it works!
Dependencies: mbed-dev-f303 FastPWM3
FOC/foc.cpp
- Committer:
- benkatz
- Date:
- 2017-04-09
- Revision:
- 25:f5741040c4bb
- Parent:
- 24:58c2d7571207
- Child:
- 26:2b865c00d7e9
File content as of revision 25:f5741040c4bb:
#include "user_config.h" #include "foc.h" //#include "FastMath.h" //using namespace FastMath; void abc( float theta, float d, float q, float *a, float *b, float *c){ /// Inverse DQ0 Transform /// ///Phase current amplitude = lengh of dq vector/// ///i.e. iq = 1, id = 0, peak phase current of 1/// *a = d*cosf(-theta) + q*sinf(-theta); *b = d*cosf((2.0f*PI/3.0f)-theta) + q*sinf((2.0f*PI/3.0f)-theta); *c = d*cosf((-2.0f*PI/3.0f)-theta) + q*sinf((-2.0f*PI/3.0f)-theta); } void dq0(float theta, float a, float b, float c, float *d, float *q){ /// DQ0 Transform /// ///Phase current amplitude = lengh of dq vector/// ///i.e. iq = 1, id = 0, peak phase current of 1/// *d = (2.0f/3.0f)*(a*cosf(-theta) + b*cosf((2.0f*PI/3.0f)-theta) + c*cosf((-2.0f*PI/3.0f)-theta)); *q = (2.0f/3.0f)*(a*sinf(-theta) + b*sinf((2.0f*PI/3.0f)-theta) + c*sinf((-2.0f*PI/3.0f)-theta)); } void svm(float v_bus, float u, float v, float w, float *dtc_u, float *dtc_v, float *dtc_w){ /// Space Vector Modulation /// /// u,v,w amplitude = v_bus for full modulation depth /// float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))/2.0f; *dtc_u = fminf(fmaxf(((u - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX); *dtc_v = fminf(fmaxf(((v - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX); *dtc_w = fminf(fmaxf(((w - v_offset)*0.5f/v_bus + ((DTC_MAX-DTC_MIN)/2)), DTC_MIN), DTC_MAX); } void zero_current(int *offset_1, int *offset_2){ // Measure zero-offset of the current sensors int adc1_offset = 0; int adc2_offset = 0; int n = 1024; for (int i = 0; i<n; i++){ // Average n samples of the ADC ADC1->CR2 |= 0x40000000; wait(.001); adc2_offset += ADC2->DR; adc1_offset += ADC1->DR; } *offset_1 = adc1_offset/n; *offset_2 = adc2_offset/n; } void reset_foc(ControllerStruct *controller){ controller->q_int = 0; controller->d_int = 0; } void commutate(ControllerStruct *controller, GPIOStruct *gpio, float theta){ /// Commutation Loop /// controller->loop_count ++; if(PHASE_ORDER){ // Check current sensor ordering controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); // Calculate phase currents from ADC readings controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); } else{ controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset); controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset); } controller->i_a = -controller->i_b - controller->i_c; dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q); //dq0 transform on currents ///Cogging compensation lookup, doesn't actually work yet/// //int ind = theta * (128.0f/(2.0f*PI)); //float cogging_current = controller->cogging[ind]; //float cogging_current = 1.0f*cos(6*theta); /// PI Controller /// float i_d_error = controller->i_d_ref - controller->i_d; float i_q_error = controller->i_q_ref - controller->i_q;// + cogging_current; float v_d_ff = 2.0f*(2*controller->i_d_ref*R_PHASE); //feed-forward voltage float v_q_ff = 2.0f*(2*controller->i_q_ref*R_PHASE + controller->dtheta_elec*WB*0.8165f); controller->d_int += i_d_error; controller->q_int += i_q_error; //v_d_ff = 0; //v_q_ff = 0; limit_norm(&controller->d_int, &controller->q_int, V_BUS/(K_Q*KI_Q)); // Limit integrators to prevent windup //controller->d_int = fminf(fmaxf(controller->d_int, -D_INT_LIM), D_INT_LIM); //controller->q_int = fminf(fmaxf(controller->q_int, -Q_INT_LIM), Q_INT_LIM); controller->v_d = K_SCALE*I_BW*i_d_error + K_SCALE*I_BW*controller->d_int;// + v_d_ff; controller->v_q = K_SCALE*I_BW*i_q_error + K_SCALE*I_BW*controller->q_int;// + v_q_ff; //controller->v_d = v_d_ff; //controller->v_q = v_q_ff; limit_norm(&controller->v_d, &controller->v_q, controller->v_bus); // Normalize voltage vector to lie within curcle of radius v_bus abc(controller->theta_elec, controller->v_d, controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation if(PHASE_ORDER){ // Check which phase order to use, TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u); // Write duty cycles TIM1->CCR2 = 0x708*(1.0f-controller->dtc_v); TIM1->CCR1 = 0x708*(1.0f-controller->dtc_w); } else{ TIM1->CCR3 = 0x708*(1.0f-controller->dtc_u); TIM1->CCR1 = 0x708*(1.0f-controller->dtc_v); TIM1->CCR2 = 0x708*(1.0f-controller->dtc_w); } controller->theta_elec = theta; //For some reason putting this at the front breaks thins //if(controller->loop_count >400){ //controller->i_q_ref = -controller->i_q_ref; // controller->loop_count = 0; //printf("%d %f\n\r", ind, cogging_current); //printf("%f\n\r", controller->theta_elec); //pc.printf("%f %f %f\n\r", controller->i_a, controller->i_b, controller->i_c); //pc.printf("%f %f\n\r", controller->i_d, controller->i_q); //pc.printf("%d %d\n\r", controller->adc1_raw, controller->adc2_raw); // } } /* void zero_encoder(ControllerStruct *controller, GPIOStruct *gpio, ){ } */