imu for l432kc

Dependencies:   mbed

Committer:
sunninety1
Date:
Wed Dec 05 14:08:21 2018 +0000
Revision:
3:4a1bc31c360f
Parent:
main.cpp@2:01ca44dd3908
Child:
4:7b04752df27f
version complete (may be)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
sunninety1 3:4a1bc31c360f 1 /* MPU9250 Basic Example Code
sunninety1 3:4a1bc31c360f 2 by: Kris Winer
sunninety1 3:4a1bc31c360f 3 date: April 1, 2014
sunninety1 3:4a1bc31c360f 4 license: Beerware - Use this code however you'd like. If you
sunninety1 3:4a1bc31c360f 5 find it useful you can buy me a beer some time.
sunninety1 2:01ca44dd3908 6
sunninety1 3:4a1bc31c360f 7 Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor,
sunninety1 3:4a1bc31c360f 8 getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to
sunninety1 3:4a1bc31c360f 9 allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and
sunninety1 3:4a1bc31c360f 10 Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
sunninety1 2:01ca44dd3908 11
sunninety1 3:4a1bc31c360f 12 SDA and SCL should have external pull-up resistors (to 3.3V).
sunninety1 3:4a1bc31c360f 13 10k resistors are on the EMSENSR-9250 breakout board.
sunninety1 3:4a1bc31c360f 14
sunninety1 3:4a1bc31c360f 15 Hardware setup:
sunninety1 3:4a1bc31c360f 16 MPU9250 Breakout --------- Arduino
sunninety1 3:4a1bc31c360f 17 VDD ---------------------- 3.3V
sunninety1 3:4a1bc31c360f 18 VDDI --------------------- 3.3V
sunninety1 3:4a1bc31c360f 19 SDA ----------------------- A4
sunninety1 3:4a1bc31c360f 20 SCL ----------------------- A5
sunninety1 3:4a1bc31c360f 21 GND ---------------------- GND
sunninety1 3:4a1bc31c360f 22
sunninety1 3:4a1bc31c360f 23 Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library.
sunninety1 3:4a1bc31c360f 24 Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
sunninety1 3:4a1bc31c360f 25 We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
sunninety1 3:4a1bc31c360f 26 We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
sunninety1 3:4a1bc31c360f 27 */
sunninety1 3:4a1bc31c360f 28
sunninety1 3:4a1bc31c360f 29 //#include "ST_F401_84MHZ.h"
sunninety1 3:4a1bc31c360f 30 //F401_init84 myinit(0);
sunninety1 2:01ca44dd3908 31 #include "mbed.h"
sunninety1 3:4a1bc31c360f 32 #include "MPU9250.h"
sunninety1 3:4a1bc31c360f 33
sunninety1 3:4a1bc31c360f 34 // Using NOKIA 5110 monochrome 84 x 48 pixel display
sunninety1 3:4a1bc31c360f 35 // pin 9 - Serial clock out (SCLK)
sunninety1 3:4a1bc31c360f 36 // pin 8 - Serial data out (DIN)
sunninety1 3:4a1bc31c360f 37 // pin 7 - Data/Command select (D/C)
sunninety1 3:4a1bc31c360f 38 // pin 5 - LCD chip select (CS)
sunninety1 3:4a1bc31c360f 39 // pin 6 - LCD reset (RST)
sunninety1 3:4a1bc31c360f 40 //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
sunninety1 3:4a1bc31c360f 41
sunninety1 3:4a1bc31c360f 42 float sum = 0;
sunninety1 3:4a1bc31c360f 43 uint32_t sumCount = 0;
sunninety1 3:4a1bc31c360f 44 char buffer[14];
sunninety1 3:4a1bc31c360f 45
sunninety1 3:4a1bc31c360f 46 MPU9250 mpu9250;
sunninety1 3:4a1bc31c360f 47
sunninety1 2:01ca44dd3908 48 Timer t;
sunninety1 2:01ca44dd3908 49
sunninety1 3:4a1bc31c360f 50 Serial serial(PA_9,PA_10);
sunninety1 3:4a1bc31c360f 51 Serial pc(USBTX, USBRX); // tx, rx
sunninety1 3:4a1bc31c360f 52
sunninety1 3:4a1bc31c360f 53 // VCC, SCE, RST, D/C, MOSI,S CLK, LED
sunninety1 2:01ca44dd3908 54
sunninety1 3:4a1bc31c360f 55 //DigitalIn boardbtn(USER_BUTTON);
sunninety1 3:4a1bc31c360f 56 static float acc_xyz[3]={0,0,0};
sunninety1 3:4a1bc31c360f 57 static float v_xyz[3]={0,0,0};
sunninety1 3:4a1bc31c360f 58 float displacement_body[3]={0,0,0};
sunninety1 3:4a1bc31c360f 59 static float displacement_world[3]={0,0,0};
sunninety1 3:4a1bc31c360f 60 void AccelToVelocity(float ax,float ay,float az,float dt){
sunninety1 3:4a1bc31c360f 61 static float old_acc[3]={0,0,0};
sunninety1 3:4a1bc31c360f 62 static float old_v[3]={0,0,0};
sunninety1 3:4a1bc31c360f 63 float delta_ax=ax-old_acc[0];
sunninety1 3:4a1bc31c360f 64 float delta_ay=ay-old_acc[1];
sunninety1 3:4a1bc31c360f 65 float delta_az=az-old_acc[2];
sunninety1 3:4a1bc31c360f 66 old_acc[0]=ax;
sunninety1 3:4a1bc31c360f 67 old_acc[1]=ay;
sunninety1 3:4a1bc31c360f 68 old_acc[2]=az;
sunninety1 3:4a1bc31c360f 69 old_v[0]=v_xyz[0]-old_v[0];
sunninety1 3:4a1bc31c360f 70 old_v[1]=v_xyz[1]-old_v[1];
sunninety1 3:4a1bc31c360f 71 old_v[2]=v_xyz[2]-old_v[2];
sunninety1 3:4a1bc31c360f 72 v_xyz[0]+=ax*dt;
sunninety1 3:4a1bc31c360f 73 v_xyz[1]+=ay*dt;
sunninety1 3:4a1bc31c360f 74 v_xyz[2]+=az*dt;
sunninety1 2:01ca44dd3908 75
sunninety1 3:4a1bc31c360f 76
sunninety1 3:4a1bc31c360f 77 displacement_body[0]+=v_xyz[0]*dt;
sunninety1 3:4a1bc31c360f 78 displacement_body[1]+=v_xyz[1]*dt;
sunninety1 3:4a1bc31c360f 79 displacement_body[2]+=v_xyz[2]*dt;
sunninety1 3:4a1bc31c360f 80 // pc.printf("%f\n",dt);
sunninety1 3:4a1bc31c360f 81 /*displacement_body[0]+=fillter_vx*dt;
sunninety1 3:4a1bc31c360f 82 displacement_body[1]+=fillter_vy*dt;
sunninety1 3:4a1bc31c360f 83 displacement_body[2]+=fillter_vz*dt;*/
sunninety1 3:4a1bc31c360f 84
sunninety1 2:01ca44dd3908 85 }
sunninety1 3:4a1bc31c360f 86 /*void VelocityToDisplacement(float dt){
sunninety1 3:4a1bc31c360f 87 displacement_body[0]+=v_xyz[0]*dt;
sunninety1 3:4a1bc31c360f 88 displacement_body[1]+=v_xyz[1]*dt;
sunninety1 3:4a1bc31c360f 89 displacement_body[2]+=v_xyz[2]*dt;
sunninety1 3:4a1bc31c360f 90
sunninety1 2:01ca44dd3908 91 }*/
sunninety1 2:01ca44dd3908 92 int main()
sunninety1 3:4a1bc31c360f 93 {
sunninety1 2:01ca44dd3908 94 pc.baud(115200);
sunninety1 3:4a1bc31c360f 95
sunninety1 3:4a1bc31c360f 96 //Set up I2C
sunninety1 3:4a1bc31c360f 97 i2c.frequency(400000); // use fast (400 kHz) I2C
sunninety1 3:4a1bc31c360f 98
sunninety1 3:4a1bc31c360f 99 // pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
sunninety1 3:4a1bc31c360f 100
sunninety1 2:01ca44dd3908 101 t.start();
sunninety1 3:4a1bc31c360f 102
sunninety1 3:4a1bc31c360f 103
sunninety1 3:4a1bc31c360f 104
sunninety1 3:4a1bc31c360f 105
sunninety1 3:4a1bc31c360f 106 // Read the WHO_AM_I register, this is a good test of communication
sunninety1 3:4a1bc31c360f 107 uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
sunninety1 3:4a1bc31c360f 108 // pc.printf("I AM 0x%x\n\r", whoami);
sunninety1 3:4a1bc31c360f 109 // pc.printf("I SHOULD BE 0x71\n\r");
sunninety1 3:4a1bc31c360f 110
sunninety1 3:4a1bc31c360f 111 if (whoami == 0x71) { // WHO_AM_I should always be 0x68
sunninety1 3:4a1bc31c360f 112 // pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
sunninety1 3:4a1bc31c360f 113 // pc.printf("MPU9250 is online...\n\r");
sunninety1 3:4a1bc31c360f 114
sunninety1 3:4a1bc31c360f 115 // sprintf(buffer, "0x%x", whoami);
sunninety1 3:4a1bc31c360f 116
sunninety1 3:4a1bc31c360f 117 wait(1);
sunninety1 3:4a1bc31c360f 118
sunninety1 3:4a1bc31c360f 119 mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
sunninety1 3:4a1bc31c360f 120 mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
sunninety1 3:4a1bc31c360f 121 /* pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
sunninety1 3:4a1bc31c360f 122 pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
sunninety1 3:4a1bc31c360f 123 pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
sunninety1 3:4a1bc31c360f 124 pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
sunninety1 3:4a1bc31c360f 125 pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
sunninety1 3:4a1bc31c360f 126 pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);*/
sunninety1 3:4a1bc31c360f 127 // if(boardbtn==0){
sunninety1 3:4a1bc31c360f 128 // wait(2);
sunninety1 3:4a1bc31c360f 129 mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
sunninety1 3:4a1bc31c360f 130 pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
sunninety1 3:4a1bc31c360f 131 pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
sunninety1 3:4a1bc31c360f 132 pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
sunninety1 3:4a1bc31c360f 133 pc.printf("x accel bias = %f\n\r", accelBias[0]);
sunninety1 3:4a1bc31c360f 134 pc.printf("y accel bias = %f\n\r", accelBias[1]);
sunninety1 3:4a1bc31c360f 135 pc.printf("z accel bias = %f\n\r", accelBias[2]);
sunninety1 3:4a1bc31c360f 136 wait(2);
sunninety1 3:4a1bc31c360f 137
sunninety1 3:4a1bc31c360f 138 /*
sunninety1 3:4a1bc31c360f 139 // -----------------------------------------------------------------
sunninety1 3:4a1bc31c360f 140 }else{
sunninety1 3:4a1bc31c360f 141 gyroBias[0]=-1.244275;
sunninety1 3:4a1bc31c360f 142 gyroBias[1]=0.122137;
sunninety1 3:4a1bc31c360f 143 gyroBias[2]=-0.717557;
sunninety1 3:4a1bc31c360f 144 accelBias[0]=0.007996; // For Manual Calibate with button
sunninety1 3:4a1bc31c360f 145 accelBias[1]=0.021240;
sunninety1 3:4a1bc31c360f 146 accelBias[2]=-0.020508;
sunninety1 3:4a1bc31c360f 147 }
sunninety1 3:4a1bc31c360f 148 //------------------------------------------------------------------
sunninety1 3:4a1bc31c360f 149 */
sunninety1 3:4a1bc31c360f 150 mpu9250.initMPU9250();
sunninety1 3:4a1bc31c360f 151 // pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
sunninety1 3:4a1bc31c360f 152 mpu9250.initAK8963(magCalibration);
sunninety1 3:4a1bc31c360f 153 /* pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
sunninety1 3:4a1bc31c360f 154 pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
sunninety1 3:4a1bc31c360f 155 pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
sunninety1 3:4a1bc31c360f 156 if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r");
sunninety1 3:4a1bc31c360f 157 if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r");
sunninety1 3:4a1bc31c360f 158 if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
sunninety1 3:4a1bc31c360f 159 if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
sunninety1 3:4a1bc31c360f 160 wait(1);
sunninety1 3:4a1bc31c360f 161 */
sunninety1 3:4a1bc31c360f 162 } else {
sunninety1 3:4a1bc31c360f 163 pc.printf("Could not connect to MPU9250: \n\r");
sunninety1 3:4a1bc31c360f 164 pc.printf("%#x \n", whoami);
sunninety1 3:4a1bc31c360f 165
sunninety1 3:4a1bc31c360f 166
sunninety1 3:4a1bc31c360f 167 sprintf(buffer, "WHO_AM_I 0x%x", whoami);
sunninety1 3:4a1bc31c360f 168
sunninety1 3:4a1bc31c360f 169
sunninety1 3:4a1bc31c360f 170 while(1) ; // Loop forever if communication doesn't happen
sunninety1 3:4a1bc31c360f 171
sunninety1 3:4a1bc31c360f 172 }
sunninety1 3:4a1bc31c360f 173
sunninety1 3:4a1bc31c360f 174 mpu9250.getAres(); // Get accelerometer sensitivity
sunninety1 3:4a1bc31c360f 175 mpu9250.getGres(); // Get gyro sensitivity
sunninety1 3:4a1bc31c360f 176 mpu9250.getMres(); // Get magnetometer sensitivity
sunninety1 3:4a1bc31c360f 177 // pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
sunninety1 3:4a1bc31c360f 178 // pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
sunninety1 3:4a1bc31c360f 179 // pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
sunninety1 3:4a1bc31c360f 180 magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
sunninety1 3:4a1bc31c360f 181 magbias[1] = +120.; // User environmental x-axis correction in milliGauss
sunninety1 3:4a1bc31c360f 182 magbias[2] = +125.; // User environmental x-axis correction in milliGauss
sunninety1 3:4a1bc31c360f 183
sunninety1 2:01ca44dd3908 184 while(1) {
sunninety1 3:4a1bc31c360f 185
sunninety1 3:4a1bc31c360f 186 // If intPin goes high, all data registers have new data
sunninety1 3:4a1bc31c360f 187 if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
sunninety1 3:4a1bc31c360f 188
sunninety1 3:4a1bc31c360f 189 mpu9250.readAccelData(accelCount); // Read the x/y/z adc values
sunninety1 3:4a1bc31c360f 190 // Now we'll calculate the accleration value into actual g's
sunninety1 3:4a1bc31c360f 191 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
sunninety1 3:4a1bc31c360f 192 ay = (float)accelCount[1]*aRes - accelBias[1];
sunninety1 3:4a1bc31c360f 193 az = (float)accelCount[2]*aRes - accelBias[2];
sunninety1 3:4a1bc31c360f 194
sunninety1 3:4a1bc31c360f 195 mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values
sunninety1 3:4a1bc31c360f 196 // Calculate the gyro value into actual degrees per second
sunninety1 3:4a1bc31c360f 197 gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
sunninety1 3:4a1bc31c360f 198 gy = (float)gyroCount[1]*gRes - gyroBias[1];
sunninety1 3:4a1bc31c360f 199 gz = (float)gyroCount[2]*gRes - gyroBias[2];
sunninety1 3:4a1bc31c360f 200
sunninety1 3:4a1bc31c360f 201 mpu9250.readMagData(magCount); // Read the x/y/z adc values
sunninety1 3:4a1bc31c360f 202 // Calculate the magnetometer values in milliGauss
sunninety1 3:4a1bc31c360f 203 // Include factory calibration per data sheet and user environmental corrections
sunninety1 3:4a1bc31c360f 204 mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
sunninety1 3:4a1bc31c360f 205 my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
sunninety1 3:4a1bc31c360f 206 mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
sunninety1 2:01ca44dd3908 207 }
sunninety1 3:4a1bc31c360f 208
sunninety1 3:4a1bc31c360f 209 Now = t.read_us();
sunninety1 3:4a1bc31c360f 210 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
sunninety1 3:4a1bc31c360f 211 lastUpdate = Now;
sunninety1 3:4a1bc31c360f 212
sunninety1 3:4a1bc31c360f 213 sum += deltat;
sunninety1 3:4a1bc31c360f 214 sumCount++;
sunninety1 3:4a1bc31c360f 215
sunninety1 3:4a1bc31c360f 216 // if(lastUpdate - firstUpdate > 10000000.0f) {
sunninety1 3:4a1bc31c360f 217 // beta = 0.04; // decrease filter gain after stabilized
sunninety1 3:4a1bc31c360f 218 // zeta = 0.015; // increasey bias drift gain after stabilized
sunninety1 3:4a1bc31c360f 219 // }
sunninety1 3:4a1bc31c360f 220
sunninety1 3:4a1bc31c360f 221 // Pass gyro rate as rad/s
sunninety1 3:4a1bc31c360f 222 // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
sunninety1 3:4a1bc31c360f 223 mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
sunninety1 3:4a1bc31c360f 224
sunninety1 3:4a1bc31c360f 225 // Serial print and/or display at 0.5 s rate independent of data rates
sunninety1 3:4a1bc31c360f 226 delt_t = t.read_ms() - count;
sunninety1 3:4a1bc31c360f 227 if (delt_t > 100) { // update LCD once per half-second independent of read rate
sunninety1 3:4a1bc31c360f 228
sunninety1 3:4a1bc31c360f 229 pc.printf("ax = %f", 1000*ax);
sunninety1 3:4a1bc31c360f 230 pc.printf(" ay = %f", 1000*ay);
sunninety1 3:4a1bc31c360f 231 pc.printf(" az = %f mg\n\r", 1000*az);
sunninety1 3:4a1bc31c360f 232
sunninety1 3:4a1bc31c360f 233 // pc.printf("gx = %f", gx);
sunninety1 3:4a1bc31c360f 234 // pc.printf(" gy = %f", gy);
sunninety1 3:4a1bc31c360f 235 // pc.printf(" gz = %f deg/s\n\r", gz);
sunninety1 3:4a1bc31c360f 236
sunninety1 3:4a1bc31c360f 237 // pc.printf("gx = %f", mx);
sunninety1 3:4a1bc31c360f 238 // pc.printf(" gy = %f", my);
sunninety1 3:4a1bc31c360f 239 // pc.printf(" gz = %f mG\n\r", mz);
sunninety1 3:4a1bc31c360f 240
sunninety1 3:4a1bc31c360f 241 tempCount = mpu9250.readTempData(); // Read the adc values
sunninety1 3:4a1bc31c360f 242 temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
sunninety1 3:4a1bc31c360f 243 // pc.printf(" temperature = %f C\n\r", temperature);
sunninety1 3:4a1bc31c360f 244 //
sunninety1 3:4a1bc31c360f 245 // pc.printf("q0 = %f\n\r", q[0]);
sunninety1 3:4a1bc31c360f 246 // pc.printf("q1 = %f\n\r", q[1]);
sunninety1 3:4a1bc31c360f 247 // pc.printf("q2 = %f\n\r", q[2]);
sunninety1 3:4a1bc31c360f 248 // pc.printf("q3 = %f\n\r", q[3]);
sunninety1 3:4a1bc31c360f 249
sunninety1 3:4a1bc31c360f 250 /* lcd.clear();
sunninety1 3:4a1bc31c360f 251 lcd.printString("MPU9250", 0, 0);
sunninety1 3:4a1bc31c360f 252 lcd.printString("x y z", 0, 1);
sunninety1 3:4a1bc31c360f 253 sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az));
sunninety1 3:4a1bc31c360f 254 lcd.printString(buffer, 0, 2);
sunninety1 3:4a1bc31c360f 255 sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz);
sunninety1 3:4a1bc31c360f 256 lcd.printString(buffer, 0, 3);
sunninety1 3:4a1bc31c360f 257 sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz);
sunninety1 3:4a1bc31c360f 258 lcd.printString(buffer, 0, 4);
sunninety1 3:4a1bc31c360f 259 */
sunninety1 3:4a1bc31c360f 260 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
sunninety1 3:4a1bc31c360f 261 // In this coordinate system, the positive z-axis is down toward Earth.
sunninety1 3:4a1bc31c360f 262 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
sunninety1 3:4a1bc31c360f 263 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
sunninety1 3:4a1bc31c360f 264 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
sunninety1 3:4a1bc31c360f 265 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
sunninety1 3:4a1bc31c360f 266 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
sunninety1 3:4a1bc31c360f 267 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
sunninety1 3:4a1bc31c360f 268 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
sunninety1 3:4a1bc31c360f 269 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
sunninety1 3:4a1bc31c360f 270 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
sunninety1 3:4a1bc31c360f 271 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
sunninety1 3:4a1bc31c360f 272 pitch *= 180.0f / PI;
sunninety1 3:4a1bc31c360f 273 yaw *= 180.0f / PI;
sunninety1 3:4a1bc31c360f 274 yaw -= 85.0f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
sunninety1 3:4a1bc31c360f 275 roll *= 180.0f / PI;
sunninety1 3:4a1bc31c360f 276
sunninety1 3:4a1bc31c360f 277 // pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
sunninety1 3:4a1bc31c360f 278 // pc.printf("average rate = %f\n\r", (float) sumCount/sum);
sunninety1 3:4a1bc31c360f 279 // sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
sunninety1 3:4a1bc31c360f 280 // lcd.printString(buffer, 0, 4);
sunninety1 3:4a1bc31c360f 281 // sprintf(buffer, "rate = %f", (float) sumCount/sum);
sunninety1 3:4a1bc31c360f 282 // lcd.printString(buffer, 0, 5);
sunninety1 3:4a1bc31c360f 283
sunninety1 3:4a1bc31c360f 284
sunninety1 3:4a1bc31c360f 285 acc_xyz[0]=ax;
sunninety1 3:4a1bc31c360f 286 acc_xyz[1]=ay;
sunninety1 3:4a1bc31c360f 287 acc_xyz[2]=az;
sunninety1 3:4a1bc31c360f 288 float mag_a=sqrt(pow(acc_xyz[0],2)+pow(acc_xyz[1],2)+pow(acc_xyz[2],2));
sunninety1 3:4a1bc31c360f 289 AccelToVelocity(mag_a*cos(yaw),mag_a*sin(yaw),mag_a*sin(roll),float(delt_t)/10);//deltat*1000000
sunninety1 3:4a1bc31c360f 290 static float fillter_vx=0;
sunninety1 3:4a1bc31c360f 291 static float fillter_vy=0;
sunninety1 3:4a1bc31c360f 292 static float fillter_vz=0;
sunninety1 3:4a1bc31c360f 293 fillter_vx=v_xyz[0]*0.5+fillter_vx*0.5;
sunninety1 3:4a1bc31c360f 294 fillter_vy=v_xyz[1]*0.5+fillter_vy*0.5;
sunninety1 3:4a1bc31c360f 295 fillter_vz=v_xyz[2]*0.5+fillter_vz*0.5;
sunninety1 3:4a1bc31c360f 296 //VelocityToDisplacement(float(delt_t));
sunninety1 3:4a1bc31c360f 297 //pc.printf("%f\n",sqrt(displacement_body[0]*displacement_body[0]));
sunninety1 3:4a1bc31c360f 298 //pc.printf("%f %f\n",displacement_body[0],displacement_body[1]);
sunninety1 3:4a1bc31c360f 299 // displacement_world[0]+=sqrt(pow(displacement_body[0],2)+pow(displacement_body[1],2)+pow(displacement_body[2],2))
sunninety1 3:4a1bc31c360f 300 // pc.printf("%f %f \n",v_xyz[0],v_xyz[1]);
sunninety1 3:4a1bc31c360f 301 // pc.printf("%f %f %f\n",fillter_vx,fillter_vy,fillter_vz);
sunninety1 3:4a1bc31c360f 302 myled= !myled;
sunninety1 3:4a1bc31c360f 303 count = t.read_ms();
sunninety1 3:4a1bc31c360f 304 if(count > 1<<21) {
sunninety1 3:4a1bc31c360f 305 t.start(); // start the timer over again if ~30 minutes has passed
sunninety1 3:4a1bc31c360f 306 count = 0;
sunninety1 3:4a1bc31c360f 307 deltat= 0;
sunninety1 3:4a1bc31c360f 308 lastUpdate = t.read_us();
sunninety1 3:4a1bc31c360f 309 }
sunninety1 3:4a1bc31c360f 310 sum = 0;
sunninety1 3:4a1bc31c360f 311 sumCount = 0;
sunninety1 3:4a1bc31c360f 312 //-----------------------------------------------------------------------------------------
sunninety1 3:4a1bc31c360f 313
sunninety1 2:01ca44dd3908 314 if(serial.writeable()) {
sunninety1 3:4a1bc31c360f 315 serial.printf("%f_%f_%f \n",ax,ay,az);
sunninety1 3:4a1bc31c360f 316 pc.printf("%f_%f_%f_g%f_g%f_g%f_ \n",ax,ay,az,gx,gy,gz);
sunninety1 3:4a1bc31c360f 317
sunninety1 3:4a1bc31c360f 318 }
sunninety1 3:4a1bc31c360f 319 }
sunninety1 3:4a1bc31c360f 320
sunninety1 3:4a1bc31c360f 321
sunninety1 2:01ca44dd3908 322 }
sunninety1 3:4a1bc31c360f 323
sunninety1 2:01ca44dd3908 324 }
sunninety1 3:4a1bc31c360f 325