mbed base bard check program for BlueTooth USB dongle module (3 switches, 6 leds, I2C LCD, A/D)
Fork of BTstack by
BTstack/rfcomm.c
- Committer:
- tamaki
- Date:
- 2016-10-17
- Revision:
- 3:7b7d1273e2d5
- Parent:
- 0:1ed23ab1345f
File content as of revision 3:7b7d1273e2d5:
/* * Copyright (C) 2009-2012 by Matthias Ringwald * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at btstack@ringwald.ch * */ /* * rfcomm.c */ #include <stdio.h> #include <stdlib.h> #include <string.h> // memcpy #include <stdint.h> #include <btstack/btstack.h> #include <btstack/hci_cmds.h> #include <btstack/utils.h> #include <btstack/utils.h> #include "btstack_memory.h" #include "hci.h" #include "hci_dump.h" #include "debug.h" #include "rfcomm.h" // workaround for missing PRIxPTR on mspgcc (16/20-bit MCU) #ifndef PRIxPTR #if defined(__MSP430X__) && defined(__MSP430X_LARGE__) #define PRIxPTR "lx" #else #define PRIxPTR "x" #endif #endif // Control field values bit no. 1 2 3 4 PF 6 7 8 #define BT_RFCOMM_SABM 0x3F // 1 1 1 1 1 1 0 0 #define BT_RFCOMM_UA 0x73 // 1 1 0 0 1 1 1 0 #define BT_RFCOMM_DM 0x0F // 1 1 1 1 0 0 0 0 #define BT_RFCOMM_DM_PF 0x1F // 1 1 1 1 1 0 0 0 #define BT_RFCOMM_DISC 0x53 // 1 1 0 0 1 0 1 0 #define BT_RFCOMM_UIH 0xEF // 1 1 1 1 0 1 1 1 #define BT_RFCOMM_UIH_PF 0xFF // 1 1 1 1 0 1 1 1 // Multiplexer message types #define BT_RFCOMM_CLD_CMD 0xC3 #define BT_RFCOMM_FCON_CMD 0xA3 #define BT_RFCOMM_FCON_RSP 0xA1 #define BT_RFCOMM_FCOFF_CMD 0x63 #define BT_RFCOMM_FCOFF_RSP 0x61 #define BT_RFCOMM_MSC_CMD 0xE3 #define BT_RFCOMM_MSC_RSP 0xE1 #define BT_RFCOMM_NSC_RSP 0x11 #define BT_RFCOMM_PN_CMD 0x83 #define BT_RFCOMM_PN_RSP 0x81 #define BT_RFCOMM_RLS_CMD 0x53 #define BT_RFCOMM_RLS_RSP 0x51 #define BT_RFCOMM_RPN_CMD 0x93 #define BT_RFCOMM_RPN_RSP 0x91 #define BT_RFCOMM_TEST_CMD 0x23 #define BT_RFCOMM_TEST_RSP 0x21 #define RFCOMM_MULIPLEXER_TIMEOUT_MS 60000 // FCS calc #define BT_RFCOMM_CODE_WORD 0xE0 // pol = x8+x2+x1+1 #define BT_RFCOMM_CRC_CHECK_LEN 3 #define BT_RFCOMM_UIHCRC_CHECK_LEN 2 #include "l2cap.h" // used for debugging // #define RFCOMM_LOG_CREDITS // global rfcomm data static uint16_t rfcomm_client_cid_generator; // used for client channel IDs // linked lists for all static linked_list_t rfcomm_multiplexers = NULL; static linked_list_t rfcomm_channels = NULL; static linked_list_t rfcomm_services = NULL; static void (*app_packet_handler)(void * connection, uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size); static void rfcomm_run(void); static void rfcomm_hand_out_credits(void); static void rfcomm_channel_state_machine(rfcomm_channel_t *channel, rfcomm_channel_event_t *event); static void rfcomm_channel_state_machine_2(rfcomm_multiplexer_t * multiplexer, uint8_t dlci, rfcomm_channel_event_t *event); static int rfcomm_channel_ready_for_open(rfcomm_channel_t *channel); static void rfcomm_multiplexer_state_machine(rfcomm_multiplexer_t * multiplexer, RFCOMM_MULTIPLEXER_EVENT event); // MARK: RFCOMM CLIENT EVENTS // data: event (8), len(8), address(48), channel (8), rfcomm_cid (16) static void rfcomm_emit_connection_request(rfcomm_channel_t *channel) { uint8_t event[11]; event[0] = RFCOMM_EVENT_INCOMING_CONNECTION; event[1] = sizeof(event) - 2; bt_flip_addr(&event[2], channel->multiplexer->remote_addr); event[8] = channel->dlci >> 1; bt_store_16(event, 9, channel->rfcomm_cid); hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); (*app_packet_handler)(channel->connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, sizeof(event)); } // API Change: BTstack-0.3.50x uses // data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16) // next Cydia release will use SVN version of this // data: event(8), len(8), status (8), address (48), handle (16), server channel(8), rfcomm_cid(16), max frame size(16) static void rfcomm_emit_channel_opened(rfcomm_channel_t *channel, uint8_t status) { uint8_t event[16]; uint8_t pos = 0; event[pos++] = RFCOMM_EVENT_OPEN_CHANNEL_COMPLETE; event[pos++] = sizeof(event) - 2; event[pos++] = status; bt_flip_addr(&event[pos], channel->multiplexer->remote_addr); pos += 6; bt_store_16(event, pos, channel->multiplexer->con_handle); pos += 2; event[pos++] = channel->dlci >> 1; bt_store_16(event, pos, channel->rfcomm_cid); pos += 2; // channel ID bt_store_16(event, pos, channel->max_frame_size); pos += 2; // max frame size hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); (*app_packet_handler)(channel->connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, pos); } static void rfcomm_emit_channel_open_failed_outgoing_memory(void * connection, bd_addr_t *addr, uint8_t server_channel){ uint8_t event[16]; uint8_t pos = 0; event[pos++] = RFCOMM_EVENT_OPEN_CHANNEL_COMPLETE; event[pos++] = sizeof(event) - 2; event[pos++] = BTSTACK_MEMORY_ALLOC_FAILED; bt_flip_addr(&event[pos], *addr); pos += 6; bt_store_16(event, pos, 0); pos += 2; event[pos++] = server_channel; bt_store_16(event, pos, 0); pos += 2; // channel ID bt_store_16(event, pos, 0); pos += 2; // max frame size hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); (*app_packet_handler)(connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, pos); } // data: event(8), len(8), creidts incoming(8), new credits incoming(8), credits outgoing(8) static inline void rfcomm_emit_credit_status(rfcomm_channel_t * channel) { #ifdef RFCOMM_LOG_CREDITS uint8_t event[5]; event[0] = 0x88; event[1] = sizeof(event) - 2; event[2] = channel->credits_incoming; event[3] = channel->new_credits_incoming; event[4] = channel->credits_outgoing; hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); #endif } // data: event(8), len(8), rfcomm_cid(16) static void rfcomm_emit_channel_closed(rfcomm_channel_t * channel) { uint8_t event[4]; event[0] = RFCOMM_EVENT_CHANNEL_CLOSED; event[1] = sizeof(event) - 2; bt_store_16(event, 2, channel->rfcomm_cid); hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); (*app_packet_handler)(channel->connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, sizeof(event)); } static void rfcomm_emit_credits(rfcomm_channel_t * channel, uint8_t credits) { uint8_t event[5]; event[0] = RFCOMM_EVENT_CREDITS; event[1] = sizeof(event) - 2; bt_store_16(event, 2, channel->rfcomm_cid); event[4] = credits; hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event)); (*app_packet_handler)(channel->connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, sizeof(event)); } static void rfcomm_emit_service_registered(void *connection, uint8_t status, uint8_t channel){ uint8_t event[4]; event[0] = RFCOMM_EVENT_SERVICE_REGISTERED; event[1] = sizeof(event) - 2; event[2] = status; event[3] = channel; hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event)); (*app_packet_handler)(connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, sizeof(event)); } // MARK: RFCOMM MULTIPLEXER HELPER static uint16_t rfcomm_max_frame_size_for_l2cap_mtu(uint16_t l2cap_mtu){ // Assume RFCOMM header with credits and single byte length field uint16_t max_frame_size = l2cap_mtu - 5; // single byte can denote len up to 127 if (max_frame_size > 127) { max_frame_size--; } log_info("rfcomm_max_frame_size_for_l2cap_mtu: %u -> %u\n", l2cap_mtu, max_frame_size); return max_frame_size; } static void rfcomm_multiplexer_initialize(rfcomm_multiplexer_t *multiplexer){ memset(multiplexer, 0, sizeof(rfcomm_multiplexer_t)); multiplexer->state = RFCOMM_MULTIPLEXER_CLOSED; multiplexer->l2cap_credits = 0; multiplexer->send_dm_for_dlci = 0; multiplexer->max_frame_size = rfcomm_max_frame_size_for_l2cap_mtu(l2cap_max_mtu()); } static rfcomm_multiplexer_t * rfcomm_multiplexer_create_for_addr(bd_addr_t *addr){ // alloc structure rfcomm_multiplexer_t * multiplexer = (rfcomm_multiplexer_t*)btstack_memory_rfcomm_multiplexer_get(); if (!multiplexer) return NULL; // fill in rfcomm_multiplexer_initialize(multiplexer); BD_ADDR_COPY(&multiplexer->remote_addr, addr); // add to services list linked_list_add(&rfcomm_multiplexers, (linked_item_t *) multiplexer); return multiplexer; } static rfcomm_multiplexer_t * rfcomm_multiplexer_for_addr(bd_addr_t *addr){ linked_item_t *it; for (it = (linked_item_t *) rfcomm_multiplexers; it ; it = it->next){ rfcomm_multiplexer_t * multiplexer = ((rfcomm_multiplexer_t *) it); if (BD_ADDR_CMP(addr, multiplexer->remote_addr) == 0) { return multiplexer; }; } return NULL; } static rfcomm_multiplexer_t * rfcomm_multiplexer_for_l2cap_cid(uint16_t l2cap_cid) { linked_item_t *it; for (it = (linked_item_t *) rfcomm_multiplexers; it ; it = it->next){ rfcomm_multiplexer_t * multiplexer = ((rfcomm_multiplexer_t *) it); if (multiplexer->l2cap_cid == l2cap_cid) { return multiplexer; }; } return NULL; } static int rfcomm_multiplexer_has_channels(rfcomm_multiplexer_t * multiplexer){ linked_item_t *it; for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){ rfcomm_channel_t * channel = ((rfcomm_channel_t *) it); if (channel->multiplexer == multiplexer) { return 1; } } return 0; } // MARK: RFCOMM CHANNEL HELPER static void rfcomm_dump_channels(void){ #ifndef EMBEDDED linked_item_t * it; int channels = 0; for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){ rfcomm_channel_t * channel = (rfcomm_channel_t *) it; log_info("Channel #%u: addr %p, state %u\n", channels, channel, channel->state); channels++; } #endif } static void rfcomm_channel_initialize(rfcomm_channel_t *channel, rfcomm_multiplexer_t *multiplexer, rfcomm_service_t *service, uint8_t server_channel){ // don't use 0 as channel id if (rfcomm_client_cid_generator == 0) ++rfcomm_client_cid_generator; // setup channel memset(channel, 0, sizeof(rfcomm_channel_t)); channel->state = RFCOMM_CHANNEL_CLOSED; channel->state_var = RFCOMM_CHANNEL_STATE_VAR_NONE; channel->multiplexer = multiplexer; channel->service = service; channel->rfcomm_cid = rfcomm_client_cid_generator++; channel->max_frame_size = multiplexer->max_frame_size; channel->credits_incoming = 0; channel->credits_outgoing = 0; channel->packets_granted = 0; // incoming flow control not active channel->new_credits_incoming = 0x30; channel->incoming_flow_control = 0; if (service) { // incoming connection channel->outgoing = 0; channel->dlci = (server_channel << 1) | multiplexer->outgoing; if (channel->max_frame_size > service->max_frame_size) { channel->max_frame_size = service->max_frame_size; } channel->incoming_flow_control = service->incoming_flow_control; channel->new_credits_incoming = service->incoming_initial_credits; } else { // outgoing connection channel->outgoing = 1; channel->dlci = (server_channel << 1) | (multiplexer->outgoing ^ 1); } } // service == NULL -> outgoing channel static rfcomm_channel_t * rfcomm_channel_create(rfcomm_multiplexer_t * multiplexer, rfcomm_service_t * service, uint8_t server_channel){ log_info("rfcomm_channel_create for service %p, channel %u --- begin\n", service, server_channel); rfcomm_dump_channels(); // alloc structure rfcomm_channel_t * channel = (rfcomm_channel_t*)btstack_memory_rfcomm_channel_get(); if (!channel) return NULL; // fill in rfcomm_channel_initialize(channel, multiplexer, service, server_channel); // add to services list linked_list_add(&rfcomm_channels, (linked_item_t *) channel); return channel; } static rfcomm_channel_t * rfcomm_channel_for_rfcomm_cid(uint16_t rfcomm_cid){ linked_item_t *it; for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){ rfcomm_channel_t * channel = ((rfcomm_channel_t *) it); if (channel->rfcomm_cid == rfcomm_cid) { return channel; }; } return NULL; } static rfcomm_channel_t * rfcomm_channel_for_multiplexer_and_dlci(rfcomm_multiplexer_t * multiplexer, uint8_t dlci){ linked_item_t *it; for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){ rfcomm_channel_t * channel = ((rfcomm_channel_t *) it); if (channel->dlci == dlci && channel->multiplexer == multiplexer) { return channel; }; } return NULL; } static rfcomm_service_t * rfcomm_service_for_channel(uint8_t server_channel){ linked_item_t *it; for (it = (linked_item_t *) rfcomm_services; it ; it = it->next){ rfcomm_service_t * service = ((rfcomm_service_t *) it); if ( service->server_channel == server_channel){ return service; }; } return NULL; } // MARK: RFCOMM SEND /** * @param credits - only used for RFCOMM flow control in UIH wiht P/F = 1 */ static int rfcomm_send_packet_for_multiplexer(rfcomm_multiplexer_t *multiplexer, uint8_t address, uint8_t control, uint8_t credits, uint8_t *data, uint16_t len){ if (!l2cap_can_send_packet_now(multiplexer->l2cap_cid)) return BTSTACK_ACL_BUFFERS_FULL; uint8_t * rfcomm_out_buffer = l2cap_get_outgoing_buffer(); uint16_t pos = 0; uint8_t crc_fields = 3; rfcomm_out_buffer[pos++] = address; rfcomm_out_buffer[pos++] = control; // length field can be 1 or 2 octets if (len < 128){ rfcomm_out_buffer[pos++] = (len << 1)| 1; // bits 0-6 } else { rfcomm_out_buffer[pos++] = (len & 0x7f) << 1; // bits 0-6 rfcomm_out_buffer[pos++] = len >> 7; // bits 7-14 crc_fields++; } // add credits for UIH frames when PF bit is set if (control == BT_RFCOMM_UIH_PF){ rfcomm_out_buffer[pos++] = credits; } // copy actual data if (len) { memcpy(&rfcomm_out_buffer[pos], data, len); pos += len; } // UIH frames only calc FCS over address + control (5.1.1) if ((control & 0xef) == BT_RFCOMM_UIH){ crc_fields = 2; } rfcomm_out_buffer[pos++] = crc8_calc(rfcomm_out_buffer, crc_fields); // calc fcs int credits_taken = 0; if (multiplexer->l2cap_credits){ credits_taken++; multiplexer->l2cap_credits--; } else { log_info( "rfcomm_send_packet addr %02x, ctrl %02x size %u without l2cap credits\n", address, control, pos); } int err = l2cap_send_prepared(multiplexer->l2cap_cid, pos); if (err) { // undo credit counting multiplexer->l2cap_credits += credits_taken; } return err; } // C/R Flag in Address // - terms: initiator = station that creates multiplexer with SABM // - terms: responder = station that responds to multiplexer setup with UA // "For SABM, UA, DM and DISC frames C/R bit is set according to Table 1 in GSM 07.10, section 5.2.1.2" // - command initiator = 1 /response responder = 1 // - command responder = 0 /response initiator = 0 // "For UIH frames, the C/R bit is always set according to section 5.4.3.1 in GSM 07.10. // This applies independently of what is contained wthin the UIH frames, either data or control messages." // - c/r = 1 for frames by initiating station, 0 = for frames by responding station // C/R Flag in Message // "In the message level, the C/R bit in the command type field is set as stated in section 5.4.6.2 in GSM 07.10." // - If the C/R bit is set to 1 the message is a command // - if it is set to 0 the message is a response. // temp/old messge construction // new object oriented version static int rfcomm_send_sabm(rfcomm_multiplexer_t *multiplexer, uint8_t dlci){ uint8_t address = (1 << 0) | (multiplexer->outgoing << 1) | (dlci << 2); // command return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_SABM, 0, NULL, 0); } static int rfcomm_send_disc(rfcomm_multiplexer_t *multiplexer, uint8_t dlci){ uint8_t address = (1 << 0) | (multiplexer->outgoing << 1) | (dlci << 2); // command return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_DISC, 0, NULL, 0); } static int rfcomm_send_ua(rfcomm_multiplexer_t *multiplexer, uint8_t dlci){ uint8_t address = (1 << 0) | ((multiplexer->outgoing ^ 1) << 1) | (dlci << 2); // response return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UA, 0, NULL, 0); } static int rfcomm_send_dm_pf(rfcomm_multiplexer_t *multiplexer, uint8_t dlci){ uint8_t address = (1 << 0) | ((multiplexer->outgoing ^ 1) << 1) | (dlci << 2); // response return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_DM_PF, 0, NULL, 0); } static int rfcomm_send_uih_msc_cmd(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint8_t signals) { uint8_t address = (1 << 0) | (multiplexer->outgoing << 1); uint8_t payload[4]; uint8_t pos = 0; payload[pos++] = BT_RFCOMM_MSC_CMD; payload[pos++] = 2 << 1 | 1; // len payload[pos++] = (1 << 0) | (1 << 1) | (dlci << 2); // CMD => C/R = 1 payload[pos++] = signals; return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos); } static int rfcomm_send_uih_msc_rsp(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint8_t signals) { uint8_t address = (1 << 0) | (multiplexer->outgoing<< 1); uint8_t payload[4]; uint8_t pos = 0; payload[pos++] = BT_RFCOMM_MSC_RSP; payload[pos++] = 2 << 1 | 1; // len payload[pos++] = (1 << 0) | (1 << 1) | (dlci << 2); // CMD => C/R = 1 payload[pos++] = signals; return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos); } static int rfcomm_send_uih_pn_command(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint16_t max_frame_size){ uint8_t payload[10]; uint8_t address = (1 << 0) | (multiplexer->outgoing << 1); uint8_t pos = 0; payload[pos++] = BT_RFCOMM_PN_CMD; payload[pos++] = 8 << 1 | 1; // len payload[pos++] = dlci; payload[pos++] = 0xf0; // pre-defined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM payload[pos++] = 0; // priority payload[pos++] = 0; // max 60 seconds ack payload[pos++] = max_frame_size & 0xff; // max framesize low payload[pos++] = max_frame_size >> 8; // max framesize high payload[pos++] = 0x00; // number of retransmissions payload[pos++] = 0x00; // (unused error recovery window) initial number of credits return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos); } // "The response may not change the DLCI, the priority, the convergence layer, or the timer value." RFCOMM-tutorial.pdf static int rfcomm_send_uih_pn_response(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint8_t priority, uint16_t max_frame_size){ uint8_t payload[10]; uint8_t address = (1 << 0) | (multiplexer->outgoing << 1); uint8_t pos = 0; payload[pos++] = BT_RFCOMM_PN_RSP; payload[pos++] = 8 << 1 | 1; // len payload[pos++] = dlci; payload[pos++] = 0xe0; // pre defined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM payload[pos++] = priority; // priority payload[pos++] = 0; // max 60 seconds ack payload[pos++] = max_frame_size & 0xff; // max framesize low payload[pos++] = max_frame_size >> 8; // max framesize high payload[pos++] = 0x00; // number of retransmissions payload[pos++] = 0x00; // (unused error recovery window) initial number of credits return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos); } static int rfcomm_send_uih_rpn_rsp(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, rfcomm_rpn_data_t *rpn_data) { uint8_t payload[10]; uint8_t address = (1 << 0) | (multiplexer->outgoing << 1); uint8_t pos = 0; payload[pos++] = BT_RFCOMM_RPN_RSP; payload[pos++] = 8 << 1 | 1; // len payload[pos++] = (1 << 0) | (1 << 1) | (dlci << 2); // CMD => C/R = 1 payload[pos++] = rpn_data->baud_rate; payload[pos++] = rpn_data->flags; payload[pos++] = rpn_data->flow_control; payload[pos++] = rpn_data->xon; payload[pos++] = rpn_data->xoff; payload[pos++] = rpn_data->parameter_mask_0; payload[pos++] = rpn_data->parameter_mask_1; return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos); } static int rfcomm_send_uih_data(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint8_t *data, uint16_t len){ uint8_t address = (1 << 0) | (multiplexer->outgoing << 1) | (dlci << 2); return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, data, len); } static void rfcomm_send_uih_credits(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint8_t credits){ uint8_t address = (1 << 0) | (multiplexer->outgoing << 1) | (dlci << 2); rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH_PF, credits, NULL, 0); } // MARK: RFCOMM MULTIPLEXER static void rfcomm_multiplexer_finalize(rfcomm_multiplexer_t * multiplexer){ // remove (potential) timer if (multiplexer->timer_active) { run_loop_remove_timer(&multiplexer->timer); multiplexer->timer_active = 0; } // close and remove all channels linked_item_t *it = (linked_item_t *) &rfcomm_channels; while (it->next){ rfcomm_channel_t * channel = (rfcomm_channel_t *) it->next; if (channel->multiplexer == multiplexer) { // emit appropriate events if (channel->state == RFCOMM_CHANNEL_OPEN) { rfcomm_emit_channel_closed(channel); } else { rfcomm_emit_channel_opened(channel, RFCOMM_MULTIPLEXER_STOPPED); } // remove from list it->next = it->next->next; // free channel struct btstack_memory_rfcomm_channel_free(channel); } else { it = it->next; } } // keep reference to l2cap channel uint16_t l2cap_cid = multiplexer->l2cap_cid; // remove mutliplexer linked_list_remove( &rfcomm_multiplexers, (linked_item_t *) multiplexer); btstack_memory_rfcomm_multiplexer_free(multiplexer); // close l2cap multiplexer channel, too l2cap_disconnect_internal(l2cap_cid, 0x13); } static void rfcomm_multiplexer_timer_handler(timer_source_t *timer){ rfcomm_multiplexer_t * multiplexer = (rfcomm_multiplexer_t *) linked_item_get_user( (linked_item_t *) timer); if (!rfcomm_multiplexer_has_channels(multiplexer)){ log_info( "rfcomm_multiplexer_timer_handler timeout: shutting down multiplexer!\n"); rfcomm_multiplexer_finalize(multiplexer); } } static void rfcomm_multiplexer_prepare_idle_timer(rfcomm_multiplexer_t * multiplexer){ if (multiplexer->timer_active) { run_loop_remove_timer(&multiplexer->timer); multiplexer->timer_active = 0; } if (!rfcomm_multiplexer_has_channels(multiplexer)){ // start timer for multiplexer timeout check run_loop_set_timer(&multiplexer->timer, RFCOMM_MULIPLEXER_TIMEOUT_MS); multiplexer->timer.process = rfcomm_multiplexer_timer_handler; linked_item_set_user((linked_item_t*) &multiplexer->timer, multiplexer); run_loop_add_timer(&multiplexer->timer); multiplexer->timer_active = 1; } } static void rfcomm_multiplexer_opened(rfcomm_multiplexer_t *multiplexer){ log_info("Multiplexer up and running\n"); multiplexer->state = RFCOMM_MULTIPLEXER_OPEN; rfcomm_channel_event_t event = { CH_EVT_MULTIPLEXER_READY }; // transition of channels that wait for multiplexer linked_item_t *it; for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){ rfcomm_channel_t * channel = ((rfcomm_channel_t *) it); if (channel->multiplexer != multiplexer) continue; rfcomm_channel_state_machine(channel, &event); } rfcomm_run(); rfcomm_multiplexer_prepare_idle_timer(multiplexer); } /** * @return handled packet */ static int rfcomm_multiplexer_hci_event_handler(uint8_t *packet, uint16_t size){ bd_addr_t event_addr; uint16_t psm; uint16_t l2cap_cid; hci_con_handle_t con_handle; rfcomm_multiplexer_t *multiplexer = NULL; switch (packet[0]) { // accept incoming PSM_RFCOMM connection if no multiplexer exists yet case L2CAP_EVENT_INCOMING_CONNECTION: // data: event(8), len(8), address(48), handle (16), psm (16), source cid(16) dest cid(16) bt_flip_addr(event_addr, &packet[2]); con_handle = READ_BT_16(packet, 8); psm = READ_BT_16(packet, 10); l2cap_cid = READ_BT_16(packet, 12); if (psm != PSM_RFCOMM) break; multiplexer = rfcomm_multiplexer_for_addr(&event_addr); if (multiplexer) { log_info("INCOMING_CONNECTION (l2cap_cid 0x%02x) for PSM_RFCOMM => decline - multiplexer already exists", l2cap_cid); l2cap_decline_connection_internal(l2cap_cid, 0x04); // no resources available return 1; } // create and inititialize new multiplexer instance (incoming) multiplexer = rfcomm_multiplexer_create_for_addr(&event_addr); if (!multiplexer){ log_info("INCOMING_CONNECTION (l2cap_cid 0x%02x) for PSM_RFCOMM => decline - no memory left", l2cap_cid); l2cap_decline_connection_internal(l2cap_cid, 0x04); // no resources available return 1; } multiplexer->con_handle = con_handle; multiplexer->l2cap_cid = l2cap_cid; multiplexer->state = RFCOMM_MULTIPLEXER_W4_SABM_0; log_info("L2CAP_EVENT_INCOMING_CONNECTION (l2cap_cid 0x%02x) for PSM_RFCOMM => accept", l2cap_cid); l2cap_accept_connection_internal(l2cap_cid); return 1; // l2cap connection opened -> store l2cap_cid, remote_addr case L2CAP_EVENT_CHANNEL_OPENED: if (READ_BT_16(packet, 11) != PSM_RFCOMM) break; log_info("L2CAP_EVENT_CHANNEL_OPENED for PSM_RFCOMM\n"); // get multiplexer for remote addr con_handle = READ_BT_16(packet, 9); l2cap_cid = READ_BT_16(packet, 13); bt_flip_addr(event_addr, &packet[3]); multiplexer = rfcomm_multiplexer_for_addr(&event_addr); if (!multiplexer) { log_error("L2CAP_EVENT_CHANNEL_OPENED but no multiplexer prepared\n"); return 1; } if (multiplexer->state == RFCOMM_MULTIPLEXER_W4_CONNECT) { log_info("L2CAP_EVENT_CHANNEL_OPENED: outgoing connection\n"); // wrong remote addr if (BD_ADDR_CMP(event_addr, multiplexer->remote_addr)) break; multiplexer->l2cap_cid = l2cap_cid; multiplexer->con_handle = con_handle; // send SABM #0 multiplexer->state = RFCOMM_MULTIPLEXER_SEND_SABM_0; } else { // multiplexer->state == RFCOMM_MULTIPLEXER_W4_SABM_0 // set max frame size based on l2cap MTU multiplexer->max_frame_size = rfcomm_max_frame_size_for_l2cap_mtu(READ_BT_16(packet, 17)); } return 1; // l2cap disconnect -> state = RFCOMM_MULTIPLEXER_CLOSED; case L2CAP_EVENT_CREDITS: // data: event(8), len(8), local_cid(16), credits(8) l2cap_cid = READ_BT_16(packet, 2); multiplexer = rfcomm_multiplexer_for_l2cap_cid(l2cap_cid); if (!multiplexer) break; multiplexer->l2cap_credits += packet[4]; // log_info("L2CAP_EVENT_CREDITS: %u (now %u)\n", packet[4], multiplexer->l2cap_credits); // new credits, continue with signaling rfcomm_run(); if (multiplexer->state != RFCOMM_MULTIPLEXER_OPEN) break; rfcomm_hand_out_credits(); return 1; case DAEMON_EVENT_HCI_PACKET_SENT: // testing DMA done code rfcomm_run(); break; case L2CAP_EVENT_CHANNEL_CLOSED: // data: event (8), len(8), channel (16) l2cap_cid = READ_BT_16(packet, 2); multiplexer = rfcomm_multiplexer_for_l2cap_cid(l2cap_cid); if (!multiplexer) break; switch (multiplexer->state) { case RFCOMM_MULTIPLEXER_W4_SABM_0: case RFCOMM_MULTIPLEXER_W4_UA_0: case RFCOMM_MULTIPLEXER_OPEN: rfcomm_multiplexer_finalize(multiplexer); return 1; default: break; } break; default: break; } return 0; } static int rfcomm_multiplexer_l2cap_packet_handler(uint16_t channel, uint8_t *packet, uint16_t size){ // get or create a multiplexer for a certain device rfcomm_multiplexer_t *multiplexer = rfcomm_multiplexer_for_l2cap_cid(channel); if (!multiplexer) return 0; // but only care for multiplexer control channel uint8_t frame_dlci = packet[0] >> 2; if (frame_dlci) return 0; const uint8_t length_offset = (packet[2] & 1) ^ 1; // to be used for pos >= 3 const uint8_t credit_offset = ((packet[1] & BT_RFCOMM_UIH_PF) == BT_RFCOMM_UIH_PF) ? 1 : 0; // credits for uih_pf frames const uint8_t payload_offset = 3 + length_offset + credit_offset; switch (packet[1]){ case BT_RFCOMM_SABM: if (multiplexer->state == RFCOMM_MULTIPLEXER_W4_SABM_0){ log_info("Received SABM #0\n"); multiplexer->outgoing = 0; multiplexer->state = RFCOMM_MULTIPLEXER_SEND_UA_0; return 1; } break; case BT_RFCOMM_UA: if (multiplexer->state == RFCOMM_MULTIPLEXER_W4_UA_0) { // UA #0 -> send UA #0, state = RFCOMM_MULTIPLEXER_OPEN log_info("Received UA #0 \n"); rfcomm_multiplexer_opened(multiplexer); return 1; } break; case BT_RFCOMM_DISC: // DISC #0 -> send UA #0, close multiplexer log_info("Received DISC #0, (ougoing = %u)\n", multiplexer->outgoing); multiplexer->state = RFCOMM_MULTIPLEXER_SEND_UA_0_AND_DISC; return 1; case BT_RFCOMM_DM: // DM #0 - we shouldn't get this, just give up log_info("Received DM #0\n"); log_info("-> Closing down multiplexer\n"); rfcomm_multiplexer_finalize(multiplexer); return 1; case BT_RFCOMM_UIH: if (packet[payload_offset] == BT_RFCOMM_CLD_CMD){ // Multiplexer close down (CLD) -> close mutliplexer log_info("Received Multiplexer close down command\n"); log_info("-> Closing down multiplexer\n"); rfcomm_multiplexer_finalize(multiplexer); return 1; } break; default: break; } return 0; } static void rfcomm_multiplexer_state_machine(rfcomm_multiplexer_t * multiplexer, RFCOMM_MULTIPLEXER_EVENT event){ // process stored DM responses if (multiplexer->send_dm_for_dlci){ rfcomm_send_dm_pf(multiplexer, multiplexer->send_dm_for_dlci); multiplexer->send_dm_for_dlci = 0; } switch (multiplexer->state) { case RFCOMM_MULTIPLEXER_SEND_SABM_0: switch (event) { case MULT_EV_READY_TO_SEND: log_info("Sending SABM #0 - (multi 0x%p)\n", multiplexer); multiplexer->state = RFCOMM_MULTIPLEXER_W4_UA_0; rfcomm_send_sabm(multiplexer, 0); break; default: break; } break; case RFCOMM_MULTIPLEXER_SEND_UA_0: switch (event) { case MULT_EV_READY_TO_SEND: log_info("Sending UA #0\n"); multiplexer->state = RFCOMM_MULTIPLEXER_OPEN; rfcomm_send_ua(multiplexer, 0); rfcomm_multiplexer_opened(multiplexer); break; default: break; } break; case RFCOMM_MULTIPLEXER_SEND_UA_0_AND_DISC: switch (event) { case MULT_EV_READY_TO_SEND: log_info("Sending UA #0\n"); log_info("Closing down multiplexer\n"); multiplexer->state = RFCOMM_MULTIPLEXER_CLOSED; rfcomm_send_ua(multiplexer, 0); rfcomm_multiplexer_finalize(multiplexer); // try to detect authentication errors: drop link key if multiplexer closed before first channel got opened if (!multiplexer->at_least_one_connection){ log_info("TODO: no connections established - delete link key prophylactically\n"); // hci_send_cmd(&hci_delete_stored_link_key, multiplexer->remote_addr); } default: break; } break; default: break; } } // MARK: RFCOMM CHANNEL static void rfcomm_hand_out_credits(void){ linked_item_t * it; for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){ rfcomm_channel_t * channel = (rfcomm_channel_t *) it; if (channel->state != RFCOMM_CHANNEL_OPEN) { // log_info("RFCOMM_EVENT_CREDITS: multiplexer not open\n"); continue; } if (channel->packets_granted) { // log_info("RFCOMM_EVENT_CREDITS: already packets granted\n"); continue; } if (!channel->credits_outgoing) { // log_info("RFCOMM_EVENT_CREDITS: no outgoing credits\n"); continue; } if (!channel->multiplexer->l2cap_credits){ // log_info("RFCOMM_EVENT_CREDITS: no l2cap credits\n"); continue; } // channel open, multiplexer has l2cap credits and we didn't hand out credit before -> go! // log_info("RFCOMM_EVENT_CREDITS: 1\n"); channel->packets_granted += 1; rfcomm_emit_credits(channel, 1); } } static void rfcomm_channel_send_credits(rfcomm_channel_t *channel, uint8_t credits){ rfcomm_send_uih_credits(channel->multiplexer, channel->dlci, credits); channel->credits_incoming += credits; rfcomm_emit_credit_status(channel); } static void rfcomm_channel_opened(rfcomm_channel_t *rfChannel){ log_info("rfcomm_channel_opened!\n"); rfChannel->state = RFCOMM_CHANNEL_OPEN; rfcomm_emit_channel_opened(rfChannel, 0); rfcomm_hand_out_credits(); // remove (potential) timer rfcomm_multiplexer_t *multiplexer = rfChannel->multiplexer; if (multiplexer->timer_active) { run_loop_remove_timer(&multiplexer->timer); multiplexer->timer_active = 0; } // hack for problem detecting authentication failure multiplexer->at_least_one_connection = 1; // start next connection request if pending rfcomm_run(); } static void rfcomm_channel_packet_handler_uih(rfcomm_multiplexer_t *multiplexer, uint8_t * packet, uint16_t size){ const uint8_t frame_dlci = packet[0] >> 2; const uint8_t length_offset = (packet[2] & 1) ^ 1; // to be used for pos >= 3 const uint8_t credit_offset = ((packet[1] & BT_RFCOMM_UIH_PF) == BT_RFCOMM_UIH_PF) ? 1 : 0; // credits for uih_pf frames const uint8_t payload_offset = 3 + length_offset + credit_offset; rfcomm_channel_t * channel = rfcomm_channel_for_multiplexer_and_dlci(multiplexer, frame_dlci); if (!channel) return; // handle new outgoing credits if (packet[1] == BT_RFCOMM_UIH_PF) { // add them uint16_t new_credits = packet[3+length_offset]; channel->credits_outgoing += new_credits; log_info( "RFCOMM data UIH_PF, new credits: %u, now %u\n", new_credits, channel->credits_outgoing); // notify channel statemachine rfcomm_channel_event_t channel_event = { CH_EVT_RCVD_CREDITS }; rfcomm_channel_state_machine(channel, &channel_event); } // contains payload? if (size - 1 > payload_offset){ // log_info( "RFCOMM data UIH_PF, size %u, channel %p\n", size-payload_offset-1, rfChannel->connection); // decrease incoming credit counter if (channel->credits_incoming > 0){ channel->credits_incoming--; } // deliver payload (*app_packet_handler)(channel->connection, RFCOMM_DATA_PACKET, channel->rfcomm_cid, &packet[payload_offset], size-payload_offset-1); } // automatically provide new credits to remote device, if no incoming flow control if (!channel->incoming_flow_control && channel->credits_incoming < 5){ channel->new_credits_incoming = 0x30; } rfcomm_emit_credit_status(channel); // we received new RFCOMM credits, hand them out if possible rfcomm_hand_out_credits(); } static void rfcomm_channel_accept_pn(rfcomm_channel_t *channel, rfcomm_channel_event_pn_t *event){ // priority of client request channel->pn_priority = event->priority; // new credits channel->credits_outgoing = event->credits_outgoing; // negotiate max frame size if (channel->max_frame_size > channel->multiplexer->max_frame_size) { channel->max_frame_size = channel->multiplexer->max_frame_size; } if (channel->max_frame_size > event->max_frame_size) { channel->max_frame_size = event->max_frame_size; } } static void rfcomm_channel_finalize(rfcomm_channel_t *channel){ rfcomm_multiplexer_t *multiplexer = channel->multiplexer; // remove from list linked_list_remove( &rfcomm_channels, (linked_item_t *) channel); // free channel btstack_memory_rfcomm_channel_free(channel); // update multiplexer timeout after channel was removed from list rfcomm_multiplexer_prepare_idle_timer(multiplexer); } static void rfcomm_channel_state_machine_2(rfcomm_multiplexer_t * multiplexer, uint8_t dlci, rfcomm_channel_event_t *event){ // TODO: if client max frame size is smaller than RFCOMM_DEFAULT_SIZE, send PN // lookup existing channel rfcomm_channel_t * channel = rfcomm_channel_for_multiplexer_and_dlci(multiplexer, dlci); // log_info("rfcomm_channel_state_machine_2 lookup dlci #%u = 0x%08x - event %u\n", dlci, (int) channel, event->type); if (channel) { rfcomm_channel_state_machine(channel, event); return; } // service registered? rfcomm_service_t * service = rfcomm_service_for_channel(dlci >> 1); // log_info("rfcomm_channel_state_machine_2 service dlci #%u = 0x%08x\n", dlci, (int) service); if (!service) { // discard request by sending disconnected mode multiplexer->send_dm_for_dlci = dlci; return; } // create channel for some events switch (event->type) { case CH_EVT_RCVD_SABM: case CH_EVT_RCVD_PN: case CH_EVT_RCVD_RPN_REQ: case CH_EVT_RCVD_RPN_CMD: // setup incoming channel channel = rfcomm_channel_create(multiplexer, service, dlci >> 1); if (!channel){ // discard request by sending disconnected mode multiplexer->send_dm_for_dlci = dlci; } break; default: break; } if (!channel) { // discard request by sending disconnected mode multiplexer->send_dm_for_dlci = dlci; return; } channel->connection = service->connection; rfcomm_channel_state_machine(channel, event); } void rfcomm_channel_packet_handler(rfcomm_multiplexer_t * multiplexer, uint8_t *packet, uint16_t size){ // rfcomm: (0) addr [76543 server channel] [2 direction: initiator uses 1] [1 C/R: CMD by initiator = 1] [0 EA=1] const uint8_t frame_dlci = packet[0] >> 2; uint8_t message_dlci; // used by commands in UIH(_PF) packets uint8_t message_len; // " // rfcomm: (1) command/control // -- credits_offset = 1 if command == BT_RFCOMM_UIH_PF const uint8_t credit_offset = ((packet[1] & BT_RFCOMM_UIH_PF) == BT_RFCOMM_UIH_PF) ? 1 : 0; // credits for uih_pf frames // rfcomm: (2) length. if bit 0 is cleared, 2 byte length is used. (little endian) const uint8_t length_offset = (packet[2] & 1) ^ 1; // to be used for pos >= 3 // rfcomm: (3+length_offset) credits if credits_offset == 1 // rfcomm: (3+length_offest+credits_offset) const uint8_t payload_offset = 3 + length_offset + credit_offset; rfcomm_channel_event_t event; rfcomm_channel_event_pn_t event_pn; rfcomm_channel_event_rpn_t event_rpn; // switch by rfcomm message type switch(packet[1]) { case BT_RFCOMM_SABM: event.type = CH_EVT_RCVD_SABM; log_info("Received SABM #%u\n", frame_dlci); rfcomm_channel_state_machine_2(multiplexer, frame_dlci, &event); break; case BT_RFCOMM_UA: event.type = CH_EVT_RCVD_UA; log_info("Received UA #%u - channel opened\n",frame_dlci); rfcomm_channel_state_machine_2(multiplexer, frame_dlci, &event); break; case BT_RFCOMM_DISC: event.type = CH_EVT_RCVD_DISC; rfcomm_channel_state_machine_2(multiplexer, frame_dlci, &event); break; case BT_RFCOMM_DM: case BT_RFCOMM_DM_PF: event.type = CH_EVT_RCVD_DM; rfcomm_channel_state_machine_2(multiplexer, frame_dlci, &event); break; case BT_RFCOMM_UIH_PF: case BT_RFCOMM_UIH: message_len = packet[payload_offset+1] >> 1; switch (packet[payload_offset]) { case BT_RFCOMM_PN_CMD: message_dlci = packet[payload_offset+2]; event_pn.super.type = CH_EVT_RCVD_PN; event_pn.priority = packet[payload_offset+4]; event_pn.max_frame_size = READ_BT_16(packet, payload_offset+6); event_pn.credits_outgoing = packet[payload_offset+9]; log_info("Received UIH Parameter Negotiation Command for #%u\n", message_dlci); rfcomm_channel_state_machine_2(multiplexer, message_dlci, (rfcomm_channel_event_t*) &event_pn); break; case BT_RFCOMM_PN_RSP: message_dlci = packet[payload_offset+2]; event_pn.super.type = CH_EVT_RCVD_PN_RSP; event_pn.priority = packet[payload_offset+4]; event_pn.max_frame_size = READ_BT_16(packet, payload_offset+6); event_pn.credits_outgoing = packet[payload_offset+9]; log_info("UIH Parameter Negotiation Response max frame %u, credits %u\n", event_pn.max_frame_size, event_pn.credits_outgoing); rfcomm_channel_state_machine_2(multiplexer, message_dlci, (rfcomm_channel_event_t*) &event_pn); break; case BT_RFCOMM_MSC_CMD: message_dlci = packet[payload_offset+2] >> 2; event.type = CH_EVT_RCVD_MSC_CMD; log_info("Received MSC CMD for #%u, \n", message_dlci); rfcomm_channel_state_machine_2(multiplexer, message_dlci, &event); break; case BT_RFCOMM_MSC_RSP: message_dlci = packet[payload_offset+2] >> 2; event.type = CH_EVT_RCVD_MSC_RSP; log_info("Received MSC RSP for #%u\n", message_dlci); rfcomm_channel_state_machine_2(multiplexer, message_dlci, &event); break; case BT_RFCOMM_RPN_CMD: message_dlci = packet[payload_offset+2] >> 2; switch (message_len){ case 1: log_info("Received Remote Port Negotiation for #%u\n", message_dlci); event.type = CH_EVT_RCVD_RPN_REQ; rfcomm_channel_state_machine_2(multiplexer, message_dlci, &event); break; case 8: log_info("Received Remote Port Negotiation (Info) for #%u\n", message_dlci); event_rpn.super.type = CH_EVT_RCVD_RPN_CMD; event_rpn.data.baud_rate = packet[payload_offset+3]; event_rpn.data.flags = packet[payload_offset+4]; event_rpn.data.flow_control = packet[payload_offset+5]; event_rpn.data.xon = packet[payload_offset+6]; event_rpn.data.xoff = packet[payload_offset+7]; event_rpn.data.parameter_mask_0 = packet[payload_offset+8]; event_rpn.data.parameter_mask_1 = packet[payload_offset+9]; rfcomm_channel_state_machine_2(multiplexer, message_dlci, (rfcomm_channel_event_t*) &event_rpn); break; default: break; } break; default: log_error("Received unknown UIH packet - 0x%02x\n", packet[payload_offset]); break; } break; default: log_error("Received unknown RFCOMM message type %x\n", packet[1]); break; } // trigger next action - example W4_PN_RSP: transition to SEND_SABM which only depends on "can send" rfcomm_run(); } void rfcomm_packet_handler(uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ // multiplexer handler int handled = 0; switch (packet_type) { case HCI_EVENT_PACKET: handled = rfcomm_multiplexer_hci_event_handler(packet, size); break; case L2CAP_DATA_PACKET: handled = rfcomm_multiplexer_l2cap_packet_handler(channel, packet, size); break; default: break; } if (handled) { rfcomm_run(); return; } // we only handle l2cap packet over open multiplexer channel now if (packet_type != L2CAP_DATA_PACKET) { (*app_packet_handler)(NULL, packet_type, channel, packet, size); return; } rfcomm_multiplexer_t * multiplexer = rfcomm_multiplexer_for_l2cap_cid(channel); if (!multiplexer || multiplexer->state != RFCOMM_MULTIPLEXER_OPEN) { (*app_packet_handler)(NULL, packet_type, channel, packet, size); return; } // channel data ? // rfcomm: (0) addr [76543 server channel] [2 direction: initiator uses 1] [1 C/R: CMD by initiator = 1] [0 EA=1] const uint8_t frame_dlci = packet[0] >> 2; if (frame_dlci && (packet[1] == BT_RFCOMM_UIH || packet[1] == BT_RFCOMM_UIH_PF)) { rfcomm_channel_packet_handler_uih(multiplexer, packet, size); rfcomm_run(); return; } rfcomm_channel_packet_handler(multiplexer, packet, size); } static int rfcomm_channel_ready_for_open(rfcomm_channel_t *channel){ // log_info("rfcomm_channel_ready_for_open state %u, flags needed %04x, current %04x, rf credits %u, l2cap credits %u \n", channel->state, RFCOMM_CHANNEL_STATE_VAR_RCVD_MSC_RSP|RFCOMM_CHANNEL_STATE_VAR_SENT_MSC_RSP|RFCOMM_CHANNEL_STATE_VAR_SENT_CREDITS, channel->state_var, channel->credits_outgoing, channel->multiplexer->l2cap_credits); if ((channel->state_var & RFCOMM_CHANNEL_STATE_VAR_RCVD_MSC_RSP) == 0) return 0; if ((channel->state_var & RFCOMM_CHANNEL_STATE_VAR_SENT_MSC_RSP) == 0) return 0; if ((channel->state_var & RFCOMM_CHANNEL_STATE_VAR_SENT_CREDITS) == 0) return 0; if (channel->credits_outgoing == 0) return 0; return 1; } static void rfcomm_channel_state_machine(rfcomm_channel_t *channel, rfcomm_channel_event_t *event){ // log_info("rfcomm_channel_state_machine: state %u, state_var %04x, event %u\n", channel->state, channel->state_var ,event->type); rfcomm_multiplexer_t *multiplexer = channel->multiplexer; // TODO: integrate in common switch if (event->type == CH_EVT_RCVD_DISC){ rfcomm_emit_channel_closed(channel); channel->state = RFCOMM_CHANNEL_SEND_UA_AFTER_DISC; return; } // TODO: integrate in common switch if (event->type == CH_EVT_RCVD_DM){ log_info("Received DM message for #%u\n", channel->dlci); log_info("-> Closing channel locally for #%u\n", channel->dlci); rfcomm_emit_channel_closed(channel); rfcomm_channel_finalize(channel); return; } // remote port negotiation command - just accept everything for now // // "The RPN command can be used before a new DLC is opened and should be used whenever the port settings change." // "The RPN command is specified as optional in TS 07.10, but it is mandatory to recognize and respond to it in RFCOMM. // (Although the handling of individual settings are implementation-dependent.)" // // TODO: integrate in common switch if (event->type == CH_EVT_RCVD_RPN_CMD){ // control port parameters rfcomm_channel_event_rpn_t *event_rpn = (rfcomm_channel_event_rpn_t*) event; memcpy(&channel->rpn_data, &event_rpn->data, sizeof(rfcomm_rpn_data_t)); channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_RPN_RSP; return; } // TODO: integrate in common switch if (event->type == CH_EVT_RCVD_RPN_REQ){ // default rpn rsp rfcomm_rpn_data_t rpn_data; rpn_data.baud_rate = 0xa0; /* 9600 bps */ rpn_data.flags = 0x03; /* 8-n-1 */ rpn_data.flow_control = 0; /* no flow control */ rpn_data.xon = 0xd1; /* XON */ rpn_data.xoff = 0xd3; /* XOFF */ rpn_data.parameter_mask_0 = 0x7f; /* parameter mask, all values set */ rpn_data.parameter_mask_1 = 0x3f; /* parameter mask, all values set */ memcpy(&channel->rpn_data, &rpn_data, sizeof(rfcomm_rpn_data_t)); channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_RPN_RSP; return; } // TODO: integrate in common swich if (event->type == CH_EVT_READY_TO_SEND){ if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_SEND_RPN_RSP){ log_info("Sending Remote Port Negotiation RSP for #%u\n", channel->dlci); channel->state_var &= ~RFCOMM_CHANNEL_STATE_VAR_SEND_RPN_RSP; rfcomm_send_uih_rpn_rsp(multiplexer, channel->dlci, &channel->rpn_data); return; } } rfcomm_channel_event_pn_t * event_pn = (rfcomm_channel_event_pn_t*) event; switch (channel->state) { case RFCOMM_CHANNEL_CLOSED: switch (event->type){ case CH_EVT_RCVD_SABM: log_info("-> Inform app\n"); channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_RCVD_SABM; channel->state = RFCOMM_CHANNEL_INCOMING_SETUP; rfcomm_emit_connection_request(channel); break; case CH_EVT_RCVD_PN: rfcomm_channel_accept_pn(channel, event_pn); log_info("-> Inform app\n"); channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_RCVD_PN; channel->state = RFCOMM_CHANNEL_INCOMING_SETUP; rfcomm_emit_connection_request(channel); break; default: break; } break; case RFCOMM_CHANNEL_INCOMING_SETUP: switch (event->type){ case CH_EVT_RCVD_SABM: channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_RCVD_SABM; if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_CLIENT_ACCEPTED) { channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_UA; } break; case CH_EVT_RCVD_PN: rfcomm_channel_accept_pn(channel, event_pn); channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_RCVD_PN; if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_CLIENT_ACCEPTED) { channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_PN_RSP; } break; case CH_EVT_READY_TO_SEND: if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_SEND_PN_RSP){ log_info("Sending UIH Parameter Negotiation Respond for #%u\n", channel->dlci); channel->state_var &= ~RFCOMM_CHANNEL_STATE_VAR_SEND_PN_RSP; rfcomm_send_uih_pn_response(multiplexer, channel->dlci, channel->pn_priority, channel->max_frame_size); } else if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_SEND_UA){ log_info("Sending UA #%u\n", channel->dlci); channel->state_var &= ~RFCOMM_CHANNEL_STATE_VAR_SEND_UA; rfcomm_send_ua(multiplexer, channel->dlci); } if ((channel->state_var & RFCOMM_CHANNEL_STATE_VAR_CLIENT_ACCEPTED) && (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_RCVD_SABM)) { channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_CMD; channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_CREDITS; channel->state = RFCOMM_CHANNEL_DLC_SETUP; } break; default: break; } break; case RFCOMM_CHANNEL_W4_MULTIPLEXER: switch (event->type) { case CH_EVT_MULTIPLEXER_READY: log_info("Muliplexer opened, sending UIH PN next\n"); channel->state = RFCOMM_CHANNEL_SEND_UIH_PN; break; default: break; } break; case RFCOMM_CHANNEL_SEND_UIH_PN: switch (event->type) { case CH_EVT_READY_TO_SEND: log_info("Sending UIH Parameter Negotiation Command for #%u (channel 0x%p)\n", channel->dlci, channel ); channel->state = RFCOMM_CHANNEL_W4_PN_RSP; rfcomm_send_uih_pn_command(multiplexer, channel->dlci, channel->max_frame_size); break; default: break; } break; case RFCOMM_CHANNEL_W4_PN_RSP: switch (event->type){ case CH_EVT_RCVD_PN_RSP: // update max frame size if (channel->max_frame_size > event_pn->max_frame_size) { channel->max_frame_size = event_pn->max_frame_size; } // new credits channel->credits_outgoing = event_pn->credits_outgoing; channel->state = RFCOMM_CHANNEL_SEND_SABM_W4_UA; break; default: break; } break; case RFCOMM_CHANNEL_SEND_SABM_W4_UA: switch (event->type) { case CH_EVT_READY_TO_SEND: log_info("Sending SABM #%u\n", channel->dlci); channel->state = RFCOMM_CHANNEL_W4_UA; rfcomm_send_sabm(multiplexer, channel->dlci); break; default: break; } break; case RFCOMM_CHANNEL_W4_UA: switch (event->type){ case CH_EVT_RCVD_UA: channel->state = RFCOMM_CHANNEL_DLC_SETUP; channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_CMD; channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_CREDITS; break; default: break; } break; case RFCOMM_CHANNEL_DLC_SETUP: switch (event->type){ case CH_EVT_RCVD_MSC_CMD: channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_RCVD_MSC_CMD; channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_RSP; break; case CH_EVT_RCVD_MSC_RSP: channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_RCVD_MSC_RSP; break; case CH_EVT_READY_TO_SEND: if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_CMD){ log_info("Sending MSC CMD for #%u\n", channel->dlci); channel->state_var &= ~RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_CMD; channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SENT_MSC_CMD; rfcomm_send_uih_msc_cmd(multiplexer, channel->dlci , 0x8d); // ea=1,fc=0,rtc=1,rtr=1,ic=0,dv=1 break; } if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_RSP){ log_info("Sending MSC RSP for #%u\n", channel->dlci); channel->state_var &= ~RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_RSP; channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SENT_MSC_RSP; rfcomm_send_uih_msc_rsp(multiplexer, channel->dlci, 0x8d); // ea=1,fc=0,rtc=1,rtr=1,ic=0,dv=1 break; } if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_SEND_CREDITS){ log_info("Providing credits for #%u\n", channel->dlci); channel->state_var &= ~RFCOMM_CHANNEL_STATE_VAR_SEND_CREDITS; channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SENT_CREDITS; if (channel->new_credits_incoming) { uint8_t new_credits = channel->new_credits_incoming; channel->new_credits_incoming = 0; rfcomm_channel_send_credits(channel, new_credits); } break; } break; default: break; } // finally done? if (rfcomm_channel_ready_for_open(channel)){ channel->state = RFCOMM_CHANNEL_OPEN; rfcomm_channel_opened(channel); } break; case RFCOMM_CHANNEL_OPEN: switch (event->type){ case CH_EVT_RCVD_MSC_CMD: channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_RSP; break; case CH_EVT_READY_TO_SEND: if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_RSP){ log_info("Sending MSC RSP for #%u\n", channel->dlci); channel->state_var &= ~RFCOMM_CHANNEL_STATE_VAR_SEND_MSC_RSP; rfcomm_send_uih_msc_rsp(multiplexer, channel->dlci, 0x8d); // ea=1,fc=0,rtc=1,rtr=1,ic=0,dv=1 break; } if (channel->new_credits_incoming) { uint8_t new_credits = channel->new_credits_incoming; channel->new_credits_incoming = 0; rfcomm_channel_send_credits(channel, new_credits); break; } break; case CH_EVT_RCVD_CREDITS: { // notify daemon -> might trigger re-try of parked connections uint8_t event[1] = { DAEMON_EVENT_NEW_RFCOMM_CREDITS }; (*app_packet_handler)(channel->connection, DAEMON_EVENT_PACKET, channel->rfcomm_cid, event, sizeof(event)); break; } default: break; } break; case RFCOMM_CHANNEL_SEND_DM: switch (event->type) { case CH_EVT_READY_TO_SEND: log_info("Sending DM_PF for #%u\n", channel->dlci); // don't emit channel closed - channel was never open channel->state = RFCOMM_CHANNEL_CLOSED; rfcomm_send_dm_pf(multiplexer, channel->dlci); rfcomm_channel_finalize(channel); break; default: break; } break; case RFCOMM_CHANNEL_SEND_DISC: switch (event->type) { case CH_EVT_READY_TO_SEND: channel->state = RFCOMM_CHANNEL_CLOSED; rfcomm_send_disc(multiplexer, channel->dlci); rfcomm_emit_channel_closed(channel); rfcomm_channel_finalize(channel); break; default: break; } break; case RFCOMM_CHANNEL_SEND_UA_AFTER_DISC: switch (event->type) { case CH_EVT_READY_TO_SEND: log_info("Sending UA after DISC for #%u\n", channel->dlci); channel->state = RFCOMM_CHANNEL_CLOSED; rfcomm_send_ua(multiplexer, channel->dlci); rfcomm_channel_finalize(channel); break; default: break; } break; default: break; } } // MARK: RFCOMM RUN // process outstanding signaling tasks static void rfcomm_run(void){ linked_item_t *it; linked_item_t *next; for (it = (linked_item_t *) rfcomm_multiplexers; it ; it = next){ next = it->next; // be prepared for removal of channel in state machine rfcomm_multiplexer_t * multiplexer = ((rfcomm_multiplexer_t *) it); if (!l2cap_can_send_packet_now(multiplexer->l2cap_cid)) { // log_info("rfcomm_run cannot send l2cap packet for #%u, credits %u\n", multiplexer->l2cap_cid, multiplexer->l2cap_credits); continue; } // log_info("rfcomm_run: multi 0x%08x, state %u\n", (int) multiplexer, multiplexer->state); rfcomm_multiplexer_state_machine(multiplexer, MULT_EV_READY_TO_SEND); } for (it = (linked_item_t *) rfcomm_channels; it ; it = next){ next = it->next; // be prepared for removal of channel in state machine rfcomm_channel_t * channel = ((rfcomm_channel_t *) it); rfcomm_multiplexer_t * multiplexer = channel->multiplexer; if (!l2cap_can_send_packet_now(multiplexer->l2cap_cid)) continue; rfcomm_channel_event_t event = { CH_EVT_READY_TO_SEND }; rfcomm_channel_state_machine(channel, &event); } } // MARK: RFCOMM BTstack API void rfcomm_init(void){ rfcomm_client_cid_generator = 0; rfcomm_multiplexers = NULL; rfcomm_services = NULL; rfcomm_channels = NULL; } // register packet handler void rfcomm_register_packet_handler(void (*handler)(void * connection, uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size)){ app_packet_handler = handler; } // send packet over specific channel int rfcomm_send_internal(uint16_t rfcomm_cid, uint8_t *data, uint16_t len){ rfcomm_channel_t * channel = rfcomm_channel_for_rfcomm_cid(rfcomm_cid); if (!channel){ log_error("rfcomm_send_internal cid %u doesn't exist!\n", rfcomm_cid); return 0; } if (!channel->credits_outgoing){ log_info("rfcomm_send_internal cid %u, no rfcomm outgoing credits!\n", rfcomm_cid); return RFCOMM_NO_OUTGOING_CREDITS; } if (!channel->packets_granted){ log_info("rfcomm_send_internal cid %u, no rfcomm credits granted!\n", rfcomm_cid); return RFCOMM_NO_OUTGOING_CREDITS; } // log_info("rfcomm_send_internal: len %u... outgoing credits %u, l2cap credit %us, granted %u\n", // len, channel->credits_outgoing, channel->multiplexer->l2cap_credits, channel->packets_granted); // send might cause l2cap to emit new credits, update counters first channel->credits_outgoing--; int packets_granted_decreased = 0; if (channel->packets_granted) { channel->packets_granted--; packets_granted_decreased++; } int result = rfcomm_send_uih_data(channel->multiplexer, channel->dlci, data, len); if (result != 0) { channel->credits_outgoing++; channel->packets_granted += packets_granted_decreased; log_info("rfcomm_send_internal: error %d\n", result); return result; } // log_info("rfcomm_send_internal: now outgoing credits %u, l2cap credit %us, granted %u\n", // channel->credits_outgoing, channel->multiplexer->l2cap_credits, channel->packets_granted); rfcomm_hand_out_credits(); return result; } void rfcomm_create_channel2(void * connection, bd_addr_t *addr, uint8_t server_channel, uint8_t incoming_flow_control, uint8_t initial_credits){ log_info("rfcomm_create_channel_internal to %s, at channel #%02x, flow control %u, init credits %u\n", bd_addr_to_str(*addr), server_channel, incoming_flow_control, initial_credits); // create new multiplexer if necessary rfcomm_multiplexer_t * multiplexer = rfcomm_multiplexer_for_addr(addr); if (!multiplexer) { multiplexer = rfcomm_multiplexer_create_for_addr(addr); if (!multiplexer){ rfcomm_emit_channel_open_failed_outgoing_memory(connection, addr, server_channel); return; } multiplexer->outgoing = 1; multiplexer->state = RFCOMM_MULTIPLEXER_W4_CONNECT; } // prepare channel rfcomm_channel_t * channel = rfcomm_channel_create(multiplexer, NULL, server_channel); if (!channel){ rfcomm_emit_channel_open_failed_outgoing_memory(connection, addr, server_channel); return; } channel->connection = connection; channel->incoming_flow_control = incoming_flow_control; channel->new_credits_incoming = initial_credits; // start multiplexer setup if (multiplexer->state != RFCOMM_MULTIPLEXER_OPEN) { channel->state = RFCOMM_CHANNEL_W4_MULTIPLEXER; l2cap_create_channel_internal(connection, rfcomm_packet_handler, *addr, PSM_RFCOMM, l2cap_max_mtu()); return; } channel->state = RFCOMM_CHANNEL_SEND_UIH_PN; // start connecting, if multiplexer is already up and running rfcomm_run(); } void rfcomm_create_channel_with_initial_credits_internal(void * connection, bd_addr_t *addr, uint8_t server_channel, uint8_t initial_credits){ rfcomm_create_channel2(connection, addr, server_channel, 1, initial_credits); } void rfcomm_create_channel_internal(void * connection, bd_addr_t *addr, uint8_t server_channel){ rfcomm_create_channel2(connection, addr, server_channel, 0, 0x30); } void rfcomm_disconnect_internal(uint16_t rfcomm_cid){ rfcomm_channel_t * channel = rfcomm_channel_for_rfcomm_cid(rfcomm_cid); if (channel) { channel->state = RFCOMM_CHANNEL_SEND_DISC; } // process rfcomm_run(); } void rfcomm_register_service2(void * connection, uint8_t channel, uint16_t max_frame_size, uint8_t incoming_flow_control, uint8_t initial_credits){ // check if already registered rfcomm_service_t * service = rfcomm_service_for_channel(channel); if (service){ rfcomm_emit_service_registered(connection, RFCOMM_CHANNEL_ALREADY_REGISTERED, channel); return; } // alloc structure service = (rfcomm_service_t*)btstack_memory_rfcomm_service_get(); if (!service) { rfcomm_emit_service_registered(connection, BTSTACK_MEMORY_ALLOC_FAILED, channel); return; } // register with l2cap if not registered before, max MTU if (linked_list_empty(&rfcomm_services)){ l2cap_register_service_internal(NULL, rfcomm_packet_handler, PSM_RFCOMM, 0xffff); } // fill in service->connection = connection; service->server_channel = channel; service->max_frame_size = max_frame_size; service->incoming_flow_control = incoming_flow_control; service->incoming_initial_credits = initial_credits; // add to services list linked_list_add(&rfcomm_services, (linked_item_t *) service); // done rfcomm_emit_service_registered(connection, 0, channel); } void rfcomm_register_service_with_initial_credits_internal(void * connection, uint8_t channel, uint16_t max_frame_size, uint8_t initial_credits){ rfcomm_register_service2(connection, channel, max_frame_size, 1, initial_credits); } void rfcomm_register_service_internal(void * connection, uint8_t channel, uint16_t max_frame_size){ rfcomm_register_service2(connection, channel, max_frame_size, 0, 0x30); } void rfcomm_unregister_service_internal(uint8_t service_channel){ rfcomm_service_t *service = rfcomm_service_for_channel(service_channel); if (!service) return; linked_list_remove(&rfcomm_services, (linked_item_t *) service); btstack_memory_rfcomm_service_free(service); // unregister if no services active if (linked_list_empty(&rfcomm_services)){ // bt_send_cmd(&l2cap_unregister_service, PSM_RFCOMM); l2cap_unregister_service_internal(NULL, PSM_RFCOMM); } } void rfcomm_accept_connection_internal(uint16_t rfcomm_cid){ log_info("Received Accept Connction\n"); rfcomm_channel_t * channel = rfcomm_channel_for_rfcomm_cid(rfcomm_cid); if (!channel) return; switch (channel->state) { case RFCOMM_CHANNEL_INCOMING_SETUP: channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_CLIENT_ACCEPTED; if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_RCVD_PN){ channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_PN_RSP; } if (channel->state_var & RFCOMM_CHANNEL_STATE_VAR_RCVD_SABM){ channel->state_var |= RFCOMM_CHANNEL_STATE_VAR_SEND_UA; } break; default: break; } // process rfcomm_run(); } void rfcomm_decline_connection_internal(uint16_t rfcomm_cid){ log_info("Received Decline Connction\n"); rfcomm_channel_t * channel = rfcomm_channel_for_rfcomm_cid(rfcomm_cid); if (!channel) return; switch (channel->state) { case RFCOMM_CHANNEL_INCOMING_SETUP: channel->state = RFCOMM_CHANNEL_SEND_DM; break; default: break; } // process rfcomm_run(); } void rfcomm_grant_credits(uint16_t rfcomm_cid, uint8_t credits){ rfcomm_channel_t * channel = rfcomm_channel_for_rfcomm_cid(rfcomm_cid); if (!channel) return; if (!channel->incoming_flow_control) return; channel->new_credits_incoming += credits; // process rfcomm_run(); } // void rfcomm_close_connection(void *connection){ linked_item_t *it; // close open channels for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){ rfcomm_channel_t * channel = (rfcomm_channel_t *)it; if (channel->connection != connection) continue; channel->state = RFCOMM_CHANNEL_SEND_DISC; } // unregister services it = (linked_item_t *) &rfcomm_services; while (it->next) { rfcomm_service_t * service = (rfcomm_service_t *) it->next; if (service->connection == connection){ it->next = it->next->next; btstack_memory_rfcomm_service_free(service); } else { it = it->next; } } // process rfcomm_run(); }