Opencv 3.1 project on GR-PEACH board

Fork of gr-peach-opencv-project by the do

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers pca.cpp Source File

pca.cpp

00001 /*M///////////////////////////////////////////////////////////////////////////////////////
00002 //
00003 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
00004 //
00005 //  By downloading, copying, installing or using the software you agree to this license.
00006 //  If you do not agree to this license, do not download, install,
00007 //  copy or use the software.
00008 //
00009 //
00010 //                          License Agreement
00011 //                For Open Source Computer Vision Library
00012 //
00013 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
00014 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
00015 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
00016 // Third party copyrights are property of their respective owners.
00017 //
00018 // Redistribution and use in source and binary forms, with or without modification,
00019 // are permitted provided that the following conditions are met:
00020 //
00021 //   * Redistribution's of source code must retain the above copyright notice,
00022 //     this list of conditions and the following disclaimer.
00023 //
00024 //   * Redistribution's in binary form must reproduce the above copyright notice,
00025 //     this list of conditions and the following disclaimer in the documentation
00026 //     and/or other materials provided with the distribution.
00027 //
00028 //   * The name of the copyright holders may not be used to endorse or promote products
00029 //     derived from this software without specific prior written permission.
00030 //
00031 // This software is provided by the copyright holders and contributors "as is" and
00032 // any express or implied warranties, including, but not limited to, the implied
00033 // warranties of merchantability and fitness for a particular purpose are disclaimed.
00034 // In no event shall the Intel Corporation or contributors be liable for any direct,
00035 // indirect, incidental, special, exemplary, or consequential damages
00036 // (including, but not limited to, procurement of substitute goods or services;
00037 // loss of use, data, or profits; or business interruption) however caused
00038 // and on any theory of liability, whether in contract, strict liability,
00039 // or tort (including negligence or otherwise) arising in any way out of
00040 // the use of this software, even if advised of the possibility of such damage.
00041 //
00042 //M*/
00043 
00044 #include "precomp.hpp"
00045 
00046 /****************************************************************************************\
00047 *                                          PCA                                           *
00048 \****************************************************************************************/
00049 
00050 namespace cv
00051 {
00052 
00053 PCA::PCA() {}
00054 
00055 PCA::PCA(InputArray data, InputArray _mean, int flags, int maxComponents)
00056 {
00057     operator()(data, _mean, flags, maxComponents);
00058 }
00059 
00060 PCA::PCA(InputArray data, InputArray _mean, int flags, double retainedVariance)
00061 {
00062     operator()(data, _mean, flags, retainedVariance);
00063 }
00064 
00065 PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComponents)
00066 {
00067     Mat data = _data.getMat(), _mean = __mean.getMat();
00068     int covar_flags = CV_COVAR_SCALE;
00069     int len, in_count;
00070     Size mean_sz;
00071 
00072     CV_Assert( data.channels() == 1 );
00073     if( flags & CV_PCA_DATA_AS_COL )
00074     {
00075         len = data.rows;
00076         in_count = data.cols;
00077         covar_flags |= CV_COVAR_COLS;
00078         mean_sz = Size(1, len);
00079     }
00080     else
00081     {
00082         len = data.cols;
00083         in_count = data.rows;
00084         covar_flags |= CV_COVAR_ROWS;
00085         mean_sz = Size(len, 1);
00086     }
00087 
00088     int count = std::min(len, in_count), out_count = count;
00089     if( maxComponents > 0 )
00090         out_count = std::min(count, maxComponents);
00091 
00092     // "scrambled" way to compute PCA (when cols(A)>rows(A)):
00093     // B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y
00094     if( len <= in_count )
00095         covar_flags |= CV_COVAR_NORMAL;
00096 
00097     int ctype = std::max(CV_32F, data.depth());
00098     mean.create( mean_sz, ctype );
00099 
00100     Mat covar( count, count, ctype );
00101 
00102     if( !_mean.empty() )
00103     {
00104         CV_Assert( _mean.size() == mean_sz );
00105         _mean.convertTo(mean, ctype);
00106         covar_flags |= CV_COVAR_USE_AVG;
00107     }
00108 
00109     calcCovarMatrix( data, covar, mean, covar_flags, ctype );
00110     eigen( covar, eigenvalues, eigenvectors );
00111 
00112     if( !(covar_flags & CV_COVAR_NORMAL) )
00113     {
00114         // CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A
00115         // CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A'
00116         Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
00117         if( data.type() != ctype || tmp_mean.data == mean.data )
00118         {
00119             data.convertTo( tmp_data, ctype );
00120             subtract( tmp_data, tmp_mean, tmp_data );
00121         }
00122         else
00123         {
00124             subtract( data, tmp_mean, tmp_mean );
00125             tmp_data = tmp_mean;
00126         }
00127 
00128         Mat evects1(count, len, ctype);
00129         gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1,
00130             (flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0);
00131         eigenvectors = evects1;
00132 
00133         // normalize eigenvectors
00134         int i;
00135         for( i = 0; i < out_count; i++ )
00136         {
00137             Mat vec = eigenvectors.row(i);
00138             normalize(vec, vec);
00139         }
00140     }
00141 
00142     if( count > out_count )
00143     {
00144         // use clone() to physically copy the data and thus deallocate the original matrices
00145         eigenvalues = eigenvalues.rowRange(0,out_count).clone();
00146         eigenvectors = eigenvectors.rowRange(0,out_count).clone();
00147     }
00148     return *this;
00149 }
00150 
00151 void PCA::write(FileStorage& fs ) const
00152 {
00153     CV_Assert( fs.isOpened() );
00154 
00155     //fs << "name" << "PCA";
00156 //    fs << "vectors" << eigenvectors;
00157 //    fs << "values" << eigenvalues;
00158 //    fs << "mean" << mean;
00159 }
00160 
00161 void PCA::read(const FileNode& fs)
00162 {
00163     CV_Assert( !fs.empty() );
00164     String name = (String)fs["name"];
00165     CV_Assert( name == "PCA" );
00166 
00167     cv::read(fs["vectors"], eigenvectors);
00168     cv::read(fs["values"], eigenvalues);
00169     cv::read(fs["mean"], mean);
00170 }
00171 
00172 template <typename T>
00173 int computeCumulativeEnergy(const Mat& eigenvalues, double retainedVariance)
00174 {
00175     CV_DbgAssert( eigenvalues.type() == DataType<T>::type );
00176 
00177     Mat g(eigenvalues.size(), DataType<T>::type);
00178 
00179     for(int ig = 0; ig < g.rows; ig++)
00180     {
00181         g.at<T>(ig, 0) = 0;
00182         for(int im = 0; im <= ig; im++)
00183         {
00184             g.at<T>(ig,0) += eigenvalues.at<T>(im,0);
00185         }
00186     }
00187 
00188     int L;
00189 
00190     for(L = 0; L < eigenvalues.rows; L++)
00191     {
00192         double energy = g.at<T>(L, 0) / g.at<T>(g.rows - 1, 0);
00193         if(energy > retainedVariance)
00194             break;
00195     }
00196 
00197     L = std::max(2, L);
00198 
00199     return L;
00200 }
00201 
00202 PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double retainedVariance)
00203 {
00204     Mat data = _data.getMat(), _mean = __mean.getMat();
00205     int covar_flags = CV_COVAR_SCALE;
00206     int len, in_count;
00207     Size mean_sz;
00208 
00209     CV_Assert( data.channels() == 1 );
00210     if( flags & CV_PCA_DATA_AS_COL )
00211     {
00212         len = data.rows;
00213         in_count = data.cols;
00214         covar_flags |= CV_COVAR_COLS;
00215         mean_sz = Size(1, len);
00216     }
00217     else
00218     {
00219         len = data.cols;
00220         in_count = data.rows;
00221         covar_flags |= CV_COVAR_ROWS;
00222         mean_sz = Size(len, 1);
00223     }
00224 
00225     CV_Assert( retainedVariance > 0 && retainedVariance <= 1 );
00226 
00227     int count = std::min(len, in_count);
00228 
00229     // "scrambled" way to compute PCA (when cols(A)>rows(A)):
00230     // B = A'A; B*x=b*x; C = AA'; C*y=c*y -> AA'*y=c*y -> A'A*(A'*y)=c*(A'*y) -> c = b, x=A'*y
00231     if( len <= in_count )
00232         covar_flags |= CV_COVAR_NORMAL;
00233 
00234     int ctype = std::max(CV_32F, data.depth());
00235     mean.create( mean_sz, ctype );
00236 
00237     Mat covar( count, count, ctype );
00238 
00239     if( !_mean.empty() )
00240     {
00241         CV_Assert( _mean.size() == mean_sz );
00242         _mean.convertTo(mean, ctype);
00243     }
00244 
00245     calcCovarMatrix( data, covar, mean, covar_flags, ctype );
00246     eigen( covar, eigenvalues, eigenvectors );
00247 
00248     if( !(covar_flags & CV_COVAR_NORMAL) )
00249     {
00250         // CV_PCA_DATA_AS_ROW: cols(A)>rows(A). x=A'*y -> x'=y'*A
00251         // CV_PCA_DATA_AS_COL: rows(A)>cols(A). x=A''*y -> x'=y'*A'
00252         Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
00253         if( data.type() != ctype || tmp_mean.data == mean.data )
00254         {
00255             data.convertTo( tmp_data, ctype );
00256             subtract( tmp_data, tmp_mean, tmp_data );
00257         }
00258         else
00259         {
00260             subtract( data, tmp_mean, tmp_mean );
00261             tmp_data = tmp_mean;
00262         }
00263 
00264         Mat evects1(count, len, ctype);
00265         gemm( eigenvectors, tmp_data, 1, Mat(), 0, evects1,
00266             (flags & CV_PCA_DATA_AS_COL) ? CV_GEMM_B_T : 0);
00267         eigenvectors = evects1;
00268 
00269         // normalize all eigenvectors
00270         int i;
00271         for( i = 0; i < eigenvectors.rows; i++ )
00272         {
00273             Mat vec = eigenvectors.row(i);
00274             normalize(vec, vec);
00275         }
00276     }
00277 
00278     // compute the cumulative energy content for each eigenvector
00279     int L;
00280     if (ctype == CV_32F)
00281         L = computeCumulativeEnergy<float>(eigenvalues, retainedVariance);
00282     else
00283         L = computeCumulativeEnergy<double>(eigenvalues, retainedVariance);
00284 
00285     // use clone() to physically copy the data and thus deallocate the original matrices
00286     eigenvalues = eigenvalues.rowRange(0,L).clone();
00287     eigenvectors = eigenvectors.rowRange(0,L).clone();
00288 
00289     return *this;
00290 }
00291 
00292 void PCA::project(InputArray _data, OutputArray result) const
00293 {
00294     Mat data = _data.getMat();
00295     CV_Assert( !mean.empty() && !eigenvectors.empty() &&
00296         ((mean.rows == 1 && mean.cols == data.cols) || (mean.cols == 1 && mean.rows == data.rows)));
00297     Mat tmp_data, tmp_mean = repeat(mean, data.rows/mean.rows, data.cols/mean.cols);
00298     int ctype = mean.type();
00299     if( data.type() != ctype || tmp_mean.data == mean.data )
00300     {
00301         data.convertTo( tmp_data, ctype );
00302         subtract( tmp_data, tmp_mean, tmp_data );
00303     }
00304     else
00305     {
00306         subtract( data, tmp_mean, tmp_mean );
00307         tmp_data = tmp_mean;
00308     }
00309     if( mean.rows == 1 )
00310         gemm( tmp_data, eigenvectors, 1, Mat(), 0, result, GEMM_2_T );
00311     else
00312         gemm( eigenvectors, tmp_data, 1, Mat(), 0, result, 0 );
00313 }
00314 
00315 Mat PCA::project(InputArray data) const
00316 {
00317     Mat result;
00318     project(data, result);
00319     return result;
00320 }
00321 
00322 void PCA::backProject(InputArray _data, OutputArray result) const
00323 {
00324     Mat data = _data.getMat();
00325     CV_Assert( !mean.empty() && !eigenvectors.empty() &&
00326         ((mean.rows == 1 && eigenvectors.rows == data.cols) ||
00327          (mean.cols == 1 && eigenvectors.rows == data.rows)));
00328 
00329     Mat tmp_data, tmp_mean;
00330     data.convertTo(tmp_data, mean.type());
00331     if( mean.rows == 1 )
00332     {
00333         tmp_mean = repeat(mean, data.rows, 1);
00334         gemm( tmp_data, eigenvectors, 1, tmp_mean, 1, result, 0 );
00335     }
00336     else
00337     {
00338         tmp_mean = repeat(mean, 1, data.cols);
00339         gemm( eigenvectors, tmp_data, 1, tmp_mean, 1, result, GEMM_1_T );
00340     }
00341 }
00342 
00343 Mat PCA::backProject(InputArray data) const
00344 {
00345     Mat result;
00346     backProject(data, result);
00347     return result;
00348 }
00349 
00350 }
00351 
00352 void cv::PCACompute(InputArray data, InputOutputArray mean,
00353                     OutputArray eigenvectors, int maxComponents)
00354 {
00355     PCA pca;
00356     pca(data, mean, 0, maxComponents);
00357     pca.mean.copyTo(mean);
00358     pca.eigenvectors.copyTo(eigenvectors);
00359 }
00360 
00361 void cv::PCACompute(InputArray data, InputOutputArray mean,
00362                     OutputArray eigenvectors, double retainedVariance)
00363 {
00364     PCA pca;
00365     pca(data, mean, 0, retainedVariance);
00366     pca.mean.copyTo(mean);
00367     pca.eigenvectors.copyTo(eigenvectors);
00368 }
00369 
00370 void cv::PCAProject(InputArray data, InputArray mean,
00371                     InputArray eigenvectors, OutputArray result)
00372 {
00373     PCA pca;
00374     pca.mean = mean.getMat();
00375     pca.eigenvectors = eigenvectors.getMat();
00376     pca.project(data, result);
00377 }
00378 
00379 void cv::PCABackProject(InputArray data, InputArray mean,
00380                     InputArray eigenvectors, OutputArray result)
00381 {
00382     PCA pca;
00383     pca.mean = mean.getMat();
00384     pca.eigenvectors = eigenvectors.getMat();
00385     pca.backProject(data, result);
00386 }
00387