /**< Longest acceptable delay until the start of the requested timeslot (up to @ref NRF_RADIO_EARLIEST_TIMEOUT_MAX_US microseconds). */ } nrf_radio_request_earliest_t; /** @brief Parameters for a normal radio request. */ typedef struct { uint8_t hfclk; /**< High frequency clock source, see @ref NRF_RADIO_HFCLK_CFG. */ uint8_t priority; /**< The radio timeslot priority, see @ref NRF_RADIO_PRIORITY. */ uint32_t distance_us; /**< Distance from the start of the previous radio timeslot (up to @ref NRF_RADIO_DISTANCE_MAX_US microseconds). */ uint32_t length_us; /**< The radio timeslot length (in the range [100..100,000] microseconds). */ } nrf_radio_request_normal_t; /** @brief Radio request parameters. */ typedef struct { uint8_t request_type; /**< Type of request, see @ref NRF_RADIO_REQUEST_TYPE. */ union { nrf_radio_request_earliest_t earliest; /**< Parameters for a request for a timeslot as early as possible. */ nrf_radio_request_normal_t normal; /**< Parameters for a normal radio request. */ } params; } nrf_radio_request_t; /**@brief Return parameters of the radio timeslot signal callback. */ typedef struct { uint8_t callback_action; /**< The action requested by the application when returning from the signal callback, see @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION. */ union { struct { nrf_radio_request_t * p_next; /**< The request parameters for the next radio timeslot. */ } request; /**< Additional parameters for return_code @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION_REQUEST_AND_END. */ struct { uint32_t length_us; /**< Requested extension of the timeslot duration (microseconds) (for minimum time see @ref NRF_RADIO_MINIMUM_TIMESLOT_LENGTH_EXTENSION_TIME_US). */ } extend; /**< Additional parameters for return_code @ref NRF_RADIO_SIGNAL_CALLBACK_ACTION_EXTEND. */ } params; } nrf_radio_signal_callback_return_param_t; /**@brief The radio signal callback type. * * @note In case of invalid return parameters, the radio timeslot will automatically end * immediately after returning from the signal callback and the * @ref NRF_EVT_RADIO_SIGNAL_CALLBACK_INVALID_RETURN event will be sent. * @note The returned struct pointer must remain valid after the signal callback * function returns. For instance, this means that it must not point to a stack variable. * * @param[in] signal_type Type of signal, see @ref NRF_RADIO_CALLBACK_SIGNAL_TYPE. * * @return Pointer to structure containing action requested by the application. */ typedef nrf_radio_signal_callback_return_param_t * (*nrf_radio_signal_callback_t) (uint8_t signal_type); /**@brief AES ECB data structure */ typedef struct { uint8_t key[SOC_ECB_KEY_LENGTH]; /**< Encryption key. */ uint8_t cleartext[SOC_ECB_CLEARTEXT_LENGTH]; /**< Clear Text data. */ uint8_t ciphertext[SOC_ECB_CIPHERTEXT_LENGTH]; /**< Cipher Text data. */ } nrf_ecb_hal_data_t; /** @} */ /** @addtogroup NRF_SOC_FUNCTIONS Functions * @{ */ /**@brief Initialize a mutex. * * @param[in] p_mutex Pointer to the mutex to initialize. * * @retval ::NRF_SUCCESS */ SVCALL(SD_MUTEX_NEW, uint32_t, sd_mutex_new(nrf_mutex_t * p_mutex)); /**@brief Attempt to acquire a mutex. * * @param[in] p_mutex Pointer to the mutex to acquire. * * @retval ::NRF_SUCCESS The mutex was successfully acquired. * @retval ::NRF_ERROR_SOC_MUTEX_ALREADY_TAKEN The mutex could not be acquired. */ SVCALL(SD_MUTEX_ACQUIRE, uint32_t, sd_mutex_acquire(nrf_mutex_t * p_mutex)); /**@brief Release a mutex. * * @param[in] p_mutex Pointer to the mutex to release. * * @retval ::NRF_SUCCESS */ SVCALL(SD_MUTEX_RELEASE, uint32_t, sd_mutex_release(nrf_mutex_t * p_mutex)); /**@brief Enable External Interrupt. * @note Corresponds to NVIC_EnableIRQ in CMSIS. * * @pre{IRQn is valid and not reserved by the stack} * * @param[in] IRQn See the NVIC_EnableIRQ documentation in CMSIS. * * @retval ::NRF_SUCCESS The interrupt was enabled. * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application. * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt has a priority not available for the application. */ SVCALL(SD_NVIC_ENABLEIRQ, uint32_t, sd_nvic_EnableIRQ(IRQn_Type IRQn)); /**@brief Disable External Interrupt. * @note Corresponds to NVIC_DisableIRQ in CMSIS. * * @pre{IRQn is valid and not reserved by the stack} * * @param[in] IRQn See the NVIC_DisableIRQ documentation in CMSIS * * @retval ::NRF_SUCCESS The interrupt was disabled. * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application. */ SVCALL(SD_NVIC_DISABLEIRQ, uint32_t, sd_nvic_DisableIRQ(IRQn_Type IRQn)); /**@brief Get Pending Interrupt. * @note Corresponds to NVIC_GetPendingIRQ in CMSIS. * * @pre{IRQn is valid and not reserved by the stack} * * @param[in] IRQn See the NVIC_GetPendingIRQ documentation in CMSIS. * @param[out] p_pending_irq Return value from NVIC_GetPendingIRQ. * * @retval ::NRF_SUCCESS The interrupt is available for the application. * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application. */ SVCALL(SD_NVIC_GETPENDINGIRQ, uint32_t, sd_nvic_GetPendingIRQ(IRQn_Type IRQn, uint32_t * p_pending_irq)); /**@brief Set Pending Interrupt. * @note Corresponds to NVIC_SetPendingIRQ in CMSIS. * * @pre{IRQn is valid and not reserved by the stack} * * @param[in] IRQn See the NVIC_SetPendingIRQ documentation in CMSIS. * * @retval ::NRF_SUCCESS The interrupt is set pending. * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application. */ SVCALL(SD_NVIC_SETPENDINGIRQ, uint32_t, sd_nvic_SetPendingIRQ(IRQn_Type IRQn)); /**@brief Clear Pending Interrupt. * @note Corresponds to NVIC_ClearPendingIRQ in CMSIS. * * @pre{IRQn is valid and not reserved by the stack} * * @param[in] IRQn See the NVIC_ClearPendingIRQ documentation in CMSIS. * * @retval ::NRF_SUCCESS The interrupt pending flag is cleared. * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application. */ SVCALL(SD_NVIC_CLEARPENDINGIRQ, uint32_t, sd_nvic_ClearPendingIRQ(IRQn_Type IRQn)); /**@brief Set Interrupt Priority. * @note Corresponds to NVIC_SetPriority in CMSIS. * * @pre{IRQn is valid and not reserved by the stack} * @pre{priority is valid and not reserved by the stack} * * @param[in] IRQn See the NVIC_SetPriority documentation in CMSIS. * @param[in] priority A valid IRQ priority for use by the application. * * @retval ::NRF_SUCCESS The interrupt and priority level is available for the application. * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application. * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt priority is not available for the application. */ SVCALL(SD_NVIC_SETPRIORITY, uint32_t, sd_nvic_SetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t priority)); /**@brief Get Interrupt Priority. * @note Corresponds to NVIC_GetPriority in CMSIS. * * @pre{IRQn is valid and not reserved by the stack} * * @param[in] IRQn See the NVIC_GetPriority documentation in CMSIS. * @param[out] p_priority Return value from NVIC_GetPriority. * * @retval ::NRF_SUCCESS The interrupt priority is returned in p_priority. * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE - IRQn is not available for the application. */ SVCALL(SD_NVIC_GETPRIORITY, uint32_t, sd_nvic_GetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t * p_priority)); /**@brief System Reset. * @note Corresponds to NVIC_SystemReset in CMSIS. * * @retval ::NRF_ERROR_SOC_NVIC_SHOULD_NOT_RETURN */ SVCALL(SD_NVIC_SYSTEMRESET, uint32_t, sd_nvic_SystemReset(void)); /**@brief Enters critical region. * * @post Application interrupts will be disabled. * @sa sd_nvic_critical_region_exit * * @param[out] p_is_nested_critical_region 1: If in a nested critical region. * 0: Otherwise. * * @retval ::NRF_SUCCESS */ SVCALL(SD_NVIC_CRITICAL_REGION_ENTER, uint32_t, sd_nvic_critical_region_enter(uint8_t * p_is_nested_critical_region)); /**@brief Exit critical region. * * @pre Application has entered a critical region using ::sd_nvic_critical_region_enter. * @post If not in a nested critical region, the application interrupts will restored to the state before ::sd_nvic_critical_region_enter was called. * * @param[in] is_nested_critical_region If this is set to 1, the critical region won't be exited. @sa sd_nvic_critical_region_enter. * * @retval ::NRF_SUCCESS */ SVCALL(SD_NVIC_CRITICAL_REGION_EXIT, uint32_t, sd_nvic_critical_region_exit(uint8_t is_nested_critical_region)); /**@brief Query the capacity of the application random pool. * * @param[out] p_pool_capacity The capacity of the pool. * * @retval ::NRF_SUCCESS */ SVCALL(SD_RAND_APPLICATION_POOL_CAPACITY, uint32_t, sd_rand_application_pool_capacity_get(uint8_t * p_pool_capacity)); /**@brief Get number of random bytes available to the application. * * @param[out] p_bytes_available The number of bytes currently available in the pool. * * @retval ::NRF_SUCCESS */ SVCALL(SD_RAND_APPLICATION_BYTES_AVAILABLE, uint32_t, sd_rand_application_bytes_available_get(uint8_t * p_bytes_available)); /**@brief Get random bytes from the application pool. * * @param[out] p_buff Pointer to unit8_t buffer for storing the bytes. * @param[in] length Number of bytes to take from pool and place in p_buff. * * @retval ::NRF_SUCCESS The requested bytes were written to p_buff. * @retval ::NRF_ERROR_SOC_RAND_NOT_ENOUGH_VALUES No bytes were written to the buffer, because there were not enough bytes available. */ SVCALL(SD_RAND_APPLICATION_GET_VECTOR, uint32_t, sd_rand_application_vector_get(uint8_t * p_buff, uint8_t length)); /**@brief Gets the reset reason register. * * @param[out] p_reset_reason Contents of the NRF_POWER->RESETREAS register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_POWER_RESET_REASON_GET, uint32_t, sd_power_reset_reason_get(uint32_t * p_reset_reason)); /**@brief Clears the bits of the reset reason register. * * @param[in] reset_reason_clr_msk Contains the bits to clear from the reset reason register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_POWER_RESET_REASON_CLR, uint32_t, sd_power_reset_reason_clr(uint32_t reset_reason_clr_msk)); /**@brief Sets the power mode when in CPU sleep. * * @param[in] power_mode The power mode to use when in CPU sleep. @sa sd_app_evt_wait * * @retval ::NRF_SUCCESS The power mode was set. * @retval ::NRF_ERROR_SOC_POWER_MODE_UNKNOWN The power mode was unknown. */ SVCALL(SD_POWER_MODE_SET, uint32_t, sd_power_mode_set(nrf_power_mode_t power_mode)); /**@brief Puts the chip in System OFF mode. * * @retval ::NRF_ERROR_SOC_POWER_OFF_SHOULD_NOT_RETURN */ SVCALL(SD_POWER_SYSTEM_OFF, uint32_t, sd_power_system_off(void)); /**@brief Enables or disables the power-fail comparator. * * Enabling this will give a softdevice event (NRF_EVT_POWER_FAILURE_WARNING) when the power failure warning occurs. * The event can be retrieved with sd_evt_get(); * * @param[in] pof_enable True if the power-fail comparator should be enabled, false if it should be disabled. * * @retval ::NRF_SUCCESS */ SVCALL(SD_POWER_POF_ENABLE, uint32_t, sd_power_pof_enable(uint8_t pof_enable)); /**@brief Sets the power-fail threshold value. * * @param[in] threshold The power-fail threshold value to use. * * @retval ::NRF_SUCCESS The power failure threshold was set. * @retval ::NRF_ERROR_SOC_POWER_POF_THRESHOLD_UNKNOWN The power failure threshold is unknown. */ SVCALL(SD_POWER_POF_THRESHOLD_SET, uint32_t, sd_power_pof_threshold_set(nrf_power_failure_threshold_t threshold)); /**@brief Sets bits in the NRF_POWER->RAMON register. * * @param[in] ramon Contains the bits needed to be set in the NRF_POWER->RAMON register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_POWER_RAMON_SET, uint32_t, sd_power_ramon_set(uint32_t ramon)); /** @brief Clears bits in the NRF_POWER->RAMON register. * * @param ramon Contains the bits needed to be cleared in the NRF_POWER->RAMON register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_POWER_RAMON_CLR, uint32_t, sd_power_ramon_clr(uint32_t ramon)); /**@brief Get contents of NRF_POWER->RAMON register, indicates power status of ram blocks. * * @param[out] p_ramon Content of NRF_POWER->RAMON register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_POWER_RAMON_GET, uint32_t, sd_power_ramon_get(uint32_t * p_ramon)); /**@brief Set bits in the NRF_POWER->GPREGRET register. * * @param[in] gpregret_msk Bits to be set in the GPREGRET register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_POWER_GPREGRET_SET, uint32_t, sd_power_gpregret_set(uint32_t gpregret_msk)); /**@brief Clear bits in the NRF_POWER->GPREGRET register. * * @param[in] gpregret_msk Bits to be clear in the GPREGRET register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_POWER_GPREGRET_CLR, uint32_t, sd_power_gpregret_clr(uint32_t gpregret_msk)); /**@brief Get contents of the NRF_POWER->GPREGRET register. * * @param[out] p_gpregret Contents of the GPREGRET register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_POWER_GPREGRET_GET, uint32_t, sd_power_gpregret_get(uint32_t *p_gpregret)); /**@brief Sets the DCDC mode. * * Depending on the internal state of the SoftDevice, the mode change may not happen immediately. * The DCDC mode switch will be blocked when occurring in close proximity to radio transmissions. When * the radio transmission is done, the last mode will be used. * * @param[in] dcdc_mode The mode of the DCDC. * * @retval ::NRF_SUCCESS * @retval ::NRF_ERROR_INVALID_PARAM The DCDC mode is invalid. */ SVCALL(SD_POWER_DCDC_MODE_SET, uint32_t, sd_power_dcdc_mode_set(nrf_power_dcdc_mode_t dcdc_mode)); /**@brief Request the high frequency crystal oscillator. * * Will start the high frequency crystal oscillator, the startup time of the crystal varies * and the ::sd_clock_hfclk_is_running function can be polled to check if it has started. * * @see sd_clock_hfclk_is_running * @see sd_clock_hfclk_release * * @retval ::NRF_SUCCESS */ SVCALL(SD_CLOCK_HFCLK_REQUEST, uint32_t, sd_clock_hfclk_request(void)); /**@brief Releases the high frequency crystal oscillator. * * Will stop the high frequency crystal oscillator, this happens immediately. * * @see sd_clock_hfclk_is_running * @see sd_clock_hfclk_request * * @retval ::NRF_SUCCESS */ SVCALL(SD_CLOCK_HFCLK_RELEASE, uint32_t, sd_clock_hfclk_release(void)); /**@brief Checks if the high frequency crystal oscillator is running. * * @see sd_clock_hfclk_request * @see sd_clock_hfclk_release * * @param[out] p_is_running 1 if the external crystal oscillator is running, 0 if not. * * @retval ::NRF_SUCCESS */ SVCALL(SD_CLOCK_HFCLK_IS_RUNNING, uint32_t, sd_clock_hfclk_is_running(uint32_t * p_is_running)); /**@brief Waits for an application event. * * An application event is either an application interrupt or a pended interrupt when the * interrupt is disabled. When the interrupt is enabled it will be taken immediately since * this function will wait in thread mode, then the execution will return in the application's * main thread. When an interrupt is disabled and gets pended it will return to the application's * thread main. The application must ensure that the pended flag is cleared using * ::sd_nvic_ClearPendingIRQ in order to sleep using this function. This is only necessary for * disabled interrupts, as the interrupt handler will clear the pending flag automatically for * enabled interrupts. * * In order to wake up from disabled interrupts, the SEVONPEND flag has to be set in the Cortex-M0 * System Control Register (SCR). @sa CMSIS_SCB * * @note If an application interrupt has happened since the last time sd_app_evt_wait was * called this function will return immediately and not go to sleep. This is to avoid race * conditions that can occur when a flag is updated in the interrupt handler and processed * in the main loop. * * @post An application interrupt has happened or a interrupt pending flag is set. * * @retval ::NRF_SUCCESS */ SVCALL(SD_APP_EVT_WAIT, uint32_t, sd_app_evt_wait(void)); /**@brief Get PPI channel enable register contents. * * @param[out] p_channel_enable The contents of the PPI CHEN register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_PPI_CHANNEL_ENABLE_GET, uint32_t, sd_ppi_channel_enable_get(uint32_t * p_channel_enable)); /**@brief Set PPI channel enable register. * * @param[in] channel_enable_set_msk Mask containing the bits to set in the PPI CHEN register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_PPI_CHANNEL_ENABLE_SET, uint32_t, sd_ppi_channel_enable_set(uint32_t channel_enable_set_msk)); /**@brief Clear PPI channel enable register. * * @param[in] channel_enable_clr_msk Mask containing the bits to clear in the PPI CHEN register. * * @retval ::NRF_SUCCESS */ SVCALL(SD_PPI_CHANNEL_ENABLE_CLR, uint32_t, sd_ppi_channel_enable_clr(uint32_t channel_enable_clr_msk)); /**@brief Assign endpoints to a PPI channel. * * @param[in] channel_num Number of the PPI channel to assign. * @param[in] evt_endpoint Event endpoint of the PPI channel. * @param[in] task_endpoint Task endpoint of the PPI channel. * * @retval ::NRF_ERROR_SOC_PPI_INVALID_CHANNEL The channel number is invalid. * @retval ::NRF_SUCCESS */ SVCALL(SD_PPI_CHANNEL_ASSIGN, uint32_t, sd_ppi_channel_assign(uint8_t channel_num, const volatile void * evt_endpoint, const volatile void * task_endpoint)); /**@brief Task to enable a channel group. * * @param[in] group_num Number of the channel group. * * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid * @retval ::NRF_SUCCESS */ SVCALL(SD_PPI_GROUP_TASK_ENABLE, uint32_t, sd_ppi_group_task_enable(uint8_t group_num)); /**@brief Task to disable a channel group. * * @param[in] group_num Number of the PPI group. * * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid. * @retval ::NRF_SUCCESS */ SVCALL(SD_PPI_GROUP_TASK_DISABLE, uint32_t, sd_ppi_group_task_disable(uint8_t group_num)); /**@brief Assign PPI channels to a channel group. * * @param[in] group_num Number of the channel group. * @param[in] channel_msk Mask of the channels to assign to the group. * * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid. * @retval ::NRF_SUCCESS */ SVCALL(SD_PPI_GROUP_ASSIGN, uint32_t, sd_ppi_group_assign(uint8_t group_num, uint32_t channel_msk)); /**@brief Gets the PPI channels of a channel group. * * @param[in] group_num Number of the channel group. * @param[out] p_channel_msk Mask of the channels assigned to the group. * * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid. * @retval ::NRF_SUCCESS */ SVCALL(SD_PPI_GROUP_GET, uint32_t, sd_ppi_group_get(uint8_t group_num, uint32_t * p_channel_msk)); /**@brief Configures the Radio Notification signal. * * @note * - The notification signal latency depends on the interrupt priority settings of SWI used * for notification signal. * - In the period between the ACTIVE signal and the start of the Radio Event, the SoftDevice * will interrupt the application to do Radio Event preparation. * - Using the Radio Notification feature may limit the bandwidth, as the SoftDevice may have * to shorten the connection events to have time for the Radio Notification signals. * * @param[in] type Type of notification signal. * @ref NRF_RADIO_NOTIFICATION_TYPE_NONE shall be used to turn off radio * notification. Using @ref NRF_RADIO_NOTIFICATION_DISTANCE_NONE is * recommended (but not required) to be used with * @ref NRF_RADIO_NOTIFICATION_TYPE_NONE. * * @param[in] distance Distance between the notification signal and start of radio activity. * This parameter is ignored when @ref NRF_RADIO_NOTIFICATION_TYPE_NONE or * @ref NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE is used. * * @retval ::NRF_ERROR_INVALID_PARAM The group number is invalid. * @retval ::NRF_SUCCESS */ SVCALL(SD_RADIO_NOTIFICATION_CFG_SET, uint32_t, sd_radio_notification_cfg_set(nrf_radio_notification_type_t type, nrf_radio_notification_distance_t distance)); /**@brief Encrypts a block according to the specified parameters. * * 128-bit AES encryption. * * @param[in, out] p_ecb_data Pointer to the ECB parameters' struct (two input * parameters and one output parameter). * * @retval ::NRF_SUCCESS */ SVCALL(SD_ECB_BLOCK_ENCRYPT, uint32_t, sd_ecb_block_encrypt(nrf_ecb_hal_data_t * p_ecb_data)); /**@brief Gets any pending events generated by the SoC API. * * The application should keep calling this function to get events, until ::NRF_ERROR_NOT_FOUND is returned. * * @param[out] p_evt_id Set to one of the values in @ref NRF_SOC_EVTS, if any events are pending. * * @retval ::NRF_SUCCESS An event was pending. The event id is written in the p_evt_id parameter. * @retval ::NRF_ERROR_NOT_FOUND No pending events. */ SVCALL(SD_EVT_GET, uint32_t, sd_evt_get(uint32_t * p_evt_id)); /**@brief Get the temperature measured on the chip * * This function will block until the temperature measurement is done. * It takes around 50us from call to return. * * @note Pan #28 in PAN-028 v 1.6 "Negative measured values are not represented correctly" is corrected by this function. * * @param[out] p_temp Result of temperature measurement. Die temperature in 0.25 degrees celsius. * * @retval ::NRF_SUCCESS A temperature measurement was done, and the temperature was written to temp */ SVCALL(SD_TEMP_GET, uint32_t, sd_temp_get(int32_t * p_temp)); /**@brief Flash Write * * Commands to write a buffer to flash * * This call initiates the flash access command, and its completion will be communicated to the * application with exactly one of the following events: * - NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed. * - NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started. * * @note * - This call takes control over the radio and the CPU during flash erase and write to make sure that * they will not interfere with the flash access. This means that all interrupts will be blocked * for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual * and the command parameters). * * * @param[in] p_dst Pointer to start of flash location to be written. * @param[in] p_src Pointer to buffer with data to be written * @param[in] size Number of 32-bit words to write. Maximum size is 256 32bit words. * * @retval ::NRF_ERROR_INVALID_ADDR Tried to write to a non existing flash address, or p_dst or p_src was unaligned. * @retval ::NRF_ERROR_BUSY The previous command has not yet completed. * @retval ::NRF_ERROR_INVALID_LENGTH Size was 0, or more than 256 words. * @retval ::NRF_ERROR_FORBIDDEN Tried to write to or read from protected location. * @retval ::NRF_SUCCESS The command was accepted. */ SVCALL(SD_FLASH_WRITE, uint32_t, sd_flash_write(uint32_t * const p_dst, uint32_t const * const p_src, uint32_t size)); /**@brief Flash Erase page * * Commands to erase a flash page * * This call initiates the flash access command, and its completion will be communicated to the * application with exactly one of the following events: * - NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed. * - NRF_EVT_FLASH_OPERATION_ERROR - The command could not be started. * * @note * - This call takes control over the radio and the CPU during flash erase and write to make sure that * they will not interfere with the flash access. This means that all interrupts will be blocked * for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual * and the command parameters). * * * @param[in] page_number Pagenumber of the page to erase * @retval ::NRF_ERROR_INTERNAL If a new session could not be opened due to an internal error. * @retval ::NRF_ERROR_INVALID_ADDR Tried to erase to a non existing flash page. * @retval ::NRF_ERROR_BUSY The previous command has not yet completed. * @retval ::NRF_ERROR_FORBIDDEN Tried to erase a protected page. * @retval ::NRF_SUCCESS The command was accepted. */ SVCALL(SD_FLASH_PAGE_ERASE, uint32_t, sd_flash_page_erase(uint32_t page_number)); /**@brief Flash Protection set * * Commands to set the flash protection registers PROTENSETx * * @note To read the values in PROTENSETx you can read them directly. They are only write-protected. * * @param[in] protenset0 Value to be written to PROTENSET0 * @param[in] protenset1 Value to be written to PROTENSET1 * * @retval ::NRF_ERROR_FORBIDDEN Tried to protect the SoftDevice * @retval ::NRF_SUCCESS Values successfully written to PROTENSETx */ SVCALL(SD_FLASH_PROTECT, uint32_t, sd_flash_protect(uint32_t protenset0, uint32_t protenset1)); /**@brief Opens a session for radio requests. * * @note Only one session can be open at a time. * @note p_radio_signal_callback(NRF_RADIO_CALLBACK_SIGNAL_TYPE_START) will be called when the radio timeslot * starts. From this point the NRF_RADIO and NRF_TIMER0 peripherals can be freely accessed * by the application. * @note p_radio_signal_callback(NRF_RADIO_CALLBACK_SIGNAL_TYPE_TIMER0) is called whenever the NRF_TIMER0 * interrupt occurs. * @note p_radio_signal_callback(NRF_RADIO_CALLBACK_SIGNAL_TYPE_RADIO) is called whenever the NRF_RADIO * interrupt occurs. * @note p_radio_signal_callback() will be called at ARM interrupt priority level 0. This * implies that none of the sd_* API calls can be used from p_radio_signal_callback(). * * @param[in] p_radio_signal_callback The signal callback. * * @retval ::NRF_ERROR_INVALID_ADDR p_radio_signal_callback is an invalid function pointer. * @retval ::NRF_ERROR_BUSY If session cannot be opened. * @retval ::NRF_ERROR_INTERNAL If a new session could not be opened due to an internal error. * @retval ::NRF_SUCCESS Otherwise. */ SVCALL(SD_RADIO_SESSION_OPEN, uint32_t, sd_radio_session_open(nrf_radio_signal_callback_t p_radio_signal_callback)); /**@brief Closes a session for radio requests. * * @note Any current radio timeslot will be finished before the session is closed. * @note If a radio timeslot is scheduled when the session is closed, it will be canceled. * @note The application cannot consider the session closed until the NRF_EVT_RADIO_SESSION_CLOSED * event is received. * * @retval ::NRF_ERROR_FORBIDDEN If session not opened. * @retval ::NRF_ERROR_BUSY If session is currently being closed. * @retval ::NRF_SUCCESS Otherwise. */ SVCALL(SD_RADIO_SESSION_CLOSE, uint32_t, sd_radio_session_close(void)); /**@brief Requests a radio timeslot. * * @note The timing of the radio timeslot is specified by p_request->distance_us. For the first * request in a session, p_request->distance_us is required to be 0 by convention, and * the timeslot is scheduled at the first possible opportunity. All following radio timeslots are * requested with a distance of p_request->distance_us measured from the start of the * previous radio timeslot. * @note A too small p_request->distance_us will lead to a NRF_EVT_RADIO_BLOCKED event. * @note Timeslots scheduled too close will lead to a NRF_EVT_RADIO_BLOCKED event. * @note See the SoftDevice Specification for more on radio timeslot scheduling, distances and lengths. * @note If an opportunity for the first radio timeslot is not found before 100ms after the call to this * function, it is not scheduled, and instead a NRF_EVT_RADIO_BLOCKED event is sent. * The application may then try to schedule the first radio timeslot again. * @note Successful requests will result in nrf_radio_signal_callback_t(NRF_RADIO_CALLBACK_SIGNAL_TYPE_START). * Unsuccessful requests will result in a NRF_EVT_RADIO_BLOCKED event, see @ref NRF_SOC_EVTS. * @note The jitter in the start time of the radio timeslots is +/- NRF_RADIO_START_JITTER_US us. * @note The nrf_radio_signal_callback_t(NRF_RADIO_CALLBACK_SIGNAL_TYPE_START) call has a latency relative to the * specified radio timeslot start, but this does not affect the actual start time of the timeslot. * @note NRF_TIMER0 is reset at the start of the radio timeslot, and is clocked at 1MHz from the high frequency * (16 MHz) clock source. If p_request->hfclk_force_xtal is true, the high frequency clock is * guaranteed to be clocked from the external crystal. * @note The SoftDevice will neither access the NRF_RADIO peripheral nor the NRF_TIMER0 peripheral * during the radio timeslot. * * @param[in] p_request Pointer to the request parameters. * * @retval ::NRF_ERROR_FORBIDDEN If session not opened or the session is not IDLE. * @retval ::NRF_ERROR_INVALID_ADDR If the p_request pointer is invalid. * @retval ::NRF_ERROR_INVALID_PARAM If the parameters of p_request are not valid. * @retval ::NRF_SUCCESS Otherwise. */ SVCALL(SD_RADIO_REQUEST, uint32_t, sd_radio_request(nrf_radio_request_t * p_request )); /** @} */ #endif // NRF_SOC_H__ /**@} */