Lib for the LCD display on mbed lab Board
C12832_lcd.cpp
- Committer:
- dreschpe
- Date:
- 2012-10-16
- Revision:
- 1:66dd8afbfd06
- Parent:
- 0:4bbc531be6e2
- Child:
- 2:bdc53502af17
File content as of revision 1:66dd8afbfd06:
/* mbed library for the mbed Lab Board 128*32 pixel LCD * use C12832 controller * Copyright (c) 2012 Peter Drescher - DC2PD * Released under the MIT License: http://mbed.org/license/mit * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // 13.10.12 initial design // optional defines : #define debug_lcd 1 #include "C12832_lcd.h" #include "mbed.h" #include "stdio.h" #define BPP 1 // Bits per pixel C12832_LCD::C12832_LCD(const char* name) : _spi(p5,NC,p7),_reset(p6),_A0(p8),_CS(p11),GraphicsDisplay(name) { orientation = 1; draw_mode = NORMAL; char_x = 0; lcd_reset(); } int C12832_LCD::width() { if (orientation == 0 || orientation == 2) return 32; else return 128; } int C12832_LCD::height() { if (orientation == 0 || orientation == 2) return 128; else return 32; } /*void C12832_LCD::set_orientation(unsigned int o) { orientation = o; switch (o) { case (0): wr_cmd(0xA0); wr_cmd(0xC0); break; case (1): wr_cmd(0xA0); wr_cmd(0xC8); break; case (2): wr_cmd(0xA1); wr_cmd(0xC8); break; case (3): wr_cmd(0xA1); wr_cmd(0xC0); break; } } */ void C12832_LCD::invert(unsigned int o) { if(o == 0) wr_cmd(0xA6); else wr_cmd(0xA7); } void C12832_LCD::set_contrast(unsigned int o) { contrast = o; wr_cmd(0x81); // set volume wr_cmd(o & 0x2F); } unsigned int C12832_LCD::get_contrast(void) { return(contrast); } // write command to lcd controller void C12832_LCD::wr_cmd(unsigned char cmd) { _A0 = 0; _CS = 0; LPC_SSP1->DR = cmd; do { } while ((LPC_SSP1->SR & 0x10) == 0x10); // wait for SPI1 idle _CS = 1; } // write data to lcd controller void C12832_LCD::wr_dat(unsigned char dat) { _A0 = 1; _CS = 0; LPC_SSP1->DR = dat; do { } while ((LPC_SSP1->SR & 0x10) == 0x10); // wait for SPI1 idle _CS = 1; } // reset and init the lcd controller void C12832_LCD::lcd_reset() { _spi.format(8,3); // 8 bit spi mode 3 _spi.frequency(20000000); // 19,2 Mhz SPI clock DigitalOut _reset(p6); _A0 = 0; _CS = 1; _reset = 0; // display reset wait_us(50); _reset = 1; // end reset wait_ms(5); /* Start Initial Sequence ----------------------------------------------------*/ wr_cmd(0xAE); // display off wr_cmd(0xA2); // bias voltage wr_cmd(0xA0); wr_cmd(0xC8); // colum normal wr_cmd(0x22); // voltage resistor ratio wr_cmd(0x2F); // power on //wr_cmd(0xA4); // LCD display ram wr_cmd(0x40); // start line = 0 wr_cmd(0xAF); // display ON wr_cmd(0x81); // set contrast wr_cmd(0x17); // set contrast wr_cmd(0xA6); // display normal //setup DMA channel 0 LPC_SC->PCONP |= (1UL << 29); // Power up the GPDMA LPC_GPDMA->DMACConfig = 1; // enable DMA controller LPC_GPDMA->DMACIntTCClear = 0x1; LPC_GPDMA->DMACIntErrClr = 0x1; LPC_GPDMACH0->DMACCLLI = 0; // clear and update LCD memset(buffer,0x00,512); // clear display buffer copy_to_lcd(); } // set one pixel in buffer void C12832_LCD::pixel(int x, int y, int color) { // first check parameter if(x > 128 || y > 32 || x < 0 || y < 0) return; if(draw_mode == NORMAL) { if(color == 0) buffer[x + ((y/8) * 128)] &= ~(1 << (y%8)); // erase pixel else buffer[x + ((y/8) * 128)] |= (1 << (y%8)); // set pixel } else { // XOR mode if(color == 1) buffer[x + ((y/8) * 128)] ^= (1 << (y%8)); // xor pixel } } // update lcd void C12832_LCD::copy_to_lcd(void) { //page 0 wr_cmd(0x00); // set column low nibble 0 wr_cmd(0x10); // set column hi nibble 0 wr_cmd(0xB0); // set page address 0 _CS = 0; _A0 = 1; // start 128 byte DMA transfer to SPI1 LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1 LPC_SSP1->DMACR = 0x2; // Enable SSP1 for DMA. LPC_GPDMA->DMACIntTCClear = 0x1; LPC_GPDMA->DMACIntErrClr = 0x1; LPC_GPDMACH0->DMACCSrcAddr = (uint32_t) (buffer); LPC_GPDMACH0->DMACCControl = 128 | (1UL << 31) | DMA_CHANNEL_SRC_INC ; // 8 bit transfer , address increment, interrupt LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | DMA_DEST_SSP1_TX; LPC_GPDMA->DMACSoftSReq = 0x1; do { } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running do { } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle _CS = 1; // page 1 wr_cmd(0x00); // set column low nibble 0 wr_cmd(0x10); // set column hi nibble 0 wr_cmd(0xB1); // set page address 1 _CS = 0; _A0 = 1; // start 128 byte DMA transfer to SPI1 LPC_GPDMA->DMACIntTCClear = 0x1; LPC_GPDMA->DMACIntErrClr = 0x1; LPC_GPDMACH0->DMACCSrcAddr = (uint32_t) (buffer + 128); LPC_GPDMACH0->DMACCControl = 128 | (1UL << 31) | DMA_CHANNEL_SRC_INC ; // 8 bit transfer , address increment, interrupt LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | DMA_DEST_SSP1_TX; LPC_GPDMA->DMACSoftSReq = 0x1; do { } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running do { } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle _CS = 1; //page 2 wr_cmd(0x00); // set column low nibble 0 wr_cmd(0x10); // set column hi nibble 0 wr_cmd(0xB2); // set page address 2 _CS = 0; _A0 = 1; // start 128 byte DMA transfer to SPI1 LPC_GPDMA->DMACIntTCClear = 0x1; LPC_GPDMA->DMACIntErrClr = 0x1; LPC_GPDMACH0->DMACCSrcAddr = (uint32_t) (buffer + 256); LPC_GPDMACH0->DMACCControl = 128 | (1UL << 31) | DMA_CHANNEL_SRC_INC ; // 8 bit transfer , address increment, interrupt LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | DMA_DEST_SSP1_TX ; LPC_GPDMA->DMACSoftSReq = 0x1; do { } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running do { } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle _CS = 1; //page 3 wr_cmd(0x00); // set column low nibble 0 wr_cmd(0x10); // set column hi nibble 0 wr_cmd(0xB3); // set page address 3 _CS = 0; _A0 = 1; // start 128 byte DMA transfer to SPI1 LPC_GPDMA->DMACIntTCClear = 0x1; LPC_GPDMA->DMACIntErrClr = 0x1; LPC_GPDMACH0->DMACCSrcAddr = (uint32_t) (buffer + 384); LPC_GPDMACH0->DMACCControl = 128 | (1UL << 31) | DMA_CHANNEL_SRC_INC ; // 8 bit transfer , address increment, interrupt LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | DMA_DEST_SSP1_TX; LPC_GPDMA->DMACSoftSReq = 0x1; do { } while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running do { } while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle _CS = 1; } void C12832_LCD::cls(void) { memset(buffer,0x00,512); // clear display buffer copy_to_lcd(); } void C12832_LCD::line(int x0, int y0, int x1, int y1, int color) { int dx = 0, dy = 0; int dx_sym = 0, dy_sym = 0; int dx_x2 = 0, dy_x2 = 0; int di = 0; dx = x1-x0; dy = y1-y0; // if (dx == 0) { /* vertical line */ // if (y1 > y0) vline(x0,y0,y1,color); // else vline(x0,y1,y0,color); // return; // } if (dx > 0) { dx_sym = 1; } else { dx_sym = -1; } // if (dy == 0) { /* horizontal line */ // if (x1 > x0) hline(x0,x1,y0,color); // else hline(x1,x0,y0,color); // return; // } if (dy > 0) { dy_sym = 1; } else { dy_sym = -1; } dx = dx_sym*dx; dy = dy_sym*dy; dx_x2 = dx*2; dy_x2 = dy*2; if (dx >= dy) { di = dy_x2 - dx; while (x0 != x1) { pixel(x0, y0, color); x0 += dx_sym; if (di<0) { di += dy_x2; } else { di += dy_x2 - dx_x2; y0 += dy_sym; } } pixel(x0, y0, color); } else { di = dx_x2 - dy; while (y0 != y1) { pixel(x0, y0, color); y0 += dy_sym; if (di < 0) { di += dx_x2; } else { di += dx_x2 - dy_x2; x0 += dx_sym; } } pixel(x0, y0, color); } return; } void C12832_LCD::rect(int x0, int y0, int x1, int y1, int color) { if (x1 > x0) line(x0,y0,x1,y0,color); else line(x1,y0,x0,y0,color); if (y1 > y0) line(x0,y0,x0,y1,color); else line(x0,y1,x0,y0,color); if (x1 > x0) line(x0,y1,x1,y1,color); else line(x1,y1,x0,y1,color); if (y1 > y0) line(x1,y0,x1,y1,color); else line(x1,y1,x1,y0,color); return; } void C12832_LCD::fillrect(int x0, int y0, int x1, int y1, int color) { int l,c,i; if(x0 > x1) { i = x0; x0 = x1; x1 = i; } if(y0 > y1) { i = y0; y0 = y1; y1 = i; } for(l = x0; l<= x1; l ++) { for(c = y0; c<= y1; c++) { pixel(l,c,color); } } } void C12832_LCD::circle(int x0, int y0, int r, int color) { int draw_x0, draw_y0; int draw_x1, draw_y1; int draw_x2, draw_y2; int draw_x3, draw_y3; int draw_x4, draw_y4; int draw_x5, draw_y5; int draw_x6, draw_y6; int draw_x7, draw_y7; int xx, yy; int di; //WindowMax(); if (r == 0) { /* no radius */ return; } draw_x0 = draw_x1 = x0; draw_y0 = draw_y1 = y0 + r; if (draw_y0 < height()) { pixel(draw_x0, draw_y0, color); /* 90 degree */ } draw_x2 = draw_x3 = x0; draw_y2 = draw_y3 = y0 - r; if (draw_y2 >= 0) { pixel(draw_x2, draw_y2, color); /* 270 degree */ } draw_x4 = draw_x6 = x0 + r; draw_y4 = draw_y6 = y0; if (draw_x4 < width()) { pixel(draw_x4, draw_y4, color); /* 0 degree */ } draw_x5 = draw_x7 = x0 - r; draw_y5 = draw_y7 = y0; if (draw_x5>=0) { pixel(draw_x5, draw_y5, color); /* 180 degree */ } if (r == 1) { return; } di = 3 - 2*r; xx = 0; yy = r; while (xx < yy) { if (di < 0) { di += 4*xx + 6; } else { di += 4*(xx - yy) + 10; yy--; draw_y0--; draw_y1--; draw_y2++; draw_y3++; draw_x4--; draw_x5++; draw_x6--; draw_x7++; } xx++; draw_x0++; draw_x1--; draw_x2++; draw_x3--; draw_y4++; draw_y5++; draw_y6--; draw_y7--; if ( (draw_x0 <= width()) && (draw_y0>=0) ) { pixel(draw_x0, draw_y0, color); } if ( (draw_x1 >= 0) && (draw_y1 >= 0) ) { pixel(draw_x1, draw_y1, color); } if ( (draw_x2 <= width()) && (draw_y2 <= height()) ) { pixel(draw_x2, draw_y2, color); } if ( (draw_x3 >=0 ) && (draw_y3 <= height()) ) { pixel(draw_x3, draw_y3, color); } if ( (draw_x4 <= width()) && (draw_y4 >= 0) ) { pixel(draw_x4, draw_y4, color); } if ( (draw_x5 >= 0) && (draw_y5 >= 0) ) { pixel(draw_x5, draw_y5, color); } if ( (draw_x6 <=width()) && (draw_y6 <= height()) ) { pixel(draw_x6, draw_y6, color); } if ( (draw_x7 >= 0) && (draw_y7 <= height()) ) { pixel(draw_x7, draw_y7, color); } } return; } void C12832_LCD::fillcircle(int x, int y, int r, int color) { int i; for (i = 0; i <= r; i++) circle(x,y,i,color); } void C12832_LCD::setmode(int mode) { draw_mode = mode; } void C12832_LCD::locate(int x, int y) { char_x = x; char_y = y; } int C12832_LCD::columns() { return width() / font[1]; } int C12832_LCD::rows() { return height() / font[2]; } int C12832_LCD::_putc(int value) { if (value == '\n') { // new line char_x = 0; char_y = char_y + font[2]; if (char_y >= height() - font[2]) { char_y = 0; } } else { character(char_x, char_y, value); } return value; } void C12832_LCD::character(int x, int y, int c) { unsigned int hor,vert,offset,bpl,j,i,b; unsigned char* zeichen; unsigned char z,w; if ((c < 31) || (c > 127)) return; // test char range // read font parameter from start of array offset = font[0]; // bytes / char hor = font[1]; // get hor size of font vert = font[2]; // get vert size of font bpl = font[3]; // bytes per line if (char_x + hor > width()) { char_x = 0; char_y = char_y + vert; if (char_y >= height() - font[2]) { char_y = 0; } } zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap w = zeichen[0]; // width of actual char // construct the char into the buffer for (j=0; j<vert; j++) { // vert line for (i=0; i<hor; i++) { // horz line z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; b = 1 << (j & 0x07); if (( z & b ) == 0x00) { pixel(x+i,y+j,0); } else { pixel(x+i,y+j,1); } } } char_x += w; } void C12832_LCD::set_font(unsigned char* f) { font = f; }