Development mbed library for MAX32630FTHR

Dependents:   blinky_max32630fthr

Committer:
switches
Date:
Fri Dec 16 16:27:57 2016 +0000
Revision:
3:1198227e6421
Parent:
0:5c4d7b2438d3
Changed ADC scale for MAX32625 platforms to 1.2V full scale to match MAX32630 platforms

Who changed what in which revision?

UserRevisionLine numberNew contents of line
switches 0:5c4d7b2438d3 1 ## The equeue library ##
switches 0:5c4d7b2438d3 2
switches 0:5c4d7b2438d3 3 The equeue library is designed as a simple but powerful library for scheduling
switches 0:5c4d7b2438d3 4 events on composable queues.
switches 0:5c4d7b2438d3 5
switches 0:5c4d7b2438d3 6 ``` c
switches 0:5c4d7b2438d3 7 #include "equeue.h"
switches 0:5c4d7b2438d3 8 #include <stdio.h>
switches 0:5c4d7b2438d3 9
switches 0:5c4d7b2438d3 10 int main() {
switches 0:5c4d7b2438d3 11 // creates a queue with space for 32 basic events
switches 0:5c4d7b2438d3 12 equeue_t queue;
switches 0:5c4d7b2438d3 13 equeue_create(&queue, 32*EQUEUE_EVENT_SIZE);
switches 0:5c4d7b2438d3 14
switches 0:5c4d7b2438d3 15 // events can be simple callbacks
switches 0:5c4d7b2438d3 16 equeue_call(&queue, print, "called immediately");
switches 0:5c4d7b2438d3 17 equeue_call_in(&queue, 2000, print, "called in 2 seconds");
switches 0:5c4d7b2438d3 18 equeue_call_every(&queue, 1000, print, "called every 1 seconds");
switches 0:5c4d7b2438d3 19
switches 0:5c4d7b2438d3 20 // events are executed in equeue_dispatch
switches 0:5c4d7b2438d3 21 equeue_dispatch(&queue, 3000);
switches 0:5c4d7b2438d3 22
switches 0:5c4d7b2438d3 23 print("called after 3 seconds");
switches 0:5c4d7b2438d3 24
switches 0:5c4d7b2438d3 25 equeue_destroy(&queue);
switches 0:5c4d7b2438d3 26 }
switches 0:5c4d7b2438d3 27 ```
switches 0:5c4d7b2438d3 28
switches 0:5c4d7b2438d3 29 The equeue library can be used as a normal event loop, or it can be
switches 0:5c4d7b2438d3 30 backgrounded on a single hardware timer or even another event loop. It
switches 0:5c4d7b2438d3 31 is both thread and irq safe, and provides functions for easily composing
switches 0:5c4d7b2438d3 32 multiple queues.
switches 0:5c4d7b2438d3 33
switches 0:5c4d7b2438d3 34 The equeue library can act as a drop-in scheduler, provide synchronization
switches 0:5c4d7b2438d3 35 between multiple threads, or just act as a mechanism for moving events
switches 0:5c4d7b2438d3 36 out of interrupt contexts.
switches 0:5c4d7b2438d3 37
switches 0:5c4d7b2438d3 38 ## Documentation ##
switches 0:5c4d7b2438d3 39
switches 0:5c4d7b2438d3 40 The in-depth documentation on specific functions can be found in
switches 0:5c4d7b2438d3 41 [equeue.h](equeue.h).
switches 0:5c4d7b2438d3 42
switches 0:5c4d7b2438d3 43 The core of the equeue library is the `equeue_t` type which represents a
switches 0:5c4d7b2438d3 44 single event queue, and the `equeue_dispatch` function which runs the equeue,
switches 0:5c4d7b2438d3 45 providing the context for executing events.
switches 0:5c4d7b2438d3 46
switches 0:5c4d7b2438d3 47 On top of this, `equeue_call`, `equeue_call_in`, and `equeue_call_every`
switches 0:5c4d7b2438d3 48 provide easy methods for posting events to execute in the context of the
switches 0:5c4d7b2438d3 49 `equeue_dispatch` function.
switches 0:5c4d7b2438d3 50
switches 0:5c4d7b2438d3 51 ``` c
switches 0:5c4d7b2438d3 52 #include "equeue.h"
switches 0:5c4d7b2438d3 53 #include "game.h"
switches 0:5c4d7b2438d3 54
switches 0:5c4d7b2438d3 55 equeue_t queue;
switches 0:5c4d7b2438d3 56 struct game game;
switches 0:5c4d7b2438d3 57
switches 0:5c4d7b2438d3 58 // button_isr may be in interrupt context
switches 0:5c4d7b2438d3 59 void button_isr(void) {
switches 0:5c4d7b2438d3 60 equeue_call(&queue, game_button_update, &game);
switches 0:5c4d7b2438d3 61 }
switches 0:5c4d7b2438d3 62
switches 0:5c4d7b2438d3 63 // a simple user-interface framework
switches 0:5c4d7b2438d3 64 int main() {
switches 0:5c4d7b2438d3 65 equeue_create(&queue, 4096);
switches 0:5c4d7b2438d3 66 game_create(&game);
switches 0:5c4d7b2438d3 67
switches 0:5c4d7b2438d3 68 // call game_screen_udpate at 60 Hz
switches 0:5c4d7b2438d3 69 equeue_call_every(&queue, 1000/60, game_screen_update, &game);
switches 0:5c4d7b2438d3 70
switches 0:5c4d7b2438d3 71 // dispatch forever
switches 0:5c4d7b2438d3 72 equeue_dispatch(&queue, -1);
switches 0:5c4d7b2438d3 73 }
switches 0:5c4d7b2438d3 74 ```
switches 0:5c4d7b2438d3 75
switches 0:5c4d7b2438d3 76 In addition to simple callbacks, an event can be manually allocated with
switches 0:5c4d7b2438d3 77 `equeue_alloc` and posted with `equeue_post` to allow passing an arbitrary
switches 0:5c4d7b2438d3 78 amount of context to the execution of the event. This memory is allocated out
switches 0:5c4d7b2438d3 79 of the equeue's buffer, and dynamic memory can be completely avoided.
switches 0:5c4d7b2438d3 80
switches 0:5c4d7b2438d3 81 The equeue allocator is designed to minimize jitter in interrupt contexts as
switches 0:5c4d7b2438d3 82 well as avoid memory fragmentation on small devices. The allocator achieves
switches 0:5c4d7b2438d3 83 both constant-runtime and zero-fragmentation for fixed-size events, however
switches 0:5c4d7b2438d3 84 grows linearly as the quantity of differently-sized allocations increases.
switches 0:5c4d7b2438d3 85
switches 0:5c4d7b2438d3 86 ``` c
switches 0:5c4d7b2438d3 87 #include "equeue.h"
switches 0:5c4d7b2438d3 88
switches 0:5c4d7b2438d3 89 equeue_t queue;
switches 0:5c4d7b2438d3 90
switches 0:5c4d7b2438d3 91 // arbitrary data can be moved to a different context
switches 0:5c4d7b2438d3 92 int enet_consume(void *buffer, int size) {
switches 0:5c4d7b2438d3 93 if (size > 512) {
switches 0:5c4d7b2438d3 94 size = 512;
switches 0:5c4d7b2438d3 95 }
switches 0:5c4d7b2438d3 96
switches 0:5c4d7b2438d3 97 void *data = equeue_alloc(&queue, 512);
switches 0:5c4d7b2438d3 98 memcpy(data, buffer, size);
switches 0:5c4d7b2438d3 99 equeue_post(&queue, handle_data_elsewhere, data);
switches 0:5c4d7b2438d3 100
switches 0:5c4d7b2438d3 101 return size;
switches 0:5c4d7b2438d3 102 }
switches 0:5c4d7b2438d3 103 ```
switches 0:5c4d7b2438d3 104
switches 0:5c4d7b2438d3 105 Additionally, in-flight events can be cancelled with `equeue_cancel`. Events
switches 0:5c4d7b2438d3 106 are given unique ids on post, allowing safe cancellation of expired events.
switches 0:5c4d7b2438d3 107
switches 0:5c4d7b2438d3 108 ``` c
switches 0:5c4d7b2438d3 109 #include "equeue.h"
switches 0:5c4d7b2438d3 110
switches 0:5c4d7b2438d3 111 equeue_t queue;
switches 0:5c4d7b2438d3 112 int sonar_value;
switches 0:5c4d7b2438d3 113 int sonar_timeout_id;
switches 0:5c4d7b2438d3 114
switches 0:5c4d7b2438d3 115 void sonar_isr(int value) {
switches 0:5c4d7b2438d3 116 equeue_cancel(&queue, sonar_timeout_id);
switches 0:5c4d7b2438d3 117 sonar_value = value;
switches 0:5c4d7b2438d3 118 }
switches 0:5c4d7b2438d3 119
switches 0:5c4d7b2438d3 120 void sonar_timeout(void *) {
switches 0:5c4d7b2438d3 121 sonar_value = -1;
switches 0:5c4d7b2438d3 122 }
switches 0:5c4d7b2438d3 123
switches 0:5c4d7b2438d3 124 void sonar_read(void) {
switches 0:5c4d7b2438d3 125 sonar_timeout_id = equeue_call_in(&queue, 300, sonar_timeout, 0);
switches 0:5c4d7b2438d3 126 sonar_start();
switches 0:5c4d7b2438d3 127 }
switches 0:5c4d7b2438d3 128 ```
switches 0:5c4d7b2438d3 129
switches 0:5c4d7b2438d3 130 From an architectural standpoint, event queues easily align with module
switches 0:5c4d7b2438d3 131 boundaries, where internal state can be implicitly synchronized through
switches 0:5c4d7b2438d3 132 event dispatch.
switches 0:5c4d7b2438d3 133
switches 0:5c4d7b2438d3 134 On platforms where multiple threads are unavailable, multiple modules
switches 0:5c4d7b2438d3 135 can use independent event queues and still be composed through the
switches 0:5c4d7b2438d3 136 `equeue_chain` function.
switches 0:5c4d7b2438d3 137
switches 0:5c4d7b2438d3 138 ``` c
switches 0:5c4d7b2438d3 139 #include "equeue.h"
switches 0:5c4d7b2438d3 140
switches 0:5c4d7b2438d3 141 // run a simultaneous localization and mapping loop in one queue
switches 0:5c4d7b2438d3 142 struct slam {
switches 0:5c4d7b2438d3 143 equeue_t queue;
switches 0:5c4d7b2438d3 144 };
switches 0:5c4d7b2438d3 145
switches 0:5c4d7b2438d3 146 void slam_create(struct slam *s, equeue_t *target) {
switches 0:5c4d7b2438d3 147 equeue_create(&s->queue, 4096);
switches 0:5c4d7b2438d3 148 equeue_chain(&s->queue, target);
switches 0:5c4d7b2438d3 149 equeue_call_every(&s->queue, 100, slam_filter);
switches 0:5c4d7b2438d3 150 }
switches 0:5c4d7b2438d3 151
switches 0:5c4d7b2438d3 152 // run a sonar with it's own queue
switches 0:5c4d7b2438d3 153 struct sonar {
switches 0:5c4d7b2438d3 154 equeue_t equeue;
switches 0:5c4d7b2438d3 155 struct slam *slam;
switches 0:5c4d7b2438d3 156 };
switches 0:5c4d7b2438d3 157
switches 0:5c4d7b2438d3 158 void sonar_create(struct sonar *s, equeue_t *target) {
switches 0:5c4d7b2438d3 159 equeue_create(&s->queue, 64);
switches 0:5c4d7b2438d3 160 equeue_chain(&s->queue, target);
switches 0:5c4d7b2438d3 161 equeue_call_in(&s->queue, 5, sonar_update, s);
switches 0:5c4d7b2438d3 162 }
switches 0:5c4d7b2438d3 163
switches 0:5c4d7b2438d3 164 // all of the above queues can be combined into a single thread of execution
switches 0:5c4d7b2438d3 165 int main() {
switches 0:5c4d7b2438d3 166 equeue_t queue;
switches 0:5c4d7b2438d3 167 equeue_create(&queue, 1024);
switches 0:5c4d7b2438d3 168
switches 0:5c4d7b2438d3 169 struct sonar s1, s2, s3;
switches 0:5c4d7b2438d3 170 sonar_create(&s1, &queue);
switches 0:5c4d7b2438d3 171 sonar_create(&s2, &queue);
switches 0:5c4d7b2438d3 172 sonar_create(&s3, &queue);
switches 0:5c4d7b2438d3 173
switches 0:5c4d7b2438d3 174 struct slam slam;
switches 0:5c4d7b2438d3 175 slam_create(&slam, &queue);
switches 0:5c4d7b2438d3 176
switches 0:5c4d7b2438d3 177 // dispatches events from all of the modules
switches 0:5c4d7b2438d3 178 equeue_dispatch(&queue, -1);
switches 0:5c4d7b2438d3 179 }
switches 0:5c4d7b2438d3 180 ```
switches 0:5c4d7b2438d3 181
switches 0:5c4d7b2438d3 182 ## Platform ##
switches 0:5c4d7b2438d3 183
switches 0:5c4d7b2438d3 184 The equeue library has a minimal porting layer that is flexible depending
switches 0:5c4d7b2438d3 185 on the requirements of the underlying platform. Platform specific declarations
switches 0:5c4d7b2438d3 186 and more information can be found in [equeue_platform.h](equeue_platform.h).
switches 0:5c4d7b2438d3 187
switches 0:5c4d7b2438d3 188 ## Tests ##
switches 0:5c4d7b2438d3 189
switches 0:5c4d7b2438d3 190 The equeue library uses a set of local tests based on the posix implementation.
switches 0:5c4d7b2438d3 191
switches 0:5c4d7b2438d3 192 Runtime tests are located in [tests.c](tests/tests.c):
switches 0:5c4d7b2438d3 193
switches 0:5c4d7b2438d3 194 ``` bash
switches 0:5c4d7b2438d3 195 make test
switches 0:5c4d7b2438d3 196 ```
switches 0:5c4d7b2438d3 197
switches 0:5c4d7b2438d3 198 Profiling tests based on rdtsc are located in [prof.c](tests/prof.c):
switches 0:5c4d7b2438d3 199
switches 0:5c4d7b2438d3 200 ``` bash
switches 0:5c4d7b2438d3 201 make prof
switches 0:5c4d7b2438d3 202 ```
switches 0:5c4d7b2438d3 203
switches 0:5c4d7b2438d3 204 To make profiling results more tangible, the profiler also supports percentage
switches 0:5c4d7b2438d3 205 comparison with previous runs:
switches 0:5c4d7b2438d3 206 ``` bash
switches 0:5c4d7b2438d3 207 make prof | tee results.txt
switches 0:5c4d7b2438d3 208 cat results.txt | make prof
switches 0:5c4d7b2438d3 209 ```
switches 0:5c4d7b2438d3 210