This program is designed to work with RedBearLab BLE Controller App - Chat App. Type something from the Terminal to send to the BLEController App or vice verse. Characteristics received from App will print on Terminal. This Program scans some analog and digital inputs and save them in flash with timestamp. A RTC has been implemented. Using chat application (available for smart phones) some commands can be send to BLE Nano in order to perform some tasks. Other types of commands can be send via serial interface from a PC, especially data extraction from flash.

Dependencies:   BLE_API mbed nRF51822

Fork of nRF51822_SimpleChat_VT by Valentin Tanasa

nRF51822_SimpleChat Extended With Data Measurements & Logger

This repo is derived from the initial SimpleChat Application and is build for BLE Nano Device, used in peripheral mode. This Application scan and measures some inputs and save them in flash with timestamp. A RTC has been implemented. Using chat application (available for smart phones) some commands can be send to BLE Nano in order to perform some tasks. Other types of commands can be send via serial interface from a PC, especially data extraction from flash.

Usage/Description:

After flashing or power on, the ble device will start to advertise and also its local time counter starts. While initializing, application will search through all flash pages, last data previosly written. From this pages will retrieve the last data and time available.

A Timer Tick (period set to 1 second) is used for updating RTC and for data measurements. When the application starts the data will not be saved in flash until a command is given to start (xf2). When started, it is recommended after connecting to ble device to set the time and date;

After the date and time updated, activate measurement logging (xf2).

Please be aware that for 5-6 seconds, each 100 seconds the connection is stopped by the application. This is due to fact that writing to flash is safe when radio connection is off. When g_MyDataIdx is between 95..100, connection should remain closed.

The Application can use somewhere around 100 flash pages (100K). This means, if data is sampled each second, the pages will start to overwrite after 100*100 seconds = 2.7 hours. Anyway the data is inserted into logger when it is different compared to previous measurement. Therefore the time the flash memory can log is bigger than 2.7 hours.

When retrieving the data log via serial, the format is as follows:

  • page starts with:
    2016_ 4_22 H: 7 => year, month, day, and hour
    26:51;363; 1; 15 => minutes: seconds; A3,A4,A5 (no info about digital inputs)
  • following rows up to the next page:
    0: 5;364; 1; 15 => minutes: seconds - time delta (time elapsed since last measurement); A3, A4, A5;

Hardware Connections

The BLE Nano Device is connected to some peripheral components as follows:

  • Light Sensor ( A3 input)
  • Temperature Sensor (A4 input)
  • Gnd Voltage (or anything else) (A5 input)
  • Buzzer (D6 output)
  • Push Button (D5 input)
  • [Optional]: MKUSB 20 Board (for Voltage Supply and for Serial Communication with a PC)

Supported Commands

  1. From RedBear Chat Application following messages are valid:
  • Any message that not start with 'x' is echoed with 'R:' as prefix, and also is send via Serial Interface to PC
  • Any message that start with 'x' is interpreted as command:
    • xi0 / xi* except {1,2,3,4} => prints the analog inputs and one digital input (the led status) as uint16 values
    • xi1 /xi2 / xi3 / xi4 =>prints the uint16 value for light, temp, gndV, led status
    • xl => toggle led status
    • xs[0-9][0-9] => buzzer; depending on digits, a digital pwm signal is send to buzzer; to deactivate: xs00
    • xtg => returns the current time
    • xti[0-9]{6} => insert time - exp: xti181004 means: 18H10M and 4 seconds
    • xdg => returns the current date
    • xdi[0-9]{6} => insert date - exp: xti160424 means: 2016 Y, 04 Month, 24 Day
    • xf1 => prints the value of g_MyDataIdx (a value now between 0..99) representing the steps until a new page will be written in flash with new data; It also print the current flash page that will be written (between 155 and 255)
    • xf2 => activate measurements logging
    • xf3 => deactivate measurements logging
    • x* => for invalid syntax a sound for 3 seconds is activated, with a message error
  1. From PC serial interface (with MKUSB 20 Board), following commands apply:
  • xf[0-9] => request printing on serial of a specific flash page ( 0 - current page; 1 - previous page, etc)
  • xd => request dump of all recorded logs (starting with current page)
  • xg => prints the value of g_MyDataIdx (a value now between 0..99) representing the steps until a new page will be written in flash with new data;
  • xca => open Radio Advertising (should be used when the Advertising is Off)
  • xcc => Close Radio connection (should be used when Connection is in Connected state)
  • xcs => Stop Radio Advertising (should be used when Advertising is active)

Other Commands:

  • button push => closes the connection/advertising and turn off the led. If push again reset the previous conditions;

References

The mbed BLE API is meant to be used in projects on developer.mbed.org. Please see examples and sample project files there. A good starting point are these pages:

For this Application:

main.cpp

Committer:
tanasaro10
Date:
2016-05-06
Revision:
11:baafa4f7a15e
Parent:
10:c7d53e4e0602

File content as of revision 11:baafa4f7a15e:

/*

Copyright (c) 2012-2014 RedBearLab

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

*/

/*
 *    The application works with the BLEController iOS/Android App.
 *    Type something from the Terminal to send
 *    to the BLEController App or vice verse.
 *    Characteristics received from App will print on Terminal.
 *      Read read_me.md file for more informations about the extended feature
 */


#include "ble/BLE.h"
//#include "LowPowerTicker.h"
#include <myData.h>
#include <Gap.h>
//#include "ble_flash.h"
#include "ble_flash.c"

#define BLE_UUID_TXRX_SERVICE            0x0000 /**< The UUID of the Nordic UART Service. */
#define BLE_UUID_TX_CHARACTERISTIC       0x0002 /**< The UUID of the TX Characteristic. */
#define BLE_UUIDS_RX_CHARACTERISTIC      0x0003 /**< The UUID of the RX Characteristic. */

#define TXRX_BUF_LEN                     20  /** For radio message transmission*/

#define MyASSERT(cond , serialpc, errVal) assert_error_app((bool)cond, serialpc, (uint16_t)errVal, __LINE__, __FILE__)

BLE  ble;

Serial pc(USBTX, USBRX);

// The Nordic UART Service
static const uint8_t uart_base_uuid[] = {0x71, 0x3D, 0, 0, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E};
static const uint8_t uart_tx_uuid[]   = {0x71, 0x3D, 0, 3, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E};
static const uint8_t uart_rx_uuid[]   = {0x71, 0x3D, 0, 2, 0x50, 0x3E, 0x4C, 0x75, 0xBA, 0x94, 0x31, 0x48, 0xF1, 0x8D, 0x94, 0x1E};
static const uint8_t uart_base_uuid_rev[] = {0x1E, 0x94, 0x8D, 0xF1, 0x48, 0x31, 0x94, 0xBA, 0x75, 0x4C, 0x3E, 0x50, 0, 0, 0x3D, 0x71};

static const int8_t txPower = 0xCD;

uint8_t txPayload[TXRX_BUF_LEN] = {0, p28};
uint8_t rxPayload[TXRX_BUF_LEN] = {0,};

static uint8_t rx_buf[TXRX_BUF_LEN];
static uint8_t rx_len=0;

static uint32_t gTimeInstant = 1; // TimerTick Resolution, in seconds

bool g_bIsConnected = false;
bool g_bIsAdvertising = false;
bool g_bConnDisabled = false;
bool g_LogActive = false;
static myDataLog_t g_MyData;
uint8_t g_MyDataIdx=0;

// pins connected for measuring
DigitalOut led(LED1);
PwmOut buzzer(p15);
InterruptIn event(p29); // button
AnalogIn VP3(A3);
AnalogIn VP4(A4);
AnalogIn VP5(A5);
AnalogIn* VP[3]= {&VP3,&VP4,&VP5};
#define NUM_OF_READINGS (4u)
myPayload_t g_currMeasures; // last measurements

Timeout timeout_err; // timeout for buzz on error
Ticker periodicActions;

mdatetime_manager_t g_myDateTimeVar;

GattCharacteristic  txCharacteristic (uart_tx_uuid, txPayload, 1, TXRX_BUF_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE_WITHOUT_RESPONSE);

GattCharacteristic  rxCharacteristic (uart_rx_uuid, rxPayload, 1, TXRX_BUF_LEN, GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY);

GattCharacteristic *uartChars[] = {&txCharacteristic, &rxCharacteristic};

GattService         uartService(uart_base_uuid, uartChars, sizeof(uartChars) / sizeof(GattCharacteristic *));

void sendRadioMsg(const uint8_t* buf, uint16_t length)
{
    uint8_t retVal;
    retVal = ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), buf, length);
    //pc.printf("Err=%d\r\n",retVal);
    MyASSERT((retVal!=0),&pc, retVal);
}

void disconnectionCallback(Gap::Handle_t handle, Gap::DisconnectionReason_t reason)
{
    pc.printf("Disconnected \r\n");
    g_bIsConnected = false;
    g_bIsAdvertising = false;
    pc.printf("R: %d\r",reason);
    if (reason != 0x16) {
        ble.startAdvertising();
        g_bIsAdvertising = true;
    }    
}

void connectionCallback(const Gap::ConnectionCallbackParams_t *params)
{
    pc.printf("Connected \r\n");
    g_bIsConnected = true;
    g_bIsAdvertising = false;
}

void at_timeout_err()
{
    // stop buzz
    buzz_int(&buzzer, 0,0);
}
void connectionUpdate(connection_update_t option)
{
    if (g_bConnDisabled == false) {
        switch (option) {
            case eStartAdvertising: {
                if ((g_bIsConnected == false)&&(g_bIsAdvertising == false)) {
                    pc.printf("Start Advertising\r");
                    ble.startAdvertising();
                    g_bIsAdvertising = true;
                }
                break;
            }
            case eStopAdvertising: {
                if (g_bIsAdvertising == true) {
                    pc.printf("Stop Advertising\r");
                    ble.stopAdvertising();
                    g_bIsAdvertising = false;
                }
                break;
            }
            case eDisconnect: {
                if (g_bIsConnected == true) {
                    pc.printf("Close connection\r");
                    ble.disconnect((Gap::DisconnectionReason_t)0x12);                    
                } else if (g_bIsAdvertising == true) {
                    pc.printf("Stop Advertising\r");
                    ble.stopAdvertising();
                    g_bIsAdvertising = false;
                }
                break;
            }
        }
    }
}
void write_data_to_flash(uint32_t *tick)
{
    uint32_t retVal=0;
    uint8_t page_num=0;

    if (g_MyDataIdx==0) {
        //initiate connection
        connectionUpdate(eStartAdvertising);
        // time and date used to initialize the g_MyData variable
        memcpy(&g_MyData.startData.datetime,&g_myDateTimeVar.currentDateTime, sizeof(mdate_time_t));        
        memcpy(&g_MyData.startData.data,&g_currMeasures, sizeof(myPayload_t));
    } else {
        // it should be logged here the time difference from last record...
        g_MyData.myData[g_MyDataIdx-1].minutes = (uint16_t)(*tick*gTimeInstant / 60);
        g_MyData.myData[g_MyDataIdx-1].seconds = (*tick*gTimeInstant% 60);
        memcpy(&g_MyData.myData[g_MyDataIdx-1].data,&g_currMeasures, sizeof(myPayload_t));
    }
    *tick = 0;

    if (g_MyDataIdx==(MAXBUFFER-5)) {
        //initiate disconnection
        connectionUpdate(eDisconnect);
    }

    if (g_MyDataIdx == MAXBUFFER) {
        // write2Flash the current page num
        page_num=flash_currPage();
        // write2Flash the current page data
        retVal=ble_flash_page_write(page_num, (uint32_t*)&(g_MyData), 251u);
        pc.printf("retValWr: %d, Pg:%d, Min: %d \r\n",retVal, page_num,g_myDateTimeVar.currentDateTime.minutes);
        flash_go_nextPage();
    }
    g_MyDataIdx = (g_MyDataIdx+1)%(MAXBUFFER+1);
}


void on_error_radioMsg()
{
    char myBuf[TXRX_BUF_LEN];

    sprintf(myBuf,"%s","WrongSyntax");
    buzz_int(&buzzer,5,3);
    timeout_err.attach(&at_timeout_err, 2);
    sendRadioMsg((uint8_t*)&myBuf[0], 12);
}

void flash_page_serial_dump(uint32_t* p_curr_addr)
{
    myDataLogShort_t initialData;
    mdate_time_t * pdate;
    myDataL_t dataOut[2];
    uint8_t i;

    p_curr_addr += 2; // skip the magic number and the word count
    memcpy((uint32_t*)&initialData, p_curr_addr, 6*sizeof(uint32_t));
    pdate = &initialData.startData.datetime;
    pc.printf("20%2d_%2d_%2d H:%2d P:%4x\r",pdate->year, pdate->month, pdate->day, pdate->hours, p_curr_addr);
    pc.printf("%2d:%2d;%3d;%3d;%3d \r",pdate->minutes, pdate->seconds, initialData.startData.data.light, initialData.startData.data.gndV, initialData.startData.data.temp);
    pc.printf("%2d:%2d;%3d;%3d;%3d;%2d\r",initialData.myData.minutes, initialData.myData.seconds, initialData.myData.data.light, initialData.myData.data.gndV, initialData.myData.data.temp);
    p_curr_addr += 6;

    for (i=0; i<49; i++) {
        memcpy((uint32_t*)&dataOut, p_curr_addr, 5*sizeof(uint32_t));
        pc.printf("%2d:%2d;%3d;%3d;%3d;%2d\r",dataOut[0].minutes, dataOut[0].seconds, dataOut[0].data.light, dataOut[0].data.gndV, dataOut[0].data.temp, i);
        pc.printf("%2d:%2d;%3d;%3d;%3d\r",dataOut[1].minutes, dataOut[1].seconds, dataOut[1].data.light, dataOut[1].data.gndV, dataOut[1].data.temp);
        p_curr_addr += 5;
    }
}

int update_measurements()
{
    int retVal;
    static myPayload_t prevMeasures=(myPayload_t) {
        0, 0, 0, 0, 0
    };

    g_currMeasures = (myPayload_t) {
        VP[0]->read_u16(), VP[2]->read_u16(), VP[1]->read_u16(), led, 0
    };
    retVal = memcmp(&g_currMeasures,&prevMeasures,sizeof(myPayload_t));
    memcpy(&prevMeasures,&g_currMeasures,sizeof(myPayload_t));
    return retVal;
}

void at_eachInstant()
{
    static uint32_t tick=0;
    int retVal;

    // update time
    update_time(&g_myDateTimeVar, gTimeInstant);

    //update measurements
    retVal = update_measurements();

    // if there are changes in data save
    if ((retVal!=0)&&(g_LogActive==true)) {
        write_data_to_flash(&tick);
    }
    tick++;
}

// Radio commands decode
void decode(uint8_t * buffer, uint16_t length)
{
    uint16_t len;
    char myBuf[TXRX_BUF_LEN];

    switch (buffer[0]) {
        case 'i': {// Analog Input Read Request
            switch (buffer[1]) {
                case '0': {
                    // display all inputs
                    sprintf(myBuf,"All:%3d,%3d,%3d,%2d", g_currMeasures.light,g_currMeasures.gndV,g_currMeasures.temp,g_currMeasures.led_on);
                    len = 18;
                    break;
                }
                case '1': {
                    sprintf(myBuf,"Input 1 = %3d", g_currMeasures.light);
                    len = 13;
                    break;
                }
                case '2': {
                    sprintf(myBuf,"Input 2 = %3d", g_currMeasures.gndV);
                    len = 13;
                    break;
                }
                case '3': {
                    sprintf(myBuf,"Input 3 = %3d", g_currMeasures.temp);
                    len = 13;
                    break;
                }
                case '4': {
                    sprintf(myBuf,"Input 4 = %2d", g_currMeasures.led_on);
                    len = 12;
                    break;
                }
                default: {
                    sprintf(myBuf,"All:%3d,%3d,%3d,%2d", g_currMeasures.light,g_currMeasures.gndV,g_currMeasures.temp,g_currMeasures.led_on);
                    len = 18;
                    break;
                }
            }
            sendRadioMsg((uint8_t *)myBuf, len);
            break;
        }
        case 'l': {// toogle led
            led = ! led;
            if (led==0) {
                sprintf(myBuf,"%s","ON");
                len = 2;
            } else {
                sprintf(myBuf,"%s","OFF");
                len = 3;
            }
            sendRadioMsg((uint8_t *)myBuf, len);
            break;
        }
        case 's': {// buzzer
            if (((buffer[1]>'9')||(buffer[1]<'0'))||((buffer[2]>'9')||(buffer[2]<'0'))) {
                MyASSERT(true,&pc, buffer[1]); // notify on serial interface
                on_error_radioMsg();  // notify on radio
                break;
            } else {
                buzz_int(&buzzer, (buffer[1]-'0'),(buffer[2]-'0'));
                sprintf(myBuf,"%s:%f","S",buzzer.read());
                len= 7;
            }
            sendRadioMsg((uint8_t *)myBuf, len);
            break;
        }
        case 'd':
        case 't': {// date /time operations            
            switch (buffer[1]) {
                case 'i': { // date insert                   
                    uint8_t i; 
                    uint8_t * pdata = &g_myDateTimeVar.newDateTime.year; // to insert data
                    
                    if (buffer[0]=='t') {
                        sprintf(myBuf,"  TimeInserted");
                        pdata +=3;
                    } else {sprintf(myBuf,"  DateInserted");}
                    len= 14;
                    
                    for (i=0;i<3;i++){
                        memcpy(myBuf,&buffer[2+2*i],2);
                        *pdata=atoi(myBuf); // TODO check if it is a number
                        pdata= pdata+1;
                    }
                    g_myDateTimeVar.updateDateTime = true;
                    
                    sendRadioMsg((uint8_t *)myBuf, len);
                    break;
                }
                case 'g': { // time/date get
                uint8_t * pdata1 = &g_myDateTimeVar.currentDateTime.year; // to get data
                   if (buffer[0]=='t') {
                        pdata1 +=3;
                        sprintf(myBuf,"H:%2d:%2d:%2d",*pdata1,*(pdata1+1),*(pdata1+2));
                        len = 11;
                    }else {
                        sprintf(myBuf,"D:20%2d:%2d:%2d",*pdata1,*(pdata1+1),*(pdata1+2));
                        len = 13;
                    }
                    sendRadioMsg((uint8_t *)myBuf, len);
                    break;
                }
                default:
                    MyASSERT(true,&pc, buffer[1]); // notify on serial interface
                    on_error_radioMsg();  // notify on radio
            }
            break;
        }

        case 'f': {// file operations
            switch (buffer[1]) {
                case '1': {                    
                    sprintf(myBuf,"g_idx=%2d Page=%3d",g_MyDataIdx, flash_currPage());
                    len = 18;
                    sendRadioMsg((uint8_t *)myBuf, len);
                    break;
                }
                case '2': { // start measuring
                    sprintf(myBuf,"Start Meas");
                    len = 12;
                    sendRadioMsg((uint8_t *)myBuf, len);
                    g_LogActive = true;
                    break;
                }
                case '3': { // stop measuring
                    sprintf(myBuf,"Stop Meas");
                    len = 11;
                    sendRadioMsg((uint8_t *)myBuf, len);
                    g_LogActive = false;
                    break;
                }
                default: {
                    // error
                }
            }
            break;
        }
        default: {
            MyASSERT(true,&pc, buffer[1]); // notify on serial interface
            on_error_radioMsg();  // notify on radio;
        }
    }
}

// decode serial command that starts with x
static void decode_s(uint8_t * buffer, uint16_t length)
{
    uint8_t page_nr;
    char myBuf[5];
    uint32_t * p_curr_addr;

    switch (buffer[0]) {
        case 'f': { // info about selected flash page
            if ((buffer[1]<='9')&&(buffer[1]>='0')) {
                memcpy(myBuf,&buffer[1],3);
                page_nr= atoi(myBuf);
                uint8_t p_word_count;

                pc.printf("buffer[1]: %c \r\n",buffer[1]);

                p_curr_addr= (uint32_t *)((uint16_t)BLE_FLASH_PAGE_SIZE * (flash_currPage() - page_nr));
                pc.printf("page_addr: %x, pgNr = %d \r\n",p_curr_addr,(flash_currPage() - page_nr));
                p_curr_addr += 1;
                pc.printf("page_addr: %x \r\n",p_curr_addr);
                p_word_count = (uint8_t)(*(p_curr_addr));
                pc.printf("nr_of_words: %d \r\n",p_word_count);
                flash_page_serial_dump((p_curr_addr-1));
            }
            break;
        }
        case 'd': { // full dump
            uint16_t page0;
            pc.printf("Full dump \r\n");

            page0 = flash_currPage();
            for (page_nr=0; page_nr<=(MAX_PAGE_NUM-MIN_PAGE_NUM); page_nr++) {
                if ((page0-page_nr)< MIN_PAGE_NUM) {
                    page0 = MAX_PAGE_NUM + page_nr;
                }
                p_curr_addr= (uint32_t *)((uint16_t)BLE_FLASH_PAGE_SIZE * (page0-page_nr));
                flash_page_serial_dump(p_curr_addr);
            }
            break;
        }
        case 'g': {
            pc.printf("g_MyDataIdx= %d\r", g_MyDataIdx);
            break;
        }
        case 'c': {
            switch (buffer[1]) {
                case 'a': {
                    connectionUpdate(eStartAdvertising);
                    break;
                }
                case 'c' : {
                    connectionUpdate(eDisconnect);
                    break;
                }
                case 's' : {
                    connectionUpdate(eStopAdvertising);
                    break;
                }
                default:
                    pc.printf("Not recognized cmd !\r");
            }
            break;
        }
        default: {
            // nothing
        }
    }
}

void WrittenHandler(const GattWriteCallbackParams *Handler)
{
    uint8_t buf[TXRX_BUF_LEN+1]= {'R',':',0};
    uint16_t bytesRead;

    if (Handler->handle == txCharacteristic.getValueAttribute().getHandle()) {
        ble.readCharacteristicValue(txCharacteristic.getValueAttribute().getHandle(), &buf[2], &bytesRead);
        memset(txPayload, 0, TXRX_BUF_LEN);
        memcpy(txPayload, &buf[2], bytesRead);
        if (txPayload[0] == 'x') {
            decode(&txPayload[1],bytesRead);
        }
        //echo back
        bytesRead+=2;
        sendRadioMsg(buf, bytesRead);

        // print on PC monitor
        buf[bytesRead]='\r';        
        pc.printf("%s",buf);
    }
}

void uartCB(void)
{
    while(pc.readable()) {
        rx_buf[rx_len++] = pc.getc();
        if(rx_len>=20 || rx_buf[rx_len-1]=='\0' || rx_buf[rx_len-1]=='\n') {
            ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), rx_buf, rx_len);
            if ((rx_buf[0]=='x')) {
                decode_s(&rx_buf[1],(rx_len-1)); // serial decode
            }
            rx_len= 0;
            break;
        }
    }
}

void button()
{
    uint8_t buf[TXRX_BUF_LEN+1];
    buf[0]='B';
    buf[1]='U';
    buf[2]='T';
    buf[3]='N';
    
    ble.updateCharacteristicValue(rxCharacteristic.getValueAttribute().getHandle(), buf, 4);
    g_bConnDisabled = !g_bConnDisabled;
    led = !led;
    if (g_bConnDisabled == true){
        if (g_bIsConnected == true){
            ble.disconnect((Gap::DisconnectionReason_t)0x12);
            g_bIsConnected = false;
        } else if (g_bIsAdvertising == true) {
                ble.stopAdvertising();
                g_bIsAdvertising = false;
            }
    } else {
        connectionUpdate(eStartAdvertising);
    }
}

void g_varInit()
{
    g_myDateTimeVar.updateDateTime = true;    
    /* retreive latest date, time and page flash available */
    search_latest_in_flash(&g_myDateTimeVar.newDateTime);    
}

int main(void)
{
    ble.init();
    g_varInit();
    ble.onDisconnection(disconnectionCallback);
    ble.onConnection(connectionCallback);
    ble.onDataWritten(WrittenHandler);
    event.rise(&button);

    pc.baud(19200);
    pc.printf("SimpleChat Init \r\n");

    pc.attach( uartCB , pc.RxIrq);
    // setup advertising
    ble.accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED);
    ble.setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED);
    ble.accumulateAdvertisingPayload(GapAdvertisingData::SHORTENED_LOCAL_NAME,
                                     (const uint8_t *)"MyBleVT", sizeof("MyBleVT") - 1);
    ble.accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LIST_128BIT_SERVICE_IDS,
                                     (const uint8_t *)uart_base_uuid_rev, sizeof(uart_base_uuid));
    //ble.accumulateAdvertisingPayload(GapAdvertisingData::TX_POWER_LEVEL,(const uint8_t *)txPower, sizeof(txPower));
    ble.setTxPower(txPower);
    // 100ms; in multiples of 0.625ms.
    ble.setAdvertisingInterval(160);
    /*
    // activate radio notifications - usefull for flashwrite
    void (*ptrFunc)(bool);
    ptrFunc  = ble_flash_on_radio_active_evt;
    //needed for flash write
    //ble.onRadioNotification(ptrFunc);
    */
    ble.addService(uartService);
    ble.startAdvertising();
    pc.printf("Advertising Start \r\n");
    periodicActions.attach(&at_eachInstant,gTimeInstant);
    while(1) {
        ble.waitForEvent();
    }
}