USB device stack with Nucleo F401RE support. NOTE: the default clock config needs to be changed to in order for USB to work.

Fork of USBDevice by Tomas Cerskus

Slightly modified original USBDevice library to support F401RE.

On F401RE the data pins of your USB connector should be attached to PA12 (D+) and PA11(D-). It is also required to connect the +5V USB line to PA9.

F401RE requires 48MHz clock for USB. Therefore in order for this to work you will need to change the default clock settings:

Clock settings for USB

#include "stm32f4xx_hal.h"

RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
    error("RTC error: LSI clock initialization failed."); 
}

NOTE: Changing the clock frequency might affect the behavior of other libraries. I only tested the Serial library.

UPDATE: Clock settings should not to be changed anymore! Looks like the newer mbed library has the required clock enabled.

USBDevice/USBHAL_LPC11U.cpp

Committer:
tolaipner
Date:
2014-03-30
Revision:
24:4ed3e25c3edc
Parent:
17:bbd6dac92961

File content as of revision 24:4ed3e25c3edc:

/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

#if defined(TARGET_LPC11U24) || defined(TARGET_LPC11U35_401) || defined(TARGET_LPC1347)

#if defined(TARGET_LPC1347)
#define USB_IRQ USB_IRQ_IRQn
#elif defined(TARGET_LPC11U24) || defined(TARGET_LPC11U35_401)
#define USB_IRQ USB_IRQn
#endif

#include "USBHAL.h"

USBHAL * USBHAL::instance;

// Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
#define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)

// Convert physical endpoint number to register bit
#define EP(endpoint) (1UL<<endpoint)

// Convert physical to logical
#define PHY_TO_LOG(endpoint)    ((endpoint)>>1)

// Get endpoint direction
#define IN_EP(endpoint)     ((endpoint) & 1U ? true : false)
#define OUT_EP(endpoint)    ((endpoint) & 1U ? false : true)

// USB RAM
#define USB_RAM_START (0x20004000)
#define USB_RAM_SIZE  (0x00000800)

// SYSAHBCLKCTRL
#define CLK_USB     (1UL<<14)
#define CLK_USBRAM  (1UL<<27)

// USB Information register
#define FRAME_NR(a)     ((a) & 0x7ff)   // Frame number

// USB Device Command/Status register
#define DEV_ADDR_MASK   (0x7f)          // Device address
#define DEV_ADDR(a)     ((a) & DEV_ADDR_MASK)
#define DEV_EN          (1UL<<7)        // Device enable
#define SETUP           (1UL<<8)        // SETUP token received
#define PLL_ON          (1UL<<9)        // PLL enabled in suspend
#define DCON            (1UL<<16)       // Device status - connect
#define DSUS            (1UL<<17)       // Device status - suspend
#define DCON_C          (1UL<<24)       // Connect change
#define DSUS_C          (1UL<<25)       // Suspend change
#define DRES_C          (1UL<<26)       // Reset change
#define VBUSDEBOUNCED   (1UL<<28)       // Vbus detected

// Endpoint Command/Status list
#define CMDSTS_A                 (1UL<<31)          // Active
#define CMDSTS_D                 (1UL<<30)          // Disable
#define CMDSTS_S                 (1UL<<29)          // Stall
#define CMDSTS_TR                (1UL<<28)          // Toggle Reset
#define CMDSTS_RF                (1UL<<27)          // Rate Feedback mode
#define CMDSTS_TV                (1UL<<27)          // Toggle Value
#define CMDSTS_T                 (1UL<<26)          // Endpoint Type
#define CMDSTS_NBYTES(n)         (((n)&0x3ff)<<16)  // Number of bytes
#define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff)  // Buffer start address

#define BYTES_REMAINING(s)       (((s)>>16)&0x3ff)  // Bytes remaining after transfer

// USB Non-endpoint interrupt sources
#define FRAME_INT   (1UL<<30)
#define DEV_INT     (1UL<<31)

static volatile int epComplete = 0;

// One entry for a double-buffered logical endpoint in the endpoint
// command/status list. Endpoint 0 is single buffered, out[1] is used
// for the SETUP packet and in[1] is not used
typedef struct {
    uint32_t out[2];
    uint32_t in[2];
} PACKED EP_COMMAND_STATUS;

typedef struct {
    uint8_t out[MAX_PACKET_SIZE_EP0];
    uint8_t in[MAX_PACKET_SIZE_EP0];
    uint8_t setup[SETUP_PACKET_SIZE];
} PACKED CONTROL_TRANSFER;

typedef struct {
    uint32_t    maxPacket;
    uint32_t    buffer[2];
    uint32_t    options;
} PACKED EP_STATE;

static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];

// Pointer to the endpoint command/status list
static EP_COMMAND_STATUS *ep = NULL;

// Pointer to endpoint 0 data (IN/OUT and SETUP)
static CONTROL_TRANSFER *ct = NULL;

// Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
// initiating a remote wakeup event.
static volatile uint32_t devCmdStat;

// Pointers used to allocate USB RAM
static uint32_t usbRamPtr = USB_RAM_START;
static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here

#define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))

void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
    if (size > 0) {
        do {
            *dst++ = *src++;
        } while (--size > 0);
    }
}


USBHAL::USBHAL(void) {
    NVIC_DisableIRQ(USB_IRQ);
    
    // fill in callback array
    epCallback[0] = &USBHAL::EP1_OUT_callback;
    epCallback[1] = &USBHAL::EP1_IN_callback;
    epCallback[2] = &USBHAL::EP2_OUT_callback;
    epCallback[3] = &USBHAL::EP2_IN_callback;
    epCallback[4] = &USBHAL::EP3_OUT_callback;
    epCallback[5] = &USBHAL::EP3_IN_callback;
    epCallback[6] = &USBHAL::EP4_OUT_callback;
    epCallback[7] = &USBHAL::EP4_IN_callback;

    #if defined(TARGET_LPC11U35_401)
    // USB_VBUS input with pull-down
    LPC_IOCON->PIO0_3 = 0x00000009;
    #endif
    
    // nUSB_CONNECT output
    LPC_IOCON->PIO0_6 = 0x00000001;

    // Enable clocks (USB registers, USB RAM)
    LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;

    // Ensure device disconnected (DCON not set)
    LPC_USB->DEVCMDSTAT = 0;

    // to ensure that the USB host sees the device as
    // disconnected if the target CPU is reset.
    wait(0.3);

    // Reserve space in USB RAM for endpoint command/status list
    // Must be 256 byte aligned
    usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
    ep = (EP_COMMAND_STATUS *)usbRamPtr;
    usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
    LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;

    // Reserve space in USB RAM for Endpoint 0
    // Must be 64 byte aligned
    usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
    ct = (CONTROL_TRANSFER *)usbRamPtr;
    usbRamPtr += sizeof(CONTROL_TRANSFER);
    LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;

    // Setup command/status list for EP0
    ep[0].out[0] = 0;
    ep[0].in[0] =  0;
    ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);

    // Route all interrupts to IRQ, some can be routed to
    // USB_FIQ if you wish.
    LPC_USB->INTROUTING = 0;

    // Set device address 0, enable USB device, no remote wakeup
    devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
    LPC_USB->DEVCMDSTAT = devCmdStat;

    // Enable interrupts for device events and EP0
    LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT) | FRAME_INT;
    instance = this;

    //attach IRQ handler and enable interrupts
    NVIC_SetVector(USB_IRQ, (uint32_t)&_usbisr);
}

USBHAL::~USBHAL(void) {
    // Ensure device disconnected (DCON not set)
    LPC_USB->DEVCMDSTAT = 0;
    // Disable USB interrupts
    NVIC_DisableIRQ(USB_IRQ);
}

void USBHAL::connect(void) {
    NVIC_EnableIRQ(USB_IRQ);
    devCmdStat |= DCON;
    LPC_USB->DEVCMDSTAT = devCmdStat;
}

void USBHAL::disconnect(void) {
    NVIC_DisableIRQ(USB_IRQ);
    devCmdStat &= ~DCON;
    LPC_USB->DEVCMDSTAT = devCmdStat;
}

void USBHAL::configureDevice(void) {
    // Not required
}

void USBHAL::unconfigureDevice(void) {
    // Not required
}

void USBHAL::EP0setup(uint8_t *buffer) {
    // Copy setup packet data
    USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
}

void USBHAL::EP0read(void) {
    // Start an endpoint 0 read

    // The USB ISR will call USBDevice_EP0out() when a packet has been read,
    // the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
    // read the data.

    ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
                   | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
}

uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
    // Complete an endpoint 0 read
    uint32_t bytesRead;

    // Find how many bytes were read
    bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);

    // Copy data
    USBMemCopy(buffer, ct->out, bytesRead);
    return bytesRead;
}


void USBHAL::EP0readStage(void) {
    // Not required
}

void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
    // Start and endpoint 0 write

    // The USB ISR will call USBDevice_EP0in() when the data has
    // been written, the USBDevice layer then calls
    // USBBusInterface_EP0getWriteResult() to complete the transaction.

    // Copy data
    USBMemCopy(ct->in, buffer, size);

    // Start transfer
    ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
                  | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
}


EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
    uint8_t bf = 0;
    uint32_t flags = 0;

    //check which buffer must be filled
    if (LPC_USB->EPBUFCFG & EP(endpoint)) {
        // Double buffered
        if (LPC_USB->EPINUSE & EP(endpoint)) {
            bf = 1;
        } else {
            bf = 0;
        }
    }
    
    // if isochronous endpoint, T = 1
    if(endpointState[endpoint].options & ISOCHRONOUS)
    {
        flags |= CMDSTS_T;
    }
        
    //Active the endpoint for reading
    ep[PHY_TO_LOG(endpoint)].out[bf] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
                                       | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out) | flags;
    return EP_PENDING;
}

EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {

    uint8_t bf = 0;

    if (!(epComplete & EP(endpoint)))
        return EP_PENDING;
    else {
        epComplete &= ~EP(endpoint);

        //check which buffer has been filled
        if (LPC_USB->EPBUFCFG & EP(endpoint)) {
            // Double buffered (here we read the previous buffer which was used)
            if (LPC_USB->EPINUSE & EP(endpoint)) {
                bf = 0;
            } else {
                bf = 1;
            }
        }

        // Find how many bytes were read
        *bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[bf]));

        // Copy data
        USBMemCopy(data, ct->out, *bytesRead);
        return EP_COMPLETED;
    }
}

void USBHAL::EP0getWriteResult(void) {
    // Not required
}

void USBHAL::EP0stall(void) {
    ep[0].in[0] = CMDSTS_S;
    ep[0].out[0] = CMDSTS_S;
}

void USBHAL::setAddress(uint8_t address) {
    devCmdStat &= ~DEV_ADDR_MASK;
    devCmdStat |= DEV_ADDR(address);
    LPC_USB->DEVCMDSTAT = devCmdStat;
}

EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
    uint32_t flags = 0;
    uint32_t bf;

    // Validate parameters
    if (data == NULL) {
        return EP_INVALID;
    }

    if (endpoint > LAST_PHYSICAL_ENDPOINT) {
        return EP_INVALID;
    }

    if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
        return EP_INVALID;
    }

    if (size > endpointState[endpoint].maxPacket) {
        return EP_INVALID;
    }

    if (LPC_USB->EPBUFCFG & EP(endpoint)) {
        // Double buffered
        if (LPC_USB->EPINUSE & EP(endpoint)) {
            bf = 1;
        } else {
            bf = 0;
        }
    } else {
        // Single buffered
        bf = 0;
    }

    // Check if already active
    if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
        return EP_INVALID;
    }

    // Check if stalled
    if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
        return EP_STALLED;
    }

    // Copy data to USB RAM
    USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);

    // Add options
    if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
        flags |= CMDSTS_RF;
    }

    if (endpointState[endpoint].options & ISOCHRONOUS) {
        flags |= CMDSTS_T;
    }

    // Add transfer
    ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
                                      endpointState[endpoint].buffer[bf]) \
                                      | CMDSTS_NBYTES(size) | CMDSTS_A | flags;

    return EP_PENDING;
}

EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
    uint32_t bf;
    
    // Validate parameters
    if (endpoint > LAST_PHYSICAL_ENDPOINT) {
        return EP_INVALID;
    }

    if (OUT_EP(endpoint)) {
        return EP_INVALID;
    }

    if (LPC_USB->EPBUFCFG & EP(endpoint)) {
        // Double buffered     // TODO: FIX THIS
        if (LPC_USB->EPINUSE & EP(endpoint)) {
            bf = 1;
        } else {
            bf = 0;
        }
    } else {
        // Single buffered
        bf = 0;
    }

    // Check if endpoint still active
    if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
        return EP_PENDING;
    }

    // Check if stalled
    if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
        return EP_STALLED;
    }

    return EP_COMPLETED;
}

void USBHAL::stallEndpoint(uint8_t endpoint) {

    // FIX: should this clear active bit?
    if (IN_EP(endpoint)) {
        ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
        ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
    } else {
        ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
        ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
    }
}

void USBHAL::unstallEndpoint(uint8_t endpoint) {
    if (LPC_USB->EPBUFCFG & EP(endpoint)) {
        // Double buffered
        if (IN_EP(endpoint)) {
            ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
            ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0

            if (LPC_USB->EPINUSE & EP(endpoint)) {
                ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
            } else {
                ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
            }
        } else {
            ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
            ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0

            if (LPC_USB->EPINUSE & EP(endpoint)) {
                ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
            } else {
                ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
            }
        }
    } else {
        // Single buffered
        if (IN_EP(endpoint)) {
            ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR;     // S = 0, TR = 1, TV = 0
        } else {
            ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR;    // S = 0, TR = 1, TV = 0
        }
    }
}

bool USBHAL::getEndpointStallState(unsigned char endpoint) {
    if (IN_EP(endpoint)) {
        if (LPC_USB->EPINUSE & EP(endpoint)) {
            if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
                return true;
            }
        } else {
            if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
                return true;
            }
        }
    } else {
        if (LPC_USB->EPINUSE & EP(endpoint)) {
            if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
                return true;
            }
        } else {
            if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
                return true;
            }
        }
    }

    return false;
}

bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
    uint32_t tmpEpRamPtr;

    if (endpoint > LAST_PHYSICAL_ENDPOINT) {
        return false;
    }

    // Not applicable to the control endpoints
    if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
        return false;
    }

    // Allocate buffers in USB RAM
    tmpEpRamPtr = epRamPtr;

    // Must be 64 byte aligned
    tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);

    if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
        // Out of memory
        return false;
    }

    // Allocate first buffer
    endpointState[endpoint].buffer[0] = tmpEpRamPtr;
    tmpEpRamPtr += maxPacket;

    if (!(options & SINGLE_BUFFERED)) {
        // Must be 64 byte aligned
        tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);

        if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
            // Out of memory
            return false;
        }

        // Allocate second buffer
        endpointState[endpoint].buffer[1] = tmpEpRamPtr;
        tmpEpRamPtr += maxPacket;
    }

    // Commit to this USB RAM allocation
    epRamPtr = tmpEpRamPtr;

    // Remaining endpoint state values
    endpointState[endpoint].maxPacket = maxPacket;
    endpointState[endpoint].options = options;

    // Enable double buffering if required
    if (options & SINGLE_BUFFERED) {
        LPC_USB->EPBUFCFG &= ~EP(endpoint);
    } else {
        // Double buffered
        LPC_USB->EPBUFCFG |= EP(endpoint);
    }

    // Enable interrupt
    LPC_USB->INTEN |= EP(endpoint);

    // Enable endpoint
    unstallEndpoint(endpoint);
    return true;
}

void USBHAL::remoteWakeup(void) {
    // Clearing DSUS bit initiates a remote wakeup if the
    // device is currently enabled and suspended - otherwise
    // it has no effect.
    LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
}


static void disableEndpoints(void) {
    uint32_t logEp;

    // Ref. Table 158 "When a bus reset is received, software
    // must set the disable bit of all endpoints to 1".

    for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
        ep[logEp].out[0] = CMDSTS_D;
        ep[logEp].out[1] = CMDSTS_D;
        ep[logEp].in[0] =  CMDSTS_D;
        ep[logEp].in[1] =  CMDSTS_D;
    }

    // Start of USB RAM for endpoints > 0
    epRamPtr = usbRamPtr;
}



void USBHAL::_usbisr(void) {
    instance->usbisr();
}

void USBHAL::usbisr(void) {
    // Start of frame
    if (LPC_USB->INTSTAT & FRAME_INT) {
        // Clear SOF interrupt
        LPC_USB->INTSTAT = FRAME_INT;

        // SOF event, read frame number
        SOF(FRAME_NR(LPC_USB->INFO));
    }

    // Device state
    if (LPC_USB->INTSTAT & DEV_INT) {
        LPC_USB->INTSTAT = DEV_INT;

        if (LPC_USB->DEVCMDSTAT & DSUS_C) {
            // Suspend status changed
            LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;
            if((LPC_USB->DEVCMDSTAT & DSUS) != 0) {
                suspendStateChanged(1);
            }
        }

        if (LPC_USB->DEVCMDSTAT & DRES_C) {
            // Bus reset
            LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;

            suspendStateChanged(0);

            // Disable endpoints > 0
            disableEndpoints();

            // Bus reset event
            busReset();
        }
    }

    // Endpoint 0
    if (LPC_USB->INTSTAT & EP(EP0OUT)) {
        // Clear EP0OUT/SETUP interrupt
        LPC_USB->INTSTAT = EP(EP0OUT);

        // Check if SETUP
        if (LPC_USB->DEVCMDSTAT & SETUP) {
            // Clear Active and Stall bits for EP0
            // Documentation does not make it clear if we must use the
            // EPSKIP register to achieve this, Fig. 16 and NXP reference
            // code suggests we can just clear the Active bits - check with
            // NXP to be sure.
            ep[0].in[0] = 0;
            ep[0].out[0] = 0;

            // Clear EP0IN interrupt
            LPC_USB->INTSTAT = EP(EP0IN);

            // Clear SETUP (and INTONNAK_CI/O) in device status register
            LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;

            // EP0 SETUP event (SETUP data received)
            EP0setupCallback();
        } else {
            // EP0OUT ACK event (OUT data received)
            EP0out();
        }
    }

    if (LPC_USB->INTSTAT & EP(EP0IN)) {
        // Clear EP0IN interrupt
        LPC_USB->INTSTAT = EP(EP0IN);

        // EP0IN ACK event (IN data sent)
        EP0in();
    }
    
    for (uint8_t num = 2; num < 5*2; num++) {
        if (LPC_USB->INTSTAT & EP(num)) {
            LPC_USB->INTSTAT = EP(num);
            epComplete |= EP(num);
            if ((instance->*(epCallback[num - 2]))()) {
                epComplete &= ~EP(num);
            }
        }
    }
}

#endif