sa

Committer:
OsmanKameric
Date:
Wed Feb 01 11:09:14 2017 +0000
Revision:
2:e2081d9de7af
Parent:
0:662207e34fba
Child:
3:3c0727618a3b
first commit

Who changed what in which revision?

UserRevisionLine numberNew contents of line
garfieldsg 0:662207e34fba 1 //ported from arduino library: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
garfieldsg 0:662207e34fba 2 //written by szymon gaertig (email: szymon@gaertig.com.pl)
garfieldsg 0:662207e34fba 3 //
garfieldsg 0:662207e34fba 4 //Changelog:
garfieldsg 0:662207e34fba 5 //2013-01-08 - first beta release
garfieldsg 0:662207e34fba 6
garfieldsg 0:662207e34fba 7 // I2Cdev library collection - MPU6050 I2C device class
garfieldsg 0:662207e34fba 8 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
garfieldsg 0:662207e34fba 9 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
garfieldsg 0:662207e34fba 10 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
garfieldsg 0:662207e34fba 11 //
garfieldsg 0:662207e34fba 12 // Changelog:
garfieldsg 0:662207e34fba 13 // ... - ongoing debug release
garfieldsg 0:662207e34fba 14
garfieldsg 0:662207e34fba 15 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
garfieldsg 0:662207e34fba 16 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
garfieldsg 0:662207e34fba 17 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
garfieldsg 0:662207e34fba 18
garfieldsg 0:662207e34fba 19 /* ============================================
garfieldsg 0:662207e34fba 20 I2Cdev device library code is placed under the MIT license
garfieldsg 0:662207e34fba 21 Copyright (c) 2012 Jeff Rowberg
garfieldsg 0:662207e34fba 22
garfieldsg 0:662207e34fba 23 Permission is hereby granted, free of charge, to any person obtaining a copy
garfieldsg 0:662207e34fba 24 of this software and associated documentation files (the "Software"), to deal
garfieldsg 0:662207e34fba 25 in the Software without restriction, including without limitation the rights
garfieldsg 0:662207e34fba 26 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
garfieldsg 0:662207e34fba 27 copies of the Software, and to permit persons to whom the Software is
garfieldsg 0:662207e34fba 28 furnished to do so, subject to the following conditions:
garfieldsg 0:662207e34fba 29
garfieldsg 0:662207e34fba 30 The above copyright notice and this permission notice shall be included in
garfieldsg 0:662207e34fba 31 all copies or substantial portions of the Software.
garfieldsg 0:662207e34fba 32
garfieldsg 0:662207e34fba 33 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
garfieldsg 0:662207e34fba 34 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
garfieldsg 0:662207e34fba 35 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
garfieldsg 0:662207e34fba 36 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
garfieldsg 0:662207e34fba 37 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
garfieldsg 0:662207e34fba 38 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
garfieldsg 0:662207e34fba 39 THE SOFTWARE.
garfieldsg 0:662207e34fba 40 ===============================================
garfieldsg 0:662207e34fba 41 */
garfieldsg 0:662207e34fba 42
garfieldsg 0:662207e34fba 43 #include "MPU6050.h"
OsmanKameric 2:e2081d9de7af 44 int16_t accelData[3],gyroData[3],tempData;
OsmanKameric 2:e2081d9de7af 45 float accelBias[3] = {0, 0, 0}; // Bias corrections for acc
OsmanKameric 2:e2081d9de7af 46 float gyroBias[3] = {0, 0, 0}; // Bias corrections for gyro
OsmanKameric 2:e2081d9de7af 47 enum Ascale
OsmanKameric 2:e2081d9de7af 48 {
OsmanKameric 2:e2081d9de7af 49 AFS_2G=0,
OsmanKameric 2:e2081d9de7af 50 AFS_4G,
OsmanKameric 2:e2081d9de7af 51 AFS_8G,
OsmanKameric 2:e2081d9de7af 52 AFS_16G
OsmanKameric 2:e2081d9de7af 53 };
OsmanKameric 2:e2081d9de7af 54 enum Gscale
OsmanKameric 2:e2081d9de7af 55 {
OsmanKameric 2:e2081d9de7af 56 GFS_250DPS=0,
OsmanKameric 2:e2081d9de7af 57 GFS_500DPS,
OsmanKameric 2:e2081d9de7af 58 GFS_1000DPS,
OsmanKameric 2:e2081d9de7af 59 GFS_2000DPS
OsmanKameric 2:e2081d9de7af 60 };
OsmanKameric 2:e2081d9de7af 61 int Gscale = GFS_250DPS;
OsmanKameric 2:e2081d9de7af 62 float aRes;
OsmanKameric 2:e2081d9de7af 63 float gRes;
OsmanKameric 2:e2081d9de7af 64 int Ascale = AFS_2G;
OsmanKameric 2:e2081d9de7af 65 float ax,ay,az;
OsmanKameric 2:e2081d9de7af 66 float gx,gy,gz;
garfieldsg 0:662207e34fba 67 #define useDebugSerial
garfieldsg 0:662207e34fba 68
garfieldsg 0:662207e34fba 69 //instead of using pgmspace.h
garfieldsg 0:662207e34fba 70 typedef const unsigned char prog_uchar;
garfieldsg 0:662207e34fba 71 #define pgm_read_byte_near(x) (*(prog_uchar*)x)
garfieldsg 0:662207e34fba 72 #define pgm_read_byte(x) (*(prog_uchar*)x)
garfieldsg 0:662207e34fba 73
garfieldsg 0:662207e34fba 74 /** Default constructor, uses default I2C address.
garfieldsg 0:662207e34fba 75 * @see MPU6050_DEFAULT_ADDRESS
garfieldsg 0:662207e34fba 76 */
OsmanKameric 2:e2081d9de7af 77 MPU6050::MPU6050() : debugSerial(p30, p31)
garfieldsg 0:662207e34fba 78 {
garfieldsg 0:662207e34fba 79 devAddr = MPU6050_DEFAULT_ADDRESS;
garfieldsg 0:662207e34fba 80 }
garfieldsg 0:662207e34fba 81
garfieldsg 0:662207e34fba 82 /** Specific address constructor.
garfieldsg 0:662207e34fba 83 * @param address I2C address
garfieldsg 0:662207e34fba 84 * @see MPU6050_DEFAULT_ADDRESS
garfieldsg 0:662207e34fba 85 * @see MPU6050_ADDRESS_AD0_LOW
garfieldsg 0:662207e34fba 86 * @see MPU6050_ADDRESS_AD0_HIGH
garfieldsg 0:662207e34fba 87 */
OsmanKameric 2:e2081d9de7af 88 MPU6050::MPU6050(uint8_t address) : debugSerial(p30, p31)
garfieldsg 0:662207e34fba 89 {
garfieldsg 0:662207e34fba 90 devAddr = address;
garfieldsg 0:662207e34fba 91 }
garfieldsg 0:662207e34fba 92
garfieldsg 0:662207e34fba 93 /** Power on and prepare for general usage.
garfieldsg 0:662207e34fba 94 * This will activate the device and take it out of sleep mode (which must be done
garfieldsg 0:662207e34fba 95 * after start-up). This function also sets both the accelerometer and the gyroscope
garfieldsg 0:662207e34fba 96 * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
garfieldsg 0:662207e34fba 97 * the clock source to use the X Gyro for reference, which is slightly better than
garfieldsg 0:662207e34fba 98 * the default internal clock source.
garfieldsg 0:662207e34fba 99 */
garfieldsg 0:662207e34fba 100 void MPU6050::initialize()
garfieldsg 0:662207e34fba 101 {
garfieldsg 0:662207e34fba 102
garfieldsg 0:662207e34fba 103 #ifdef useDebugSerial
garfieldsg 0:662207e34fba 104 debugSerial.printf("MPU6050::initialize start\n");
garfieldsg 0:662207e34fba 105 #endif
OsmanKameric 2:e2081d9de7af 106 //i2Cdev.frequency(400000); // fast i2c: 400 kHz
OsmanKameric 2:e2081d9de7af 107
OsmanKameric 2:e2081d9de7af 108 /* Wake up the device */
OsmanKameric 2:e2081d9de7af 109 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x00); // wake up the device by clearing the sleep bit (bit6)
OsmanKameric 2:e2081d9de7af 110 //wait_ms(100); // wait 100 ms to stabilize
OsmanKameric 2:e2081d9de7af 111
OsmanKameric 2:e2081d9de7af 112 /* Get stable time source */
OsmanKameric 2:e2081d9de7af 113 // PLL with X axis gyroscope reference is used to improve stability
OsmanKameric 2:e2081d9de7af 114 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x01);
OsmanKameric 2:e2081d9de7af 115
OsmanKameric 2:e2081d9de7af 116 /* Configure Gyroscope and Accelerometer */
OsmanKameric 2:e2081d9de7af 117 // Disable FSYNC, acc bandwidth: 44 Hz, gyro bandwidth: 42 Hz
OsmanKameric 2:e2081d9de7af 118 // Sample rates: 1kHz, maximum delay: 4.9ms (which is pretty good for a 200 Hz maximum rate)
OsmanKameric 2:e2081d9de7af 119 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_CONFIG, 0x03);
OsmanKameric 2:e2081d9de7af 120
OsmanKameric 2:e2081d9de7af 121 /* Set sample rate = gyroscope output rate/(1+SMPLRT_DIV) */
OsmanKameric 2:e2081d9de7af 122 // SMPLRT_DIV=4 and sample rate=200 Hz (compatible with config above)
OsmanKameric 2:e2081d9de7af 123 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SMPLRT_DIV, 0x04);
OsmanKameric 2:e2081d9de7af 124
OsmanKameric 2:e2081d9de7af 125 /* Accelerometer configuration */
OsmanKameric 2:e2081d9de7af 126 //uint8_t temp;
OsmanKameric 2:e2081d9de7af 127 //i2Cdev.readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG,&temp);
OsmanKameric 2:e2081d9de7af 128 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, temp & ~0xE0); // Clear self-test bits [7:5]
OsmanKameric 2:e2081d9de7af 129 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, temp & ~0x18); // Clear AFS bits [4:3]
OsmanKameric 2:e2081d9de7af 130 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, temp | Ascale<<3); // Set full scale range
OsmanKameric 2:e2081d9de7af 131
OsmanKameric 2:e2081d9de7af 132 /* Gyroscope configuration */
OsmanKameric 2:e2081d9de7af 133 //i2Cdev.readByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, &temp);
OsmanKameric 2:e2081d9de7af 134 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, temp & ~0xE0); // Clear self-test bits [7:5]
OsmanKameric 2:e2081d9de7af 135 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, temp & ~0x18); // Clear FS bits [4:3]
OsmanKameric 2:e2081d9de7af 136 //i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, temp | Gscale<<3); // Set full scale range
garfieldsg 0:662207e34fba 137 setClockSource(MPU6050_CLOCK_PLL_XGYRO);
garfieldsg 0:662207e34fba 138 setFullScaleGyroRange(MPU6050_GYRO_FS_250);
garfieldsg 0:662207e34fba 139 setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
garfieldsg 0:662207e34fba 140 setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
garfieldsg 0:662207e34fba 141
garfieldsg 0:662207e34fba 142 #ifdef useDebugSerial
garfieldsg 0:662207e34fba 143 debugSerial.printf("MPU6050::initialize end\n");
garfieldsg 0:662207e34fba 144 #endif
garfieldsg 0:662207e34fba 145 }
garfieldsg 0:662207e34fba 146
garfieldsg 0:662207e34fba 147 /** Verify the I2C connection.
garfieldsg 0:662207e34fba 148 * Make sure the device is connected and responds as expected.
garfieldsg 0:662207e34fba 149 * @return True if connection is valid, false otherwise
garfieldsg 0:662207e34fba 150 */
garfieldsg 0:662207e34fba 151 bool MPU6050::testConnection()
garfieldsg 0:662207e34fba 152 {
garfieldsg 0:662207e34fba 153 #ifdef useDebugSerial
garfieldsg 0:662207e34fba 154 debugSerial.printf("MPU6050::testConnection start\n");
garfieldsg 0:662207e34fba 155 #endif
garfieldsg 0:662207e34fba 156 uint8_t deviceId = getDeviceID();
garfieldsg 0:662207e34fba 157 #ifdef useDebugSerial
garfieldsg 0:662207e34fba 158 debugSerial.printf("DeviceId = %d\n",deviceId);
garfieldsg 0:662207e34fba 159 #endif
garfieldsg 0:662207e34fba 160 return deviceId == 0x34;
garfieldsg 0:662207e34fba 161 }
garfieldsg 0:662207e34fba 162
OsmanKameric 2:e2081d9de7af 163 void MPU6050::calibrate(float* dest1, float* dest2){
OsmanKameric 2:e2081d9de7af 164 uint8_t data[12]; // data array to hold acc and gyro x,y,z data
OsmanKameric 2:e2081d9de7af 165 uint16_t fifo_count, packet_count, count;
OsmanKameric 2:e2081d9de7af 166 int32_t accel_bias[3] = {0,0,0};
OsmanKameric 2:e2081d9de7af 167 int32_t gyro_bias[3] = {0,0,0};
OsmanKameric 2:e2081d9de7af 168 float aRes = 2.0/32768.0;
OsmanKameric 2:e2081d9de7af 169 float gRes = 250.0/32768.0;
OsmanKameric 2:e2081d9de7af 170 uint16_t accelsensitivity = 16384; // = 1/aRes = 16384 LSB/g
OsmanKameric 2:e2081d9de7af 171 //uint16_t gyrosensitivity = 131; // = 1/gRes = 131 LSB/dps
OsmanKameric 2:e2081d9de7af 172
OsmanKameric 2:e2081d9de7af 173 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x80); // set bit7 to reset the device
OsmanKameric 2:e2081d9de7af 174 wait_ms(100);
OsmanKameric 2:e2081d9de7af 175
OsmanKameric 2:e2081d9de7af 176 /*Get stable time source */
OsmanKameric 2:e2081d9de7af 177 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x01); // PLL with X axis gyroscope reference is used to improve stability
OsmanKameric 2:e2081d9de7af 178 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_2, 0x00); // Disable accel only low power mode
OsmanKameric 2:e2081d9de7af 179 wait(0.2);
OsmanKameric 2:e2081d9de7af 180
OsmanKameric 2:e2081d9de7af 181 /* Configure device for bias calculation */
OsmanKameric 2:e2081d9de7af 182 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_INT_ENABLE, 0x00); // Disable all interrupts
OsmanKameric 2:e2081d9de7af 183 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_EN, 0x00); // Disable FIFO
OsmanKameric 2:e2081d9de7af 184 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 0x00); // Turn on internal clock source
OsmanKameric 2:e2081d9de7af 185 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_I2C_MST_CTRL, 0x00); // Disable I2C master
OsmanKameric 2:e2081d9de7af 186 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_USER_CTRL, 0x00); // Disable FIFO and I2C master modes
OsmanKameric 2:e2081d9de7af 187 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_USER_CTRL, 0x04); // Reset FIFO
OsmanKameric 2:e2081d9de7af 188 wait(0.015);
OsmanKameric 2:e2081d9de7af 189
OsmanKameric 2:e2081d9de7af 190
OsmanKameric 2:e2081d9de7af 191 /* Configure accel and gyro for bias calculation */
OsmanKameric 2:e2081d9de7af 192 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_CONFIG, 0x01); // Set low-pass filter to 188 Hz
OsmanKameric 2:e2081d9de7af 193 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
OsmanKameric 2:e2081d9de7af 194 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
OsmanKameric 2:e2081d9de7af 195 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
OsmanKameric 2:e2081d9de7af 196
OsmanKameric 2:e2081d9de7af 197 /* Configure FIFO to capture accelerometer and gyro data for bias calculation */
OsmanKameric 2:e2081d9de7af 198 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_USER_CTRL, 0x40); // Enable FIFO
OsmanKameric 2:e2081d9de7af 199 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_EN, 0x78); // Enable accelerometer and gyro for FIFO (max size 1024 bytes in MPU-6050)
OsmanKameric 2:e2081d9de7af 200 wait(0.08); // Sample rate is 1 kHz, accumulates 80 samples in 80 milliseconds.
OsmanKameric 2:e2081d9de7af 201 // accX: 2 byte, accY: 2 byte, accZ: 2 byte. gyroX: 2 byte, gyroY: 2 byte, gyroZ: 2 byte. 12*80=960 byte < 1024 byte
OsmanKameric 2:e2081d9de7af 202
OsmanKameric 2:e2081d9de7af 203
OsmanKameric 2:e2081d9de7af 204 /* At end of sample accumulation, turn off FIFO sensor read */
OsmanKameric 2:e2081d9de7af 205 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_EN, 0x00); // Disable FIFO
OsmanKameric 2:e2081d9de7af 206 i2Cdev.readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_COUNTH, 2, &data[0]); // Read FIFO sample count
OsmanKameric 2:e2081d9de7af 207 fifo_count = ((uint16_t)data[0] << 8) | data[1];
OsmanKameric 2:e2081d9de7af 208 packet_count = fifo_count/12; // The number of sets of full acc and gyro data for averaging. packet_count = 80 in this case
OsmanKameric 2:e2081d9de7af 209
OsmanKameric 2:e2081d9de7af 210 for(count=0; count<packet_count; count++)
OsmanKameric 2:e2081d9de7af 211 {
OsmanKameric 2:e2081d9de7af 212 int16_t accel_temp[3]={0,0,0};
OsmanKameric 2:e2081d9de7af 213 int16_t gyro_temp[3]={0,0,0};
OsmanKameric 2:e2081d9de7af 214 i2Cdev.readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_FIFO_R_W, 12, &data[0]); // read data for averaging
OsmanKameric 2:e2081d9de7af 215
OsmanKameric 2:e2081d9de7af 216 /* Form signed 16-bit integer for each sample in FIFO */
OsmanKameric 2:e2081d9de7af 217 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ;
OsmanKameric 2:e2081d9de7af 218 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
OsmanKameric 2:e2081d9de7af 219 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
OsmanKameric 2:e2081d9de7af 220 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
OsmanKameric 2:e2081d9de7af 221 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
OsmanKameric 2:e2081d9de7af 222 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
OsmanKameric 2:e2081d9de7af 223
OsmanKameric 2:e2081d9de7af 224 /* Sum individual signed 16-bit biases to get accumulated signed 32-bit biases */
OsmanKameric 2:e2081d9de7af 225 accel_bias[0] += (int32_t) accel_temp[0];
OsmanKameric 2:e2081d9de7af 226 accel_bias[1] += (int32_t) accel_temp[1];
OsmanKameric 2:e2081d9de7af 227 accel_bias[2] += (int32_t) accel_temp[2];
OsmanKameric 2:e2081d9de7af 228 gyro_bias[0] += (int32_t) gyro_temp[0];
OsmanKameric 2:e2081d9de7af 229 gyro_bias[1] += (int32_t) gyro_temp[1];
OsmanKameric 2:e2081d9de7af 230 gyro_bias[2] += (int32_t) gyro_temp[2];
OsmanKameric 2:e2081d9de7af 231 }
OsmanKameric 2:e2081d9de7af 232 /* Normalize sums to get average count biases */
OsmanKameric 2:e2081d9de7af 233 accel_bias[0] /= (int32_t) packet_count;
OsmanKameric 2:e2081d9de7af 234 accel_bias[1] /= (int32_t) packet_count;
OsmanKameric 2:e2081d9de7af 235 accel_bias[2] /= (int32_t) packet_count;
OsmanKameric 2:e2081d9de7af 236 gyro_bias[0] /= (int32_t) packet_count;
OsmanKameric 2:e2081d9de7af 237 gyro_bias[1] /= (int32_t) packet_count;
OsmanKameric 2:e2081d9de7af 238 gyro_bias[2] /= (int32_t) packet_count;
OsmanKameric 2:e2081d9de7af 239
OsmanKameric 2:e2081d9de7af 240 /* Remove gravity from the z-axis accelerometer bias calculation */
OsmanKameric 2:e2081d9de7af 241 if(accel_bias[2] > 0) {accel_bias[2] -= (int32_t) accelsensitivity;}
OsmanKameric 2:e2081d9de7af 242 else {accel_bias[2] += (int32_t) accelsensitivity;}
OsmanKameric 2:e2081d9de7af 243
OsmanKameric 2:e2081d9de7af 244 /* Output scaled accelerometer biases for manual subtraction in the main program */
OsmanKameric 2:e2081d9de7af 245 dest1[0] = accel_bias[0]*aRes;
OsmanKameric 2:e2081d9de7af 246 dest1[1] = accel_bias[1]*aRes;
OsmanKameric 2:e2081d9de7af 247 dest1[2] = accel_bias[2]*aRes;
OsmanKameric 2:e2081d9de7af 248
OsmanKameric 2:e2081d9de7af 249 /* Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup */
OsmanKameric 2:e2081d9de7af 250 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
OsmanKameric 2:e2081d9de7af 251 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
OsmanKameric 2:e2081d9de7af 252 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
OsmanKameric 2:e2081d9de7af 253 data[3] = (-gyro_bias[1]/4) & 0xFF;
OsmanKameric 2:e2081d9de7af 254 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
OsmanKameric 2:e2081d9de7af 255 data[5] = (-gyro_bias[2]/4) & 0xFF;
OsmanKameric 2:e2081d9de7af 256
OsmanKameric 2:e2081d9de7af 257 /* Push gyro biases to hardware registers */
OsmanKameric 2:e2081d9de7af 258 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XG_OFFS_USRH, data[0]);
OsmanKameric 2:e2081d9de7af 259 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_XG_OFFS_USRL, data[1]);
OsmanKameric 2:e2081d9de7af 260 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YG_OFFS_USRH, data[2]);
OsmanKameric 2:e2081d9de7af 261 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_YG_OFFS_USRL, data[3]);
OsmanKameric 2:e2081d9de7af 262 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZG_OFFS_USRH, data[4]);
OsmanKameric 2:e2081d9de7af 263 i2Cdev.writeByte(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ZG_OFFS_USRL, data[5]);
OsmanKameric 2:e2081d9de7af 264
OsmanKameric 2:e2081d9de7af 265 /* Construct gyro bias in deg/s for later manual subtraction */
OsmanKameric 2:e2081d9de7af 266 dest2[0] = gyro_bias[0]*gRes;
OsmanKameric 2:e2081d9de7af 267 dest2[1] = gyro_bias[1]*gRes;
OsmanKameric 2:e2081d9de7af 268 dest2[2] = gyro_bias[2]*gRes;
OsmanKameric 2:e2081d9de7af 269 }
OsmanKameric 2:e2081d9de7af 270 void MPU6050::readAccelData(int16_t* dest)
OsmanKameric 2:e2081d9de7af 271 {
OsmanKameric 2:e2081d9de7af 272 uint8_t rawData[6]; // x,y,z acc data
OsmanKameric 2:e2081d9de7af 273 i2Cdev.readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_XOUT_H, 6, &rawData[0]); // read six raw data registers sequentially and write them into data array
OsmanKameric 2:e2081d9de7af 274
OsmanKameric 2:e2081d9de7af 275 /* Turn the MSB LSB into signed 16-bit value */
OsmanKameric 2:e2081d9de7af 276 dest[0] = (int16_t)(((int16_t)rawData[0]<<8) | rawData[1]); // ACCEL_XOUT
OsmanKameric 2:e2081d9de7af 277 dest[1] = (int16_t)(((int16_t)rawData[2]<<8) | rawData[3]); // ACCEL_YOUT
OsmanKameric 2:e2081d9de7af 278 dest[2] = (int16_t)(((int16_t)rawData[4]<<8) | rawData[5]); // ACCEL_ZOUT
OsmanKameric 2:e2081d9de7af 279 }
OsmanKameric 2:e2081d9de7af 280 void MPU6050::readGyroData(int16_t* dest)
OsmanKameric 2:e2081d9de7af 281 {
OsmanKameric 2:e2081d9de7af 282 uint8_t rawData[6]; // x,y,z gyro data
OsmanKameric 2:e2081d9de7af 283 i2Cdev.readBytes(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_XOUT_H, 6, &rawData[0]); // read the six raw data registers sequentially and write them into data array
OsmanKameric 2:e2081d9de7af 284
OsmanKameric 2:e2081d9de7af 285 /* Turn the MSB LSB into signed 16-bit value */
OsmanKameric 2:e2081d9de7af 286 dest[0] = (int16_t)(((int16_t)rawData[0]<<8) | rawData[1]); // GYRO_XOUT
OsmanKameric 2:e2081d9de7af 287 dest[1] = (int16_t)(((int16_t)rawData[2]<<8) | rawData[3]); // GYRO_YOUT
OsmanKameric 2:e2081d9de7af 288 dest[2] = (int16_t)(((int16_t)rawData[4]<<8) | rawData[5]); // GYRO_ZOUT
OsmanKameric 2:e2081d9de7af 289 }
OsmanKameric 2:e2081d9de7af 290 void MPU6050::getGres()
OsmanKameric 2:e2081d9de7af 291 {
OsmanKameric 2:e2081d9de7af 292 switch(Gscale)
OsmanKameric 2:e2081d9de7af 293 {
OsmanKameric 2:e2081d9de7af 294 case GFS_250DPS:
OsmanKameric 2:e2081d9de7af 295 gRes = 250.0/32768.0;
OsmanKameric 2:e2081d9de7af 296 break;
OsmanKameric 2:e2081d9de7af 297 case GFS_500DPS:
OsmanKameric 2:e2081d9de7af 298 gRes = 500.0/32768.0;
OsmanKameric 2:e2081d9de7af 299 break;
OsmanKameric 2:e2081d9de7af 300 case GFS_1000DPS:
OsmanKameric 2:e2081d9de7af 301 gRes = 1000.0/32768.0;
OsmanKameric 2:e2081d9de7af 302 break;
OsmanKameric 2:e2081d9de7af 303 case GFS_2000DPS:
OsmanKameric 2:e2081d9de7af 304 gRes = 2000.0/32768.0;
OsmanKameric 2:e2081d9de7af 305 break;
OsmanKameric 2:e2081d9de7af 306 }
OsmanKameric 2:e2081d9de7af 307 }
OsmanKameric 2:e2081d9de7af 308 void MPU6050::getAres()
OsmanKameric 2:e2081d9de7af 309 {
OsmanKameric 2:e2081d9de7af 310 switch(Ascale)
OsmanKameric 2:e2081d9de7af 311 {
OsmanKameric 2:e2081d9de7af 312 case AFS_2G:
OsmanKameric 2:e2081d9de7af 313 aRes = 2.0/32768.0;
OsmanKameric 2:e2081d9de7af 314 break;
OsmanKameric 2:e2081d9de7af 315 case AFS_4G:
OsmanKameric 2:e2081d9de7af 316 aRes = 4.0/32768.0;
OsmanKameric 2:e2081d9de7af 317 break;
OsmanKameric 2:e2081d9de7af 318 case AFS_8G:
OsmanKameric 2:e2081d9de7af 319 aRes = 8.0/32768.0;
OsmanKameric 2:e2081d9de7af 320 break;
OsmanKameric 2:e2081d9de7af 321 case AFS_16G:
OsmanKameric 2:e2081d9de7af 322 aRes = 16.0/32768.0;
OsmanKameric 2:e2081d9de7af 323 break;
OsmanKameric 2:e2081d9de7af 324 }
OsmanKameric 2:e2081d9de7af 325 }
garfieldsg 0:662207e34fba 326 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
garfieldsg 0:662207e34fba 327
garfieldsg 0:662207e34fba 328 /** Get the auxiliary I2C supply voltage level.
garfieldsg 0:662207e34fba 329 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
garfieldsg 0:662207e34fba 330 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
garfieldsg 0:662207e34fba 331 * the MPU-6000, which does not have a VLOGIC pin.
garfieldsg 0:662207e34fba 332 * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
garfieldsg 0:662207e34fba 333 */
garfieldsg 0:662207e34fba 334 uint8_t MPU6050::getAuxVDDIOLevel()
garfieldsg 0:662207e34fba 335 {
garfieldsg 0:662207e34fba 336 i2Cdev.readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
garfieldsg 0:662207e34fba 337 return buffer[0];
garfieldsg 0:662207e34fba 338 }
garfieldsg 0:662207e34fba 339 /** Set the auxiliary I2C supply voltage level.
garfieldsg 0:662207e34fba 340 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
garfieldsg 0:662207e34fba 341 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
garfieldsg 0:662207e34fba 342 * the MPU-6000, which does not have a VLOGIC pin.
garfieldsg 0:662207e34fba 343 * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
garfieldsg 0:662207e34fba 344 */
garfieldsg 0:662207e34fba 345 void MPU6050::setAuxVDDIOLevel(uint8_t level)
garfieldsg 0:662207e34fba 346 {
garfieldsg 0:662207e34fba 347 i2Cdev.writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
garfieldsg 0:662207e34fba 348 }
garfieldsg 0:662207e34fba 349
garfieldsg 0:662207e34fba 350 // SMPLRT_DIV register
garfieldsg 0:662207e34fba 351
garfieldsg 0:662207e34fba 352 /** Get gyroscope output rate divider.
garfieldsg 0:662207e34fba 353 * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
garfieldsg 0:662207e34fba 354 * Motion detection, and Free Fall detection are all based on the Sample Rate.
garfieldsg 0:662207e34fba 355 * The Sample Rate is generated by dividing the gyroscope output rate by
garfieldsg 0:662207e34fba 356 * SMPLRT_DIV:
garfieldsg 0:662207e34fba 357 *
garfieldsg 0:662207e34fba 358 * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
garfieldsg 0:662207e34fba 359 *
garfieldsg 0:662207e34fba 360 * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
garfieldsg 0:662207e34fba 361 * 7), and 1kHz when the DLPF is enabled (see Register 26).
garfieldsg 0:662207e34fba 362 *
garfieldsg 0:662207e34fba 363 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
garfieldsg 0:662207e34fba 364 * Rate greater than 1kHz, the same accelerometer sample may be output to the
garfieldsg 0:662207e34fba 365 * FIFO, DMP, and sensor registers more than once.
garfieldsg 0:662207e34fba 366 *
garfieldsg 0:662207e34fba 367 * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
garfieldsg 0:662207e34fba 368 * of the MPU-6000/MPU-6050 Product Specification document.
garfieldsg 0:662207e34fba 369 *
garfieldsg 0:662207e34fba 370 * @return Current sample rate
garfieldsg 0:662207e34fba 371 * @see MPU6050_RA_SMPLRT_DIV
garfieldsg 0:662207e34fba 372 */
garfieldsg 0:662207e34fba 373 uint8_t MPU6050::getRate()
garfieldsg 0:662207e34fba 374 {
garfieldsg 0:662207e34fba 375 i2Cdev.readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
garfieldsg 0:662207e34fba 376 return buffer[0];
garfieldsg 0:662207e34fba 377 }
garfieldsg 0:662207e34fba 378 /** Set gyroscope sample rate divider.
garfieldsg 0:662207e34fba 379 * @param rate New sample rate divider
garfieldsg 0:662207e34fba 380 * @see getRate()
garfieldsg 0:662207e34fba 381 * @see MPU6050_RA_SMPLRT_DIV
garfieldsg 0:662207e34fba 382 */
garfieldsg 0:662207e34fba 383 void MPU6050::setRate(uint8_t rate)
garfieldsg 0:662207e34fba 384 {
garfieldsg 0:662207e34fba 385 i2Cdev.writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
garfieldsg 0:662207e34fba 386 }
garfieldsg 0:662207e34fba 387
garfieldsg 0:662207e34fba 388 // CONFIG register
garfieldsg 0:662207e34fba 389
garfieldsg 0:662207e34fba 390 /** Get external FSYNC configuration.
garfieldsg 0:662207e34fba 391 * Configures the external Frame Synchronization (FSYNC) pin sampling. An
garfieldsg 0:662207e34fba 392 * external signal connected to the FSYNC pin can be sampled by configuring
garfieldsg 0:662207e34fba 393 * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
garfieldsg 0:662207e34fba 394 * strobes may be captured. The latched FSYNC signal will be sampled at the
garfieldsg 0:662207e34fba 395 * Sampling Rate, as defined in register 25. After sampling, the latch will
garfieldsg 0:662207e34fba 396 * reset to the current FSYNC signal state.
garfieldsg 0:662207e34fba 397 *
garfieldsg 0:662207e34fba 398 * The sampled value will be reported in place of the least significant bit in
garfieldsg 0:662207e34fba 399 * a sensor data register determined by the value of EXT_SYNC_SET according to
garfieldsg 0:662207e34fba 400 * the following table.
garfieldsg 0:662207e34fba 401 *
garfieldsg 0:662207e34fba 402 * <pre>
garfieldsg 0:662207e34fba 403 * EXT_SYNC_SET | FSYNC Bit Location
garfieldsg 0:662207e34fba 404 * -------------+-------------------
garfieldsg 0:662207e34fba 405 * 0 | Input disabled
garfieldsg 0:662207e34fba 406 * 1 | TEMP_OUT_L[0]
garfieldsg 0:662207e34fba 407 * 2 | GYRO_XOUT_L[0]
garfieldsg 0:662207e34fba 408 * 3 | GYRO_YOUT_L[0]
garfieldsg 0:662207e34fba 409 * 4 | GYRO_ZOUT_L[0]
garfieldsg 0:662207e34fba 410 * 5 | ACCEL_XOUT_L[0]
garfieldsg 0:662207e34fba 411 * 6 | ACCEL_YOUT_L[0]
garfieldsg 0:662207e34fba 412 * 7 | ACCEL_ZOUT_L[0]
garfieldsg 0:662207e34fba 413 * </pre>
garfieldsg 0:662207e34fba 414 *
garfieldsg 0:662207e34fba 415 * @return FSYNC configuration value
garfieldsg 0:662207e34fba 416 */
garfieldsg 0:662207e34fba 417 uint8_t MPU6050::getExternalFrameSync()
garfieldsg 0:662207e34fba 418 {
garfieldsg 0:662207e34fba 419 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
garfieldsg 0:662207e34fba 420 return buffer[0];
garfieldsg 0:662207e34fba 421 }
garfieldsg 0:662207e34fba 422 /** Set external FSYNC configuration.
garfieldsg 0:662207e34fba 423 * @see getExternalFrameSync()
garfieldsg 0:662207e34fba 424 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 425 * @param sync New FSYNC configuration value
garfieldsg 0:662207e34fba 426 */
garfieldsg 0:662207e34fba 427 void MPU6050::setExternalFrameSync(uint8_t sync)
garfieldsg 0:662207e34fba 428 {
garfieldsg 0:662207e34fba 429 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
garfieldsg 0:662207e34fba 430 }
garfieldsg 0:662207e34fba 431 /** Get digital low-pass filter configuration.
garfieldsg 0:662207e34fba 432 * The DLPF_CFG parameter sets the digital low pass filter configuration. It
garfieldsg 0:662207e34fba 433 * also determines the internal sampling rate used by the device as shown in
garfieldsg 0:662207e34fba 434 * the table below.
garfieldsg 0:662207e34fba 435 *
garfieldsg 0:662207e34fba 436 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
garfieldsg 0:662207e34fba 437 * Rate greater than 1kHz, the same accelerometer sample may be output to the
garfieldsg 0:662207e34fba 438 * FIFO, DMP, and sensor registers more than once.
garfieldsg 0:662207e34fba 439 *
garfieldsg 0:662207e34fba 440 * <pre>
garfieldsg 0:662207e34fba 441 * | ACCELEROMETER | GYROSCOPE
garfieldsg 0:662207e34fba 442 * DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
garfieldsg 0:662207e34fba 443 * ---------+-----------+--------+-----------+--------+-------------
garfieldsg 0:662207e34fba 444 * 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
garfieldsg 0:662207e34fba 445 * 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
garfieldsg 0:662207e34fba 446 * 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
garfieldsg 0:662207e34fba 447 * 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
garfieldsg 0:662207e34fba 448 * 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
garfieldsg 0:662207e34fba 449 * 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
garfieldsg 0:662207e34fba 450 * 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
garfieldsg 0:662207e34fba 451 * 7 | -- Reserved -- | -- Reserved -- | Reserved
garfieldsg 0:662207e34fba 452 * </pre>
garfieldsg 0:662207e34fba 453 *
garfieldsg 0:662207e34fba 454 * @return DLFP configuration
garfieldsg 0:662207e34fba 455 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 456 * @see MPU6050_CFG_DLPF_CFG_BIT
garfieldsg 0:662207e34fba 457 * @see MPU6050_CFG_DLPF_CFG_LENGTH
garfieldsg 0:662207e34fba 458 */
garfieldsg 0:662207e34fba 459 uint8_t MPU6050::getDLPFMode()
garfieldsg 0:662207e34fba 460 {
garfieldsg 0:662207e34fba 461 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
garfieldsg 0:662207e34fba 462 return buffer[0];
garfieldsg 0:662207e34fba 463 }
garfieldsg 0:662207e34fba 464 /** Set digital low-pass filter configuration.
garfieldsg 0:662207e34fba 465 * @param mode New DLFP configuration setting
garfieldsg 0:662207e34fba 466 * @see getDLPFBandwidth()
garfieldsg 0:662207e34fba 467 * @see MPU6050_DLPF_BW_256
garfieldsg 0:662207e34fba 468 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 469 * @see MPU6050_CFG_DLPF_CFG_BIT
garfieldsg 0:662207e34fba 470 * @see MPU6050_CFG_DLPF_CFG_LENGTH
garfieldsg 0:662207e34fba 471 */
garfieldsg 0:662207e34fba 472 void MPU6050::setDLPFMode(uint8_t mode)
garfieldsg 0:662207e34fba 473 {
garfieldsg 0:662207e34fba 474 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
garfieldsg 0:662207e34fba 475 }
garfieldsg 0:662207e34fba 476
garfieldsg 0:662207e34fba 477 // GYRO_CONFIG register
garfieldsg 0:662207e34fba 478
garfieldsg 0:662207e34fba 479 /** Get full-scale gyroscope range.
garfieldsg 0:662207e34fba 480 * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
garfieldsg 0:662207e34fba 481 * as described in the table below.
garfieldsg 0:662207e34fba 482 *
garfieldsg 0:662207e34fba 483 * <pre>
garfieldsg 0:662207e34fba 484 * 0 = +/- 250 degrees/sec
garfieldsg 0:662207e34fba 485 * 1 = +/- 500 degrees/sec
garfieldsg 0:662207e34fba 486 * 2 = +/- 1000 degrees/sec
garfieldsg 0:662207e34fba 487 * 3 = +/- 2000 degrees/sec
garfieldsg 0:662207e34fba 488 * </pre>
garfieldsg 0:662207e34fba 489 *
garfieldsg 0:662207e34fba 490 * @return Current full-scale gyroscope range setting
garfieldsg 0:662207e34fba 491 * @see MPU6050_GYRO_FS_250
garfieldsg 0:662207e34fba 492 * @see MPU6050_RA_GYRO_CONFIG
garfieldsg 0:662207e34fba 493 * @see MPU6050_GCONFIG_FS_SEL_BIT
garfieldsg 0:662207e34fba 494 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
garfieldsg 0:662207e34fba 495 */
garfieldsg 0:662207e34fba 496 uint8_t MPU6050::getFullScaleGyroRange()
garfieldsg 0:662207e34fba 497 {
garfieldsg 0:662207e34fba 498 i2Cdev.readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 499 return buffer[0];
garfieldsg 0:662207e34fba 500 }
garfieldsg 0:662207e34fba 501 /** Set full-scale gyroscope range.
garfieldsg 0:662207e34fba 502 * @param range New full-scale gyroscope range value
garfieldsg 0:662207e34fba 503 * @see getFullScaleRange()
garfieldsg 0:662207e34fba 504 * @see MPU6050_GYRO_FS_250
garfieldsg 0:662207e34fba 505 * @see MPU6050_RA_GYRO_CONFIG
garfieldsg 0:662207e34fba 506 * @see MPU6050_GCONFIG_FS_SEL_BIT
garfieldsg 0:662207e34fba 507 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
garfieldsg 0:662207e34fba 508 */
garfieldsg 0:662207e34fba 509 void MPU6050::setFullScaleGyroRange(uint8_t range)
garfieldsg 0:662207e34fba 510 {
garfieldsg 0:662207e34fba 511 i2Cdev.writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
garfieldsg 0:662207e34fba 512 }
garfieldsg 0:662207e34fba 513
garfieldsg 0:662207e34fba 514 // ACCEL_CONFIG register
garfieldsg 0:662207e34fba 515
garfieldsg 0:662207e34fba 516 /** Get self-test enabled setting for accelerometer X axis.
garfieldsg 0:662207e34fba 517 * @return Self-test enabled value
garfieldsg 0:662207e34fba 518 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 519 */
garfieldsg 0:662207e34fba 520 bool MPU6050::getAccelXSelfTest()
garfieldsg 0:662207e34fba 521 {
garfieldsg 0:662207e34fba 522 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 523 return buffer[0];
garfieldsg 0:662207e34fba 524 }
garfieldsg 0:662207e34fba 525 /** Get self-test enabled setting for accelerometer X axis.
garfieldsg 0:662207e34fba 526 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 527 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 528 */
garfieldsg 0:662207e34fba 529 void MPU6050::setAccelXSelfTest(bool enabled)
garfieldsg 0:662207e34fba 530 {
garfieldsg 0:662207e34fba 531 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 532 }
garfieldsg 0:662207e34fba 533 /** Get self-test enabled value for accelerometer Y axis.
garfieldsg 0:662207e34fba 534 * @return Self-test enabled value
garfieldsg 0:662207e34fba 535 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 536 */
garfieldsg 0:662207e34fba 537 bool MPU6050::getAccelYSelfTest()
garfieldsg 0:662207e34fba 538 {
garfieldsg 0:662207e34fba 539 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 540 return buffer[0];
garfieldsg 0:662207e34fba 541 }
garfieldsg 0:662207e34fba 542 /** Get self-test enabled value for accelerometer Y axis.
garfieldsg 0:662207e34fba 543 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 544 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 545 */
garfieldsg 0:662207e34fba 546 void MPU6050::setAccelYSelfTest(bool enabled)
garfieldsg 0:662207e34fba 547 {
garfieldsg 0:662207e34fba 548 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 549 }
garfieldsg 0:662207e34fba 550 /** Get self-test enabled value for accelerometer Z axis.
garfieldsg 0:662207e34fba 551 * @return Self-test enabled value
garfieldsg 0:662207e34fba 552 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 553 */
garfieldsg 0:662207e34fba 554 bool MPU6050::getAccelZSelfTest()
garfieldsg 0:662207e34fba 555 {
garfieldsg 0:662207e34fba 556 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 557 return buffer[0];
garfieldsg 0:662207e34fba 558 }
garfieldsg 0:662207e34fba 559 /** Set self-test enabled value for accelerometer Z axis.
garfieldsg 0:662207e34fba 560 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 561 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 562 */
garfieldsg 0:662207e34fba 563 void MPU6050::setAccelZSelfTest(bool enabled)
garfieldsg 0:662207e34fba 564 {
garfieldsg 0:662207e34fba 565 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 566 }
garfieldsg 0:662207e34fba 567 /** Get full-scale accelerometer range.
garfieldsg 0:662207e34fba 568 * The FS_SEL parameter allows setting the full-scale range of the accelerometer
garfieldsg 0:662207e34fba 569 * sensors, as described in the table below.
garfieldsg 0:662207e34fba 570 *
garfieldsg 0:662207e34fba 571 * <pre>
garfieldsg 0:662207e34fba 572 * 0 = +/- 2g
garfieldsg 0:662207e34fba 573 * 1 = +/- 4g
garfieldsg 0:662207e34fba 574 * 2 = +/- 8g
garfieldsg 0:662207e34fba 575 * 3 = +/- 16g
garfieldsg 0:662207e34fba 576 * </pre>
garfieldsg 0:662207e34fba 577 *
garfieldsg 0:662207e34fba 578 * @return Current full-scale accelerometer range setting
garfieldsg 0:662207e34fba 579 * @see MPU6050_ACCEL_FS_2
garfieldsg 0:662207e34fba 580 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 581 * @see MPU6050_ACONFIG_AFS_SEL_BIT
garfieldsg 0:662207e34fba 582 * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
garfieldsg 0:662207e34fba 583 */
garfieldsg 0:662207e34fba 584 uint8_t MPU6050::getFullScaleAccelRange()
garfieldsg 0:662207e34fba 585 {
garfieldsg 0:662207e34fba 586 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 587 return buffer[0];
garfieldsg 0:662207e34fba 588 }
garfieldsg 0:662207e34fba 589 /** Set full-scale accelerometer range.
garfieldsg 0:662207e34fba 590 * @param range New full-scale accelerometer range setting
garfieldsg 0:662207e34fba 591 * @see getFullScaleAccelRange()
garfieldsg 0:662207e34fba 592 */
garfieldsg 0:662207e34fba 593 void MPU6050::setFullScaleAccelRange(uint8_t range)
garfieldsg 0:662207e34fba 594 {
garfieldsg 0:662207e34fba 595 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
garfieldsg 0:662207e34fba 596 }
garfieldsg 0:662207e34fba 597 /** Get the high-pass filter configuration.
garfieldsg 0:662207e34fba 598 * The DHPF is a filter module in the path leading to motion detectors (Free
garfieldsg 0:662207e34fba 599 * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
garfieldsg 0:662207e34fba 600 * available to the data registers (see Figure in Section 8 of the MPU-6000/
garfieldsg 0:662207e34fba 601 * MPU-6050 Product Specification document).
garfieldsg 0:662207e34fba 602 *
garfieldsg 0:662207e34fba 603 * The high pass filter has three modes:
garfieldsg 0:662207e34fba 604 *
garfieldsg 0:662207e34fba 605 * <pre>
garfieldsg 0:662207e34fba 606 * Reset: The filter output settles to zero within one sample. This
garfieldsg 0:662207e34fba 607 * effectively disables the high pass filter. This mode may be toggled
garfieldsg 0:662207e34fba 608 * to quickly settle the filter.
garfieldsg 0:662207e34fba 609 *
garfieldsg 0:662207e34fba 610 * On: The high pass filter will pass signals above the cut off frequency.
garfieldsg 0:662207e34fba 611 *
garfieldsg 0:662207e34fba 612 * Hold: When triggered, the filter holds the present sample. The filter
garfieldsg 0:662207e34fba 613 * output will be the difference between the input sample and the held
garfieldsg 0:662207e34fba 614 * sample.
garfieldsg 0:662207e34fba 615 * </pre>
garfieldsg 0:662207e34fba 616 *
garfieldsg 0:662207e34fba 617 * <pre>
garfieldsg 0:662207e34fba 618 * ACCEL_HPF | Filter Mode | Cut-off Frequency
garfieldsg 0:662207e34fba 619 * ----------+-------------+------------------
garfieldsg 0:662207e34fba 620 * 0 | Reset | None
garfieldsg 0:662207e34fba 621 * 1 | On | 5Hz
garfieldsg 0:662207e34fba 622 * 2 | On | 2.5Hz
garfieldsg 0:662207e34fba 623 * 3 | On | 1.25Hz
garfieldsg 0:662207e34fba 624 * 4 | On | 0.63Hz
garfieldsg 0:662207e34fba 625 * 7 | Hold | None
garfieldsg 0:662207e34fba 626 * </pre>
garfieldsg 0:662207e34fba 627 *
garfieldsg 0:662207e34fba 628 * @return Current high-pass filter configuration
garfieldsg 0:662207e34fba 629 * @see MPU6050_DHPF_RESET
garfieldsg 0:662207e34fba 630 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 631 */
garfieldsg 0:662207e34fba 632 uint8_t MPU6050::getDHPFMode()
garfieldsg 0:662207e34fba 633 {
garfieldsg 0:662207e34fba 634 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
garfieldsg 0:662207e34fba 635 return buffer[0];
garfieldsg 0:662207e34fba 636 }
garfieldsg 0:662207e34fba 637 /** Set the high-pass filter configuration.
garfieldsg 0:662207e34fba 638 * @param bandwidth New high-pass filter configuration
garfieldsg 0:662207e34fba 639 * @see setDHPFMode()
garfieldsg 0:662207e34fba 640 * @see MPU6050_DHPF_RESET
garfieldsg 0:662207e34fba 641 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 642 */
garfieldsg 0:662207e34fba 643 void MPU6050::setDHPFMode(uint8_t bandwidth)
garfieldsg 0:662207e34fba 644 {
garfieldsg 0:662207e34fba 645 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
garfieldsg 0:662207e34fba 646 }
garfieldsg 0:662207e34fba 647
garfieldsg 0:662207e34fba 648 // FF_THR register
garfieldsg 0:662207e34fba 649
garfieldsg 0:662207e34fba 650 /** Get free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 651 * This register configures the detection threshold for Free Fall event
garfieldsg 0:662207e34fba 652 * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
garfieldsg 0:662207e34fba 653 * absolute value of the accelerometer measurements for the three axes are each
garfieldsg 0:662207e34fba 654 * less than the detection threshold. This condition increments the Free Fall
garfieldsg 0:662207e34fba 655 * duration counter (Register 30). The Free Fall interrupt is triggered when the
garfieldsg 0:662207e34fba 656 * Free Fall duration counter reaches the time specified in FF_DUR.
garfieldsg 0:662207e34fba 657 *
garfieldsg 0:662207e34fba 658 * For more details on the Free Fall detection interrupt, see Section 8.2 of the
garfieldsg 0:662207e34fba 659 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
garfieldsg 0:662207e34fba 660 * 58 of this document.
garfieldsg 0:662207e34fba 661 *
garfieldsg 0:662207e34fba 662 * @return Current free-fall acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 663 * @see MPU6050_RA_FF_THR
garfieldsg 0:662207e34fba 664 */
garfieldsg 0:662207e34fba 665 uint8_t MPU6050::getFreefallDetectionThreshold()
garfieldsg 0:662207e34fba 666 {
garfieldsg 0:662207e34fba 667 i2Cdev.readByte(devAddr, MPU6050_RA_FF_THR, buffer);
garfieldsg 0:662207e34fba 668 return buffer[0];
garfieldsg 0:662207e34fba 669 }
garfieldsg 0:662207e34fba 670 /** Get free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 671 * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 672 * @see getFreefallDetectionThreshold()
garfieldsg 0:662207e34fba 673 * @see MPU6050_RA_FF_THR
garfieldsg 0:662207e34fba 674 */
garfieldsg 0:662207e34fba 675 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold)
garfieldsg 0:662207e34fba 676 {
garfieldsg 0:662207e34fba 677 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
garfieldsg 0:662207e34fba 678 }
garfieldsg 0:662207e34fba 679
garfieldsg 0:662207e34fba 680 // FF_DUR register
garfieldsg 0:662207e34fba 681
garfieldsg 0:662207e34fba 682 /** Get free-fall event duration threshold.
garfieldsg 0:662207e34fba 683 * This register configures the duration counter threshold for Free Fall event
garfieldsg 0:662207e34fba 684 * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
garfieldsg 0:662207e34fba 685 * of 1 LSB = 1 ms.
garfieldsg 0:662207e34fba 686 *
garfieldsg 0:662207e34fba 687 * The Free Fall duration counter increments while the absolute value of the
garfieldsg 0:662207e34fba 688 * accelerometer measurements are each less than the detection threshold
garfieldsg 0:662207e34fba 689 * (Register 29). The Free Fall interrupt is triggered when the Free Fall
garfieldsg 0:662207e34fba 690 * duration counter reaches the time specified in this register.
garfieldsg 0:662207e34fba 691 *
garfieldsg 0:662207e34fba 692 * For more details on the Free Fall detection interrupt, see Section 8.2 of
garfieldsg 0:662207e34fba 693 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
garfieldsg 0:662207e34fba 694 * and 58 of this document.
garfieldsg 0:662207e34fba 695 *
garfieldsg 0:662207e34fba 696 * @return Current free-fall duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 697 * @see MPU6050_RA_FF_DUR
garfieldsg 0:662207e34fba 698 */
garfieldsg 0:662207e34fba 699 uint8_t MPU6050::getFreefallDetectionDuration()
garfieldsg 0:662207e34fba 700 {
garfieldsg 0:662207e34fba 701 i2Cdev.readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
garfieldsg 0:662207e34fba 702 return buffer[0];
garfieldsg 0:662207e34fba 703 }
garfieldsg 0:662207e34fba 704 /** Get free-fall event duration threshold.
garfieldsg 0:662207e34fba 705 * @param duration New free-fall duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 706 * @see getFreefallDetectionDuration()
garfieldsg 0:662207e34fba 707 * @see MPU6050_RA_FF_DUR
garfieldsg 0:662207e34fba 708 */
garfieldsg 0:662207e34fba 709 void MPU6050::setFreefallDetectionDuration(uint8_t duration)
garfieldsg 0:662207e34fba 710 {
garfieldsg 0:662207e34fba 711 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
garfieldsg 0:662207e34fba 712 }
garfieldsg 0:662207e34fba 713
garfieldsg 0:662207e34fba 714 // MOT_THR register
garfieldsg 0:662207e34fba 715
garfieldsg 0:662207e34fba 716 /** Get motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 717 * This register configures the detection threshold for Motion interrupt
garfieldsg 0:662207e34fba 718 * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
garfieldsg 0:662207e34fba 719 * absolute value of any of the accelerometer measurements exceeds this Motion
garfieldsg 0:662207e34fba 720 * detection threshold. This condition increments the Motion detection duration
garfieldsg 0:662207e34fba 721 * counter (Register 32). The Motion detection interrupt is triggered when the
garfieldsg 0:662207e34fba 722 * Motion Detection counter reaches the time count specified in MOT_DUR
garfieldsg 0:662207e34fba 723 * (Register 32).
garfieldsg 0:662207e34fba 724 *
garfieldsg 0:662207e34fba 725 * The Motion interrupt will indicate the axis and polarity of detected motion
garfieldsg 0:662207e34fba 726 * in MOT_DETECT_STATUS (Register 97).
garfieldsg 0:662207e34fba 727 *
garfieldsg 0:662207e34fba 728 * For more details on the Motion detection interrupt, see Section 8.3 of the
garfieldsg 0:662207e34fba 729 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
garfieldsg 0:662207e34fba 730 * 58 of this document.
garfieldsg 0:662207e34fba 731 *
garfieldsg 0:662207e34fba 732 * @return Current motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 733 * @see MPU6050_RA_MOT_THR
garfieldsg 0:662207e34fba 734 */
garfieldsg 0:662207e34fba 735 uint8_t MPU6050::getMotionDetectionThreshold()
garfieldsg 0:662207e34fba 736 {
garfieldsg 0:662207e34fba 737 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
garfieldsg 0:662207e34fba 738 return buffer[0];
garfieldsg 0:662207e34fba 739 }
garfieldsg 0:662207e34fba 740 /** Set free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 741 * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 742 * @see getMotionDetectionThreshold()
garfieldsg 0:662207e34fba 743 * @see MPU6050_RA_MOT_THR
garfieldsg 0:662207e34fba 744 */
garfieldsg 0:662207e34fba 745 void MPU6050::setMotionDetectionThreshold(uint8_t threshold)
garfieldsg 0:662207e34fba 746 {
garfieldsg 0:662207e34fba 747 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
garfieldsg 0:662207e34fba 748 }
garfieldsg 0:662207e34fba 749
OsmanKameric 2:e2081d9de7af 750 // register
garfieldsg 0:662207e34fba 751
garfieldsg 0:662207e34fba 752 /** Get motion detection event duration threshold.
garfieldsg 0:662207e34fba 753 * This register configures the duration counter threshold for Motion interrupt
garfieldsg 0:662207e34fba 754 * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
garfieldsg 0:662207e34fba 755 * of 1LSB = 1ms. The Motion detection duration counter increments when the
garfieldsg 0:662207e34fba 756 * absolute value of any of the accelerometer measurements exceeds the Motion
garfieldsg 0:662207e34fba 757 * detection threshold (Register 31). The Motion detection interrupt is
garfieldsg 0:662207e34fba 758 * triggered when the Motion detection counter reaches the time count specified
garfieldsg 0:662207e34fba 759 * in this register.
garfieldsg 0:662207e34fba 760 *
garfieldsg 0:662207e34fba 761 * For more details on the Motion detection interrupt, see Section 8.3 of the
garfieldsg 0:662207e34fba 762 * MPU-6000/MPU-6050 Product Specification document.
garfieldsg 0:662207e34fba 763 *
garfieldsg 0:662207e34fba 764 * @return Current motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 765 * @see MPU6050_RA_MOT_DUR
garfieldsg 0:662207e34fba 766 */
garfieldsg 0:662207e34fba 767 uint8_t MPU6050::getMotionDetectionDuration()
garfieldsg 0:662207e34fba 768 {
garfieldsg 0:662207e34fba 769 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
garfieldsg 0:662207e34fba 770 return buffer[0];
garfieldsg 0:662207e34fba 771 }
garfieldsg 0:662207e34fba 772 /** Set motion detection event duration threshold.
garfieldsg 0:662207e34fba 773 * @param duration New motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 774 * @see getMotionDetectionDuration()
garfieldsg 0:662207e34fba 775 * @see MPU6050_RA_MOT_DUR
garfieldsg 0:662207e34fba 776 */
garfieldsg 0:662207e34fba 777 void MPU6050::setMotionDetectionDuration(uint8_t duration)
garfieldsg 0:662207e34fba 778 {
garfieldsg 0:662207e34fba 779 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
garfieldsg 0:662207e34fba 780 }
garfieldsg 0:662207e34fba 781
garfieldsg 0:662207e34fba 782 // ZRMOT_THR register
garfieldsg 0:662207e34fba 783
garfieldsg 0:662207e34fba 784 /** Get zero motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 785 * This register configures the detection threshold for Zero Motion interrupt
garfieldsg 0:662207e34fba 786 * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
garfieldsg 0:662207e34fba 787 * the absolute value of the accelerometer measurements for the 3 axes are each
garfieldsg 0:662207e34fba 788 * less than the detection threshold. This condition increments the Zero Motion
garfieldsg 0:662207e34fba 789 * duration counter (Register 34). The Zero Motion interrupt is triggered when
garfieldsg 0:662207e34fba 790 * the Zero Motion duration counter reaches the time count specified in
garfieldsg 0:662207e34fba 791 * ZRMOT_DUR (Register 34).
garfieldsg 0:662207e34fba 792 *
garfieldsg 0:662207e34fba 793 * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
garfieldsg 0:662207e34fba 794 * interrupt both when Zero Motion is first detected and when Zero Motion is no
garfieldsg 0:662207e34fba 795 * longer detected.
garfieldsg 0:662207e34fba 796 *
garfieldsg 0:662207e34fba 797 * When a zero motion event is detected, a Zero Motion Status will be indicated
garfieldsg 0:662207e34fba 798 * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
garfieldsg 0:662207e34fba 799 * condition is detected, the status bit is set to 1. When a zero-motion-to-
garfieldsg 0:662207e34fba 800 * motion condition is detected, the status bit is set to 0.
garfieldsg 0:662207e34fba 801 *
garfieldsg 0:662207e34fba 802 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
garfieldsg 0:662207e34fba 803 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
garfieldsg 0:662207e34fba 804 * and 58 of this document.
garfieldsg 0:662207e34fba 805 *
garfieldsg 0:662207e34fba 806 * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 807 * @see MPU6050_RA_ZRMOT_THR
garfieldsg 0:662207e34fba 808 */
garfieldsg 0:662207e34fba 809 uint8_t MPU6050::getZeroMotionDetectionThreshold()
garfieldsg 0:662207e34fba 810 {
garfieldsg 0:662207e34fba 811 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
garfieldsg 0:662207e34fba 812 return buffer[0];
garfieldsg 0:662207e34fba 813 }
garfieldsg 0:662207e34fba 814 /** Set zero motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 815 * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 816 * @see getZeroMotionDetectionThreshold()
garfieldsg 0:662207e34fba 817 * @see MPU6050_RA_ZRMOT_THR
garfieldsg 0:662207e34fba 818 */
garfieldsg 0:662207e34fba 819 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold)
garfieldsg 0:662207e34fba 820 {
garfieldsg 0:662207e34fba 821 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
garfieldsg 0:662207e34fba 822 }
garfieldsg 0:662207e34fba 823
garfieldsg 0:662207e34fba 824 // ZRMOT_DUR register
garfieldsg 0:662207e34fba 825
garfieldsg 0:662207e34fba 826 /** Get zero motion detection event duration threshold.
garfieldsg 0:662207e34fba 827 * This register configures the duration counter threshold for Zero Motion
garfieldsg 0:662207e34fba 828 * interrupt generation. The duration counter ticks at 16 Hz, therefore
garfieldsg 0:662207e34fba 829 * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
garfieldsg 0:662207e34fba 830 * increments while the absolute value of the accelerometer measurements are
garfieldsg 0:662207e34fba 831 * each less than the detection threshold (Register 33). The Zero Motion
garfieldsg 0:662207e34fba 832 * interrupt is triggered when the Zero Motion duration counter reaches the time
garfieldsg 0:662207e34fba 833 * count specified in this register.
garfieldsg 0:662207e34fba 834 *
garfieldsg 0:662207e34fba 835 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
garfieldsg 0:662207e34fba 836 * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
garfieldsg 0:662207e34fba 837 * and 58 of this document.
garfieldsg 0:662207e34fba 838 *
garfieldsg 0:662207e34fba 839 * @return Current zero motion detection duration threshold value (LSB = 64ms)
garfieldsg 0:662207e34fba 840 * @see MPU6050_RA_ZRMOT_DUR
garfieldsg 0:662207e34fba 841 */
garfieldsg 0:662207e34fba 842 uint8_t MPU6050::getZeroMotionDetectionDuration()
garfieldsg 0:662207e34fba 843 {
garfieldsg 0:662207e34fba 844 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
garfieldsg 0:662207e34fba 845 return buffer[0];
garfieldsg 0:662207e34fba 846 }
garfieldsg 0:662207e34fba 847 /** Set zero motion detection event duration threshold.
garfieldsg 0:662207e34fba 848 * @param duration New zero motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 849 * @see getZeroMotionDetectionDuration()
garfieldsg 0:662207e34fba 850 * @see MPU6050_RA_ZRMOT_DUR
garfieldsg 0:662207e34fba 851 */
garfieldsg 0:662207e34fba 852 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration)
garfieldsg 0:662207e34fba 853 {
garfieldsg 0:662207e34fba 854 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
garfieldsg 0:662207e34fba 855 }
garfieldsg 0:662207e34fba 856
garfieldsg 0:662207e34fba 857 // FIFO_EN register
garfieldsg 0:662207e34fba 858
garfieldsg 0:662207e34fba 859 /** Get temperature FIFO enabled value.
garfieldsg 0:662207e34fba 860 * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
garfieldsg 0:662207e34fba 861 * 66) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 862 * @return Current temperature FIFO enabled value
garfieldsg 0:662207e34fba 863 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 864 */
garfieldsg 0:662207e34fba 865 bool MPU6050::getTempFIFOEnabled()
garfieldsg 0:662207e34fba 866 {
garfieldsg 0:662207e34fba 867 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 868 return buffer[0];
garfieldsg 0:662207e34fba 869 }
garfieldsg 0:662207e34fba 870 /** Set temperature FIFO enabled value.
garfieldsg 0:662207e34fba 871 * @param enabled New temperature FIFO enabled value
garfieldsg 0:662207e34fba 872 * @see getTempFIFOEnabled()
garfieldsg 0:662207e34fba 873 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 874 */
garfieldsg 0:662207e34fba 875 void MPU6050::setTempFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 876 {
garfieldsg 0:662207e34fba 877 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 878 }
garfieldsg 0:662207e34fba 879 /** Get gyroscope X-axis FIFO enabled value.
garfieldsg 0:662207e34fba 880 * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
garfieldsg 0:662207e34fba 881 * 68) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 882 * @return Current gyroscope X-axis FIFO enabled value
garfieldsg 0:662207e34fba 883 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 884 */
garfieldsg 0:662207e34fba 885 bool MPU6050::getXGyroFIFOEnabled()
garfieldsg 0:662207e34fba 886 {
garfieldsg 0:662207e34fba 887 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 888 return buffer[0];
garfieldsg 0:662207e34fba 889 }
garfieldsg 0:662207e34fba 890 /** Set gyroscope X-axis FIFO enabled value.
garfieldsg 0:662207e34fba 891 * @param enabled New gyroscope X-axis FIFO enabled value
garfieldsg 0:662207e34fba 892 * @see getXGyroFIFOEnabled()
garfieldsg 0:662207e34fba 893 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 894 */
garfieldsg 0:662207e34fba 895 void MPU6050::setXGyroFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 896 {
garfieldsg 0:662207e34fba 897 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 898 }
garfieldsg 0:662207e34fba 899 /** Get gyroscope Y-axis FIFO enabled value.
garfieldsg 0:662207e34fba 900 * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
garfieldsg 0:662207e34fba 901 * 70) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 902 * @return Current gyroscope Y-axis FIFO enabled value
garfieldsg 0:662207e34fba 903 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 904 */
garfieldsg 0:662207e34fba 905 bool MPU6050::getYGyroFIFOEnabled()
garfieldsg 0:662207e34fba 906 {
garfieldsg 0:662207e34fba 907 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 908 return buffer[0];
garfieldsg 0:662207e34fba 909 }
garfieldsg 0:662207e34fba 910 /** Set gyroscope Y-axis FIFO enabled value.
garfieldsg 0:662207e34fba 911 * @param enabled New gyroscope Y-axis FIFO enabled value
garfieldsg 0:662207e34fba 912 * @see getYGyroFIFOEnabled()
garfieldsg 0:662207e34fba 913 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 914 */
garfieldsg 0:662207e34fba 915 void MPU6050::setYGyroFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 916 {
garfieldsg 0:662207e34fba 917 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 918 }
garfieldsg 0:662207e34fba 919 /** Get gyroscope Z-axis FIFO enabled value.
garfieldsg 0:662207e34fba 920 * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
garfieldsg 0:662207e34fba 921 * 72) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 922 * @return Current gyroscope Z-axis FIFO enabled value
garfieldsg 0:662207e34fba 923 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 924 */
garfieldsg 0:662207e34fba 925 bool MPU6050::getZGyroFIFOEnabled()
garfieldsg 0:662207e34fba 926 {
garfieldsg 0:662207e34fba 927 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 928 return buffer[0];
garfieldsg 0:662207e34fba 929 }
garfieldsg 0:662207e34fba 930 /** Set gyroscope Z-axis FIFO enabled value.
garfieldsg 0:662207e34fba 931 * @param enabled New gyroscope Z-axis FIFO enabled value
garfieldsg 0:662207e34fba 932 * @see getZGyroFIFOEnabled()
garfieldsg 0:662207e34fba 933 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 934 */
garfieldsg 0:662207e34fba 935 void MPU6050::setZGyroFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 936 {
garfieldsg 0:662207e34fba 937 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 938 }
garfieldsg 0:662207e34fba 939 /** Get accelerometer FIFO enabled value.
garfieldsg 0:662207e34fba 940 * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
garfieldsg 0:662207e34fba 941 * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
garfieldsg 0:662207e34fba 942 * written into the FIFO buffer.
garfieldsg 0:662207e34fba 943 * @return Current accelerometer FIFO enabled value
garfieldsg 0:662207e34fba 944 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 945 */
garfieldsg 0:662207e34fba 946 bool MPU6050::getAccelFIFOEnabled()
garfieldsg 0:662207e34fba 947 {
garfieldsg 0:662207e34fba 948 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 949 return buffer[0];
garfieldsg 0:662207e34fba 950 }
garfieldsg 0:662207e34fba 951 /** Set accelerometer FIFO enabled value.
garfieldsg 0:662207e34fba 952 * @param enabled New accelerometer FIFO enabled value
garfieldsg 0:662207e34fba 953 * @see getAccelFIFOEnabled()
garfieldsg 0:662207e34fba 954 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 955 */
garfieldsg 0:662207e34fba 956 void MPU6050::setAccelFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 957 {
garfieldsg 0:662207e34fba 958 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 959 }
garfieldsg 0:662207e34fba 960 /** Get Slave 2 FIFO enabled value.
garfieldsg 0:662207e34fba 961 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 962 * associated with Slave 2 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 963 * @return Current Slave 2 FIFO enabled value
garfieldsg 0:662207e34fba 964 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 965 */
garfieldsg 0:662207e34fba 966 bool MPU6050::getSlave2FIFOEnabled()
garfieldsg 0:662207e34fba 967 {
garfieldsg 0:662207e34fba 968 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 969 return buffer[0];
garfieldsg 0:662207e34fba 970 }
garfieldsg 0:662207e34fba 971 /** Set Slave 2 FIFO enabled value.
garfieldsg 0:662207e34fba 972 * @param enabled New Slave 2 FIFO enabled value
garfieldsg 0:662207e34fba 973 * @see getSlave2FIFOEnabled()
garfieldsg 0:662207e34fba 974 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 975 */
garfieldsg 0:662207e34fba 976 void MPU6050::setSlave2FIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 977 {
garfieldsg 0:662207e34fba 978 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 979 }
garfieldsg 0:662207e34fba 980 /** Get Slave 1 FIFO enabled value.
garfieldsg 0:662207e34fba 981 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 982 * associated with Slave 1 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 983 * @return Current Slave 1 FIFO enabled value
garfieldsg 0:662207e34fba 984 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 985 */
garfieldsg 0:662207e34fba 986 bool MPU6050::getSlave1FIFOEnabled()
garfieldsg 0:662207e34fba 987 {
garfieldsg 0:662207e34fba 988 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 989 return buffer[0];
garfieldsg 0:662207e34fba 990 }
garfieldsg 0:662207e34fba 991 /** Set Slave 1 FIFO enabled value.
garfieldsg 0:662207e34fba 992 * @param enabled New Slave 1 FIFO enabled value
garfieldsg 0:662207e34fba 993 * @see getSlave1FIFOEnabled()
garfieldsg 0:662207e34fba 994 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 995 */
garfieldsg 0:662207e34fba 996 void MPU6050::setSlave1FIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 997 {
garfieldsg 0:662207e34fba 998 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 999 }
garfieldsg 0:662207e34fba 1000 /** Get Slave 0 FIFO enabled value.
garfieldsg 0:662207e34fba 1001 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 1002 * associated with Slave 0 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 1003 * @return Current Slave 0 FIFO enabled value
garfieldsg 0:662207e34fba 1004 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 1005 */
garfieldsg 0:662207e34fba 1006 bool MPU6050::getSlave0FIFOEnabled()
garfieldsg 0:662207e34fba 1007 {
garfieldsg 0:662207e34fba 1008 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1009 return buffer[0];
garfieldsg 0:662207e34fba 1010 }
garfieldsg 0:662207e34fba 1011 /** Set Slave 0 FIFO enabled value.
garfieldsg 0:662207e34fba 1012 * @param enabled New Slave 0 FIFO enabled value
garfieldsg 0:662207e34fba 1013 * @see getSlave0FIFOEnabled()
garfieldsg 0:662207e34fba 1014 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 1015 */
garfieldsg 0:662207e34fba 1016 void MPU6050::setSlave0FIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 1017 {
garfieldsg 0:662207e34fba 1018 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1019 }
garfieldsg 0:662207e34fba 1020
garfieldsg 0:662207e34fba 1021 // I2C_MST_CTRL register
garfieldsg 0:662207e34fba 1022
garfieldsg 0:662207e34fba 1023 /** Get multi-master enabled value.
garfieldsg 0:662207e34fba 1024 * Multi-master capability allows multiple I2C masters to operate on the same
garfieldsg 0:662207e34fba 1025 * bus. In circuits where multi-master capability is required, set MULT_MST_EN
garfieldsg 0:662207e34fba 1026 * to 1. This will increase current drawn by approximately 30uA.
garfieldsg 0:662207e34fba 1027 *
garfieldsg 0:662207e34fba 1028 * In circuits where multi-master capability is required, the state of the I2C
garfieldsg 0:662207e34fba 1029 * bus must always be monitored by each separate I2C Master. Before an I2C
garfieldsg 0:662207e34fba 1030 * Master can assume arbitration of the bus, it must first confirm that no other
garfieldsg 0:662207e34fba 1031 * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
garfieldsg 0:662207e34fba 1032 * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
garfieldsg 0:662207e34fba 1033 * detect when the bus is available.
garfieldsg 0:662207e34fba 1034 *
garfieldsg 0:662207e34fba 1035 * @return Current multi-master enabled value
garfieldsg 0:662207e34fba 1036 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 1037 */
garfieldsg 0:662207e34fba 1038 bool MPU6050::getMultiMasterEnabled()
garfieldsg 0:662207e34fba 1039 {
garfieldsg 0:662207e34fba 1040 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1041 return buffer[0];
garfieldsg 0:662207e34fba 1042 }
garfieldsg 0:662207e34fba 1043 /** Set multi-master enabled value.
garfieldsg 0:662207e34fba 1044 * @param enabled New multi-master enabled value
garfieldsg 0:662207e34fba 1045 * @see getMultiMasterEnabled()
garfieldsg 0:662207e34fba 1046 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 1047 */
garfieldsg 0:662207e34fba 1048 void MPU6050::setMultiMasterEnabled(bool enabled)
garfieldsg 0:662207e34fba 1049 {
garfieldsg 0:662207e34fba 1050 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1051 }
garfieldsg 0:662207e34fba 1052 /** Get wait-for-external-sensor-data enabled value.
garfieldsg 0:662207e34fba 1053 * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
garfieldsg 0:662207e34fba 1054 * delayed until External Sensor data from the Slave Devices are loaded into the
garfieldsg 0:662207e34fba 1055 * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
garfieldsg 0:662207e34fba 1056 * data (i.e. from gyro and accel) and external sensor data have been loaded to
garfieldsg 0:662207e34fba 1057 * their respective data registers (i.e. the data is synced) when the Data Ready
garfieldsg 0:662207e34fba 1058 * interrupt is triggered.
garfieldsg 0:662207e34fba 1059 *
garfieldsg 0:662207e34fba 1060 * @return Current wait-for-external-sensor-data enabled value
garfieldsg 0:662207e34fba 1061 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 1062 */
garfieldsg 0:662207e34fba 1063 bool MPU6050::getWaitForExternalSensorEnabled()
garfieldsg 0:662207e34fba 1064 {
garfieldsg 0:662207e34fba 1065 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
garfieldsg 0:662207e34fba 1066 return buffer[0];
garfieldsg 0:662207e34fba 1067 }
garfieldsg 0:662207e34fba 1068 /** Set wait-for-external-sensor-data enabled value.
garfieldsg 0:662207e34fba 1069 * @param enabled New wait-for-external-sensor-data enabled value
garfieldsg 0:662207e34fba 1070 * @see getWaitForExternalSensorEnabled()
garfieldsg 0:662207e34fba 1071 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 1072 */
garfieldsg 0:662207e34fba 1073 void MPU6050::setWaitForExternalSensorEnabled(bool enabled)
garfieldsg 0:662207e34fba 1074 {
garfieldsg 0:662207e34fba 1075 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
garfieldsg 0:662207e34fba 1076 }
garfieldsg 0:662207e34fba 1077 /** Get Slave 3 FIFO enabled value.
garfieldsg 0:662207e34fba 1078 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 1079 * associated with Slave 3 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 1080 * @return Current Slave 3 FIFO enabled value
garfieldsg 0:662207e34fba 1081 * @see MPU6050_RA_MST_CTRL
garfieldsg 0:662207e34fba 1082 */
garfieldsg 0:662207e34fba 1083 bool MPU6050::getSlave3FIFOEnabled()
garfieldsg 0:662207e34fba 1084 {
garfieldsg 0:662207e34fba 1085 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1086 return buffer[0];
garfieldsg 0:662207e34fba 1087 }
garfieldsg 0:662207e34fba 1088 /** Set Slave 3 FIFO enabled value.
garfieldsg 0:662207e34fba 1089 * @param enabled New Slave 3 FIFO enabled value
garfieldsg 0:662207e34fba 1090 * @see getSlave3FIFOEnabled()
garfieldsg 0:662207e34fba 1091 * @see MPU6050_RA_MST_CTRL
garfieldsg 0:662207e34fba 1092 */
garfieldsg 0:662207e34fba 1093 void MPU6050::setSlave3FIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 1094 {
garfieldsg 0:662207e34fba 1095 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1096 }
garfieldsg 0:662207e34fba 1097 /** Get slave read/write transition enabled value.
garfieldsg 0:662207e34fba 1098 * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
garfieldsg 0:662207e34fba 1099 * read to the next slave read. If the bit equals 0, there will be a restart
garfieldsg 0:662207e34fba 1100 * between reads. If the bit equals 1, there will be a stop followed by a start
garfieldsg 0:662207e34fba 1101 * of the following read. When a write transaction follows a read transaction,
garfieldsg 0:662207e34fba 1102 * the stop followed by a start of the successive write will be always used.
garfieldsg 0:662207e34fba 1103 *
garfieldsg 0:662207e34fba 1104 * @return Current slave read/write transition enabled value
garfieldsg 0:662207e34fba 1105 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 1106 */
garfieldsg 0:662207e34fba 1107 bool MPU6050::getSlaveReadWriteTransitionEnabled()
garfieldsg 0:662207e34fba 1108 {
garfieldsg 0:662207e34fba 1109 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
garfieldsg 0:662207e34fba 1110 return buffer[0];
garfieldsg 0:662207e34fba 1111 }
garfieldsg 0:662207e34fba 1112 /** Set slave read/write transition enabled value.
garfieldsg 0:662207e34fba 1113 * @param enabled New slave read/write transition enabled value
garfieldsg 0:662207e34fba 1114 * @see getSlaveReadWriteTransitionEnabled()
garfieldsg 0:662207e34fba 1115 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 1116 */
garfieldsg 0:662207e34fba 1117 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled)
garfieldsg 0:662207e34fba 1118 {
garfieldsg 0:662207e34fba 1119 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
garfieldsg 0:662207e34fba 1120 }
garfieldsg 0:662207e34fba 1121 /** Get I2C master clock speed.
garfieldsg 0:662207e34fba 1122 * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
garfieldsg 0:662207e34fba 1123 * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
garfieldsg 0:662207e34fba 1124 * the following table:
garfieldsg 0:662207e34fba 1125 *
garfieldsg 0:662207e34fba 1126 * <pre>
garfieldsg 0:662207e34fba 1127 * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
garfieldsg 0:662207e34fba 1128 * ------------+------------------------+-------------------
garfieldsg 0:662207e34fba 1129 * 0 | 348kHz | 23
garfieldsg 0:662207e34fba 1130 * 1 | 333kHz | 24
garfieldsg 0:662207e34fba 1131 * 2 | 320kHz | 25
garfieldsg 0:662207e34fba 1132 * 3 | 308kHz | 26
garfieldsg 0:662207e34fba 1133 * 4 | 296kHz | 27
garfieldsg 0:662207e34fba 1134 * 5 | 286kHz | 28
garfieldsg 0:662207e34fba 1135 * 6 | 276kHz | 29
garfieldsg 0:662207e34fba 1136 * 7 | 267kHz | 30
garfieldsg 0:662207e34fba 1137 * 8 | 258kHz | 31
garfieldsg 0:662207e34fba 1138 * 9 | 500kHz | 16
garfieldsg 0:662207e34fba 1139 * 10 | 471kHz | 17
garfieldsg 0:662207e34fba 1140 * 11 | 444kHz | 18
garfieldsg 0:662207e34fba 1141 * 12 | 421kHz | 19
garfieldsg 0:662207e34fba 1142 * 13 | 400kHz | 20
garfieldsg 0:662207e34fba 1143 * 14 | 381kHz | 21
garfieldsg 0:662207e34fba 1144 * 15 | 364kHz | 22
garfieldsg 0:662207e34fba 1145 * </pre>
garfieldsg 0:662207e34fba 1146 *
garfieldsg 0:662207e34fba 1147 * @return Current I2C master clock speed
garfieldsg 0:662207e34fba 1148 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 1149 */
garfieldsg 0:662207e34fba 1150 uint8_t MPU6050::getMasterClockSpeed()
garfieldsg 0:662207e34fba 1151 {
garfieldsg 0:662207e34fba 1152 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
garfieldsg 0:662207e34fba 1153 return buffer[0];
garfieldsg 0:662207e34fba 1154 }
garfieldsg 0:662207e34fba 1155 /** Set I2C master clock speed.
garfieldsg 0:662207e34fba 1156 * @reparam speed Current I2C master clock speed
garfieldsg 0:662207e34fba 1157 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 1158 */
garfieldsg 0:662207e34fba 1159 void MPU6050::setMasterClockSpeed(uint8_t speed)
garfieldsg 0:662207e34fba 1160 {
garfieldsg 0:662207e34fba 1161 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
garfieldsg 0:662207e34fba 1162 }
garfieldsg 0:662207e34fba 1163
garfieldsg 0:662207e34fba 1164 // I2C_SLV* registers (Slave 0-3)
garfieldsg 0:662207e34fba 1165
garfieldsg 0:662207e34fba 1166 /** Get the I2C address of the specified slave (0-3).
garfieldsg 0:662207e34fba 1167 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
garfieldsg 0:662207e34fba 1168 * operation, and if it is cleared, then it's a write operation. The remaining
garfieldsg 0:662207e34fba 1169 * bits (6-0) are the 7-bit device address of the slave device.
garfieldsg 0:662207e34fba 1170 *
garfieldsg 0:662207e34fba 1171 * In read mode, the result of the read is placed in the lowest available
garfieldsg 0:662207e34fba 1172 * EXT_SENS_DATA register. For further information regarding the allocation of
garfieldsg 0:662207e34fba 1173 * read results, please refer to the EXT_SENS_DATA register description
garfieldsg 0:662207e34fba 1174 * (Registers 73 - 96).
garfieldsg 0:662207e34fba 1175 *
garfieldsg 0:662207e34fba 1176 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
garfieldsg 0:662207e34fba 1177 * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
garfieldsg 0:662207e34fba 1178 *
garfieldsg 0:662207e34fba 1179 * I2C data transactions are performed at the Sample Rate, as defined in
garfieldsg 0:662207e34fba 1180 * Register 25. The user is responsible for ensuring that I2C data transactions
garfieldsg 0:662207e34fba 1181 * to and from each enabled Slave can be completed within a single period of the
garfieldsg 0:662207e34fba 1182 * Sample Rate.
garfieldsg 0:662207e34fba 1183 *
garfieldsg 0:662207e34fba 1184 * The I2C slave access rate can be reduced relative to the Sample Rate. This
garfieldsg 0:662207e34fba 1185 * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
garfieldsg 0:662207e34fba 1186 * slave's access rate is reduced relative to the Sample Rate is determined by
garfieldsg 0:662207e34fba 1187 * I2C_MST_DELAY_CTRL (Register 103).
garfieldsg 0:662207e34fba 1188 *
garfieldsg 0:662207e34fba 1189 * The processing order for the slaves is fixed. The sequence followed for
garfieldsg 0:662207e34fba 1190 * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
garfieldsg 0:662207e34fba 1191 * particular Slave is disabled it will be skipped.
garfieldsg 0:662207e34fba 1192 *
garfieldsg 0:662207e34fba 1193 * Each slave can either be accessed at the sample rate or at a reduced sample
garfieldsg 0:662207e34fba 1194 * rate. In a case where some slaves are accessed at the Sample Rate and some
garfieldsg 0:662207e34fba 1195 * slaves are accessed at the reduced rate, the sequence of accessing the slaves
garfieldsg 0:662207e34fba 1196 * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
garfieldsg 0:662207e34fba 1197 * be skipped if their access rate dictates that they should not be accessed
garfieldsg 0:662207e34fba 1198 * during that particular cycle. For further information regarding the reduced
garfieldsg 0:662207e34fba 1199 * access rate, please refer to Register 52. Whether a slave is accessed at the
garfieldsg 0:662207e34fba 1200 * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
garfieldsg 0:662207e34fba 1201 * Register 103.
garfieldsg 0:662207e34fba 1202 *
garfieldsg 0:662207e34fba 1203 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1204 * @return Current address for specified slave
garfieldsg 0:662207e34fba 1205 * @see MPU6050_RA_I2C_SLV0_ADDR
garfieldsg 0:662207e34fba 1206 */
garfieldsg 0:662207e34fba 1207 uint8_t MPU6050::getSlaveAddress(uint8_t num)
garfieldsg 0:662207e34fba 1208 {
garfieldsg 0:662207e34fba 1209 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1210 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
garfieldsg 0:662207e34fba 1211 return buffer[0];
garfieldsg 0:662207e34fba 1212 }
garfieldsg 0:662207e34fba 1213 /** Set the I2C address of the specified slave (0-3).
garfieldsg 0:662207e34fba 1214 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1215 * @param address New address for specified slave
garfieldsg 0:662207e34fba 1216 * @see getSlaveAddress()
garfieldsg 0:662207e34fba 1217 * @see MPU6050_RA_I2C_SLV0_ADDR
garfieldsg 0:662207e34fba 1218 */
garfieldsg 0:662207e34fba 1219 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address)
garfieldsg 0:662207e34fba 1220 {
garfieldsg 0:662207e34fba 1221 if (num > 3) return;
garfieldsg 0:662207e34fba 1222 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
garfieldsg 0:662207e34fba 1223 }
garfieldsg 0:662207e34fba 1224 /** Get the active internal register for the specified slave (0-3).
garfieldsg 0:662207e34fba 1225 * Read/write operations for this slave will be done to whatever internal
garfieldsg 0:662207e34fba 1226 * register address is stored in this MPU register.
garfieldsg 0:662207e34fba 1227 *
garfieldsg 0:662207e34fba 1228 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
garfieldsg 0:662207e34fba 1229 * characteristics, and so it has its own functions.
garfieldsg 0:662207e34fba 1230 *
garfieldsg 0:662207e34fba 1231 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1232 * @return Current active register for specified slave
garfieldsg 0:662207e34fba 1233 * @see MPU6050_RA_I2C_SLV0_REG
garfieldsg 0:662207e34fba 1234 */
garfieldsg 0:662207e34fba 1235 uint8_t MPU6050::getSlaveRegister(uint8_t num)
garfieldsg 0:662207e34fba 1236 {
garfieldsg 0:662207e34fba 1237 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1238 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
garfieldsg 0:662207e34fba 1239 return buffer[0];
garfieldsg 0:662207e34fba 1240 }
garfieldsg 0:662207e34fba 1241 /** Set the active internal register for the specified slave (0-3).
garfieldsg 0:662207e34fba 1242 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1243 * @param reg New active register for specified slave
garfieldsg 0:662207e34fba 1244 * @see getSlaveRegister()
garfieldsg 0:662207e34fba 1245 * @see MPU6050_RA_I2C_SLV0_REG
garfieldsg 0:662207e34fba 1246 */
garfieldsg 0:662207e34fba 1247 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg)
garfieldsg 0:662207e34fba 1248 {
garfieldsg 0:662207e34fba 1249 if (num > 3) return;
garfieldsg 0:662207e34fba 1250 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
garfieldsg 0:662207e34fba 1251 }
garfieldsg 0:662207e34fba 1252 /** Get the enabled value for the specified slave (0-3).
garfieldsg 0:662207e34fba 1253 * When set to 1, this bit enables Slave 0 for data transfer operations. When
garfieldsg 0:662207e34fba 1254 * cleared to 0, this bit disables Slave 0 from data transfer operations.
garfieldsg 0:662207e34fba 1255 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1256 * @return Current enabled value for specified slave
garfieldsg 0:662207e34fba 1257 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1258 */
garfieldsg 0:662207e34fba 1259 bool MPU6050::getSlaveEnabled(uint8_t num)
garfieldsg 0:662207e34fba 1260 {
garfieldsg 0:662207e34fba 1261 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1262 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1263 return buffer[0];
garfieldsg 0:662207e34fba 1264 }
garfieldsg 0:662207e34fba 1265 /** Set the enabled value for the specified slave (0-3).
garfieldsg 0:662207e34fba 1266 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1267 * @param enabled New enabled value for specified slave
garfieldsg 0:662207e34fba 1268 * @see getSlaveEnabled()
garfieldsg 0:662207e34fba 1269 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1270 */
garfieldsg 0:662207e34fba 1271 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled)
garfieldsg 0:662207e34fba 1272 {
garfieldsg 0:662207e34fba 1273 if (num > 3) return;
garfieldsg 0:662207e34fba 1274 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1275 }
garfieldsg 0:662207e34fba 1276 /** Get word pair byte-swapping enabled for the specified slave (0-3).
garfieldsg 0:662207e34fba 1277 * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
garfieldsg 0:662207e34fba 1278 * the high and low bytes of a word pair are swapped. Please refer to
garfieldsg 0:662207e34fba 1279 * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
garfieldsg 0:662207e34fba 1280 * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
garfieldsg 0:662207e34fba 1281 * registers in the order they were transferred.
garfieldsg 0:662207e34fba 1282 *
garfieldsg 0:662207e34fba 1283 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1284 * @return Current word pair byte-swapping enabled value for specified slave
garfieldsg 0:662207e34fba 1285 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1286 */
garfieldsg 0:662207e34fba 1287 bool MPU6050::getSlaveWordByteSwap(uint8_t num)
garfieldsg 0:662207e34fba 1288 {
garfieldsg 0:662207e34fba 1289 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1290 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
garfieldsg 0:662207e34fba 1291 return buffer[0];
garfieldsg 0:662207e34fba 1292 }
garfieldsg 0:662207e34fba 1293 /** Set word pair byte-swapping enabled for the specified slave (0-3).
garfieldsg 0:662207e34fba 1294 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1295 * @param enabled New word pair byte-swapping enabled value for specified slave
garfieldsg 0:662207e34fba 1296 * @see getSlaveWordByteSwap()
garfieldsg 0:662207e34fba 1297 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1298 */
garfieldsg 0:662207e34fba 1299 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled)
garfieldsg 0:662207e34fba 1300 {
garfieldsg 0:662207e34fba 1301 if (num > 3) return;
garfieldsg 0:662207e34fba 1302 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
garfieldsg 0:662207e34fba 1303 }
garfieldsg 0:662207e34fba 1304 /** Get write mode for the specified slave (0-3).
garfieldsg 0:662207e34fba 1305 * When set to 1, the transaction will read or write data only. When cleared to
garfieldsg 0:662207e34fba 1306 * 0, the transaction will write a register address prior to reading or writing
garfieldsg 0:662207e34fba 1307 * data. This should equal 0 when specifying the register address within the
garfieldsg 0:662207e34fba 1308 * Slave device to/from which the ensuing data transaction will take place.
garfieldsg 0:662207e34fba 1309 *
garfieldsg 0:662207e34fba 1310 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1311 * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1312 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1313 */
garfieldsg 0:662207e34fba 1314 bool MPU6050::getSlaveWriteMode(uint8_t num)
garfieldsg 0:662207e34fba 1315 {
garfieldsg 0:662207e34fba 1316 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1317 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 1318 return buffer[0];
garfieldsg 0:662207e34fba 1319 }
garfieldsg 0:662207e34fba 1320 /** Set write mode for the specified slave (0-3).
garfieldsg 0:662207e34fba 1321 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1322 * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1323 * @see getSlaveWriteMode()
garfieldsg 0:662207e34fba 1324 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1325 */
garfieldsg 0:662207e34fba 1326 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode)
garfieldsg 0:662207e34fba 1327 {
garfieldsg 0:662207e34fba 1328 if (num > 3) return;
garfieldsg 0:662207e34fba 1329 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
garfieldsg 0:662207e34fba 1330 }
garfieldsg 0:662207e34fba 1331 /** Get word pair grouping order offset for the specified slave (0-3).
garfieldsg 0:662207e34fba 1332 * This sets specifies the grouping order of word pairs received from registers.
garfieldsg 0:662207e34fba 1333 * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
garfieldsg 0:662207e34fba 1334 * then odd register addresses) are paired to form a word. When set to 1, bytes
garfieldsg 0:662207e34fba 1335 * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
garfieldsg 0:662207e34fba 1336 * register addresses) are paired to form a word.
garfieldsg 0:662207e34fba 1337 *
garfieldsg 0:662207e34fba 1338 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1339 * @return Current word pair grouping order offset for specified slave
garfieldsg 0:662207e34fba 1340 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1341 */
garfieldsg 0:662207e34fba 1342 bool MPU6050::getSlaveWordGroupOffset(uint8_t num)
garfieldsg 0:662207e34fba 1343 {
garfieldsg 0:662207e34fba 1344 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1345 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
garfieldsg 0:662207e34fba 1346 return buffer[0];
garfieldsg 0:662207e34fba 1347 }
garfieldsg 0:662207e34fba 1348 /** Set word pair grouping order offset for the specified slave (0-3).
garfieldsg 0:662207e34fba 1349 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1350 * @param enabled New word pair grouping order offset for specified slave
garfieldsg 0:662207e34fba 1351 * @see getSlaveWordGroupOffset()
garfieldsg 0:662207e34fba 1352 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1353 */
garfieldsg 0:662207e34fba 1354 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled)
garfieldsg 0:662207e34fba 1355 {
garfieldsg 0:662207e34fba 1356 if (num > 3) return;
garfieldsg 0:662207e34fba 1357 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
garfieldsg 0:662207e34fba 1358 }
garfieldsg 0:662207e34fba 1359 /** Get number of bytes to read for the specified slave (0-3).
garfieldsg 0:662207e34fba 1360 * Specifies the number of bytes transferred to and from Slave 0. Clearing this
garfieldsg 0:662207e34fba 1361 * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
garfieldsg 0:662207e34fba 1362 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1363 * @return Number of bytes to read for specified slave
garfieldsg 0:662207e34fba 1364 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1365 */
garfieldsg 0:662207e34fba 1366 uint8_t MPU6050::getSlaveDataLength(uint8_t num)
garfieldsg 0:662207e34fba 1367 {
garfieldsg 0:662207e34fba 1368 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1369 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
garfieldsg 0:662207e34fba 1370 return buffer[0];
garfieldsg 0:662207e34fba 1371 }
garfieldsg 0:662207e34fba 1372 /** Set number of bytes to read for the specified slave (0-3).
garfieldsg 0:662207e34fba 1373 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1374 * @param length Number of bytes to read for specified slave
garfieldsg 0:662207e34fba 1375 * @see getSlaveDataLength()
garfieldsg 0:662207e34fba 1376 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1377 */
garfieldsg 0:662207e34fba 1378 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length)
garfieldsg 0:662207e34fba 1379 {
garfieldsg 0:662207e34fba 1380 if (num > 3) return;
garfieldsg 0:662207e34fba 1381 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
garfieldsg 0:662207e34fba 1382 }
garfieldsg 0:662207e34fba 1383
garfieldsg 0:662207e34fba 1384 // I2C_SLV* registers (Slave 4)
garfieldsg 0:662207e34fba 1385
garfieldsg 0:662207e34fba 1386 /** Get the I2C address of Slave 4.
garfieldsg 0:662207e34fba 1387 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
garfieldsg 0:662207e34fba 1388 * operation, and if it is cleared, then it's a write operation. The remaining
garfieldsg 0:662207e34fba 1389 * bits (6-0) are the 7-bit device address of the slave device.
garfieldsg 0:662207e34fba 1390 *
garfieldsg 0:662207e34fba 1391 * @return Current address for Slave 4
garfieldsg 0:662207e34fba 1392 * @see getSlaveAddress()
garfieldsg 0:662207e34fba 1393 * @see MPU6050_RA_I2C_SLV4_ADDR
garfieldsg 0:662207e34fba 1394 */
garfieldsg 0:662207e34fba 1395 uint8_t MPU6050::getSlave4Address()
garfieldsg 0:662207e34fba 1396 {
garfieldsg 0:662207e34fba 1397 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
garfieldsg 0:662207e34fba 1398 return buffer[0];
garfieldsg 0:662207e34fba 1399 }
garfieldsg 0:662207e34fba 1400 /** Set the I2C address of Slave 4.
garfieldsg 0:662207e34fba 1401 * @param address New address for Slave 4
garfieldsg 0:662207e34fba 1402 * @see getSlave4Address()
garfieldsg 0:662207e34fba 1403 * @see MPU6050_RA_I2C_SLV4_ADDR
garfieldsg 0:662207e34fba 1404 */
garfieldsg 0:662207e34fba 1405 void MPU6050::setSlave4Address(uint8_t address)
garfieldsg 0:662207e34fba 1406 {
garfieldsg 0:662207e34fba 1407 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
garfieldsg 0:662207e34fba 1408 }
garfieldsg 0:662207e34fba 1409 /** Get the active internal register for the Slave 4.
garfieldsg 0:662207e34fba 1410 * Read/write operations for this slave will be done to whatever internal
garfieldsg 0:662207e34fba 1411 * register address is stored in this MPU register.
garfieldsg 0:662207e34fba 1412 *
garfieldsg 0:662207e34fba 1413 * @return Current active register for Slave 4
garfieldsg 0:662207e34fba 1414 * @see MPU6050_RA_I2C_SLV4_REG
garfieldsg 0:662207e34fba 1415 */
garfieldsg 0:662207e34fba 1416 uint8_t MPU6050::getSlave4Register()
garfieldsg 0:662207e34fba 1417 {
garfieldsg 0:662207e34fba 1418 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
garfieldsg 0:662207e34fba 1419 return buffer[0];
garfieldsg 0:662207e34fba 1420 }
garfieldsg 0:662207e34fba 1421 /** Set the active internal register for Slave 4.
garfieldsg 0:662207e34fba 1422 * @param reg New active register for Slave 4
garfieldsg 0:662207e34fba 1423 * @see getSlave4Register()
garfieldsg 0:662207e34fba 1424 * @see MPU6050_RA_I2C_SLV4_REG
garfieldsg 0:662207e34fba 1425 */
garfieldsg 0:662207e34fba 1426 void MPU6050::setSlave4Register(uint8_t reg)
garfieldsg 0:662207e34fba 1427 {
garfieldsg 0:662207e34fba 1428 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
garfieldsg 0:662207e34fba 1429 }
garfieldsg 0:662207e34fba 1430 /** Set new byte to write to Slave 4.
garfieldsg 0:662207e34fba 1431 * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
garfieldsg 0:662207e34fba 1432 * is set 1 (set to read), this register has no effect.
garfieldsg 0:662207e34fba 1433 * @param data New byte to write to Slave 4
garfieldsg 0:662207e34fba 1434 * @see MPU6050_RA_I2C_SLV4_DO
garfieldsg 0:662207e34fba 1435 */
garfieldsg 0:662207e34fba 1436 void MPU6050::setSlave4OutputByte(uint8_t data)
garfieldsg 0:662207e34fba 1437 {
garfieldsg 0:662207e34fba 1438 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
garfieldsg 0:662207e34fba 1439 }
garfieldsg 0:662207e34fba 1440 /** Get the enabled value for the Slave 4.
garfieldsg 0:662207e34fba 1441 * When set to 1, this bit enables Slave 4 for data transfer operations. When
garfieldsg 0:662207e34fba 1442 * cleared to 0, this bit disables Slave 4 from data transfer operations.
garfieldsg 0:662207e34fba 1443 * @return Current enabled value for Slave 4
garfieldsg 0:662207e34fba 1444 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1445 */
garfieldsg 0:662207e34fba 1446 bool MPU6050::getSlave4Enabled()
garfieldsg 0:662207e34fba 1447 {
garfieldsg 0:662207e34fba 1448 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1449 return buffer[0];
garfieldsg 0:662207e34fba 1450 }
garfieldsg 0:662207e34fba 1451 /** Set the enabled value for Slave 4.
garfieldsg 0:662207e34fba 1452 * @param enabled New enabled value for Slave 4
garfieldsg 0:662207e34fba 1453 * @see getSlave4Enabled()
garfieldsg 0:662207e34fba 1454 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1455 */
garfieldsg 0:662207e34fba 1456 void MPU6050::setSlave4Enabled(bool enabled)
garfieldsg 0:662207e34fba 1457 {
garfieldsg 0:662207e34fba 1458 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1459 }
garfieldsg 0:662207e34fba 1460 /** Get the enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1461 * When set to 1, this bit enables the generation of an interrupt signal upon
garfieldsg 0:662207e34fba 1462 * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
garfieldsg 0:662207e34fba 1463 * generation of an interrupt signal upon completion of a Slave 4 transaction.
garfieldsg 0:662207e34fba 1464 * The interrupt status can be observed in Register 54.
garfieldsg 0:662207e34fba 1465 *
garfieldsg 0:662207e34fba 1466 * @return Current enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1467 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1468 */
garfieldsg 0:662207e34fba 1469 bool MPU6050::getSlave4InterruptEnabled()
garfieldsg 0:662207e34fba 1470 {
garfieldsg 0:662207e34fba 1471 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1472 return buffer[0];
garfieldsg 0:662207e34fba 1473 }
garfieldsg 0:662207e34fba 1474 /** Set the enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1475 * @param enabled New enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1476 * @see getSlave4InterruptEnabled()
garfieldsg 0:662207e34fba 1477 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1478 */
garfieldsg 0:662207e34fba 1479 void MPU6050::setSlave4InterruptEnabled(bool enabled)
garfieldsg 0:662207e34fba 1480 {
garfieldsg 0:662207e34fba 1481 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1482 }
garfieldsg 0:662207e34fba 1483 /** Get write mode for Slave 4.
garfieldsg 0:662207e34fba 1484 * When set to 1, the transaction will read or write data only. When cleared to
garfieldsg 0:662207e34fba 1485 * 0, the transaction will write a register address prior to reading or writing
garfieldsg 0:662207e34fba 1486 * data. This should equal 0 when specifying the register address within the
garfieldsg 0:662207e34fba 1487 * Slave device to/from which the ensuing data transaction will take place.
garfieldsg 0:662207e34fba 1488 *
garfieldsg 0:662207e34fba 1489 * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1490 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1491 */
garfieldsg 0:662207e34fba 1492 bool MPU6050::getSlave4WriteMode()
garfieldsg 0:662207e34fba 1493 {
garfieldsg 0:662207e34fba 1494 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 1495 return buffer[0];
garfieldsg 0:662207e34fba 1496 }
garfieldsg 0:662207e34fba 1497 /** Set write mode for the Slave 4.
garfieldsg 0:662207e34fba 1498 * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1499 * @see getSlave4WriteMode()
garfieldsg 0:662207e34fba 1500 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1501 */
garfieldsg 0:662207e34fba 1502 void MPU6050::setSlave4WriteMode(bool mode)
garfieldsg 0:662207e34fba 1503 {
garfieldsg 0:662207e34fba 1504 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
garfieldsg 0:662207e34fba 1505 }
garfieldsg 0:662207e34fba 1506 /** Get Slave 4 master delay value.
garfieldsg 0:662207e34fba 1507 * This configures the reduced access rate of I2C slaves relative to the Sample
garfieldsg 0:662207e34fba 1508 * Rate. When a slave's access rate is decreased relative to the Sample Rate,
garfieldsg 0:662207e34fba 1509 * the slave is accessed every:
garfieldsg 0:662207e34fba 1510 *
garfieldsg 0:662207e34fba 1511 * 1 / (1 + I2C_MST_DLY) samples
garfieldsg 0:662207e34fba 1512 *
garfieldsg 0:662207e34fba 1513 * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
garfieldsg 0:662207e34fba 1514 * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
garfieldsg 0:662207e34fba 1515 * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
garfieldsg 0:662207e34fba 1516 * further information regarding the Sample Rate, please refer to register 25.
garfieldsg 0:662207e34fba 1517 *
garfieldsg 0:662207e34fba 1518 * @return Current Slave 4 master delay value
garfieldsg 0:662207e34fba 1519 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1520 */
garfieldsg 0:662207e34fba 1521 uint8_t MPU6050::getSlave4MasterDelay()
garfieldsg 0:662207e34fba 1522 {
garfieldsg 0:662207e34fba 1523 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
garfieldsg 0:662207e34fba 1524 return buffer[0];
garfieldsg 0:662207e34fba 1525 }
garfieldsg 0:662207e34fba 1526 /** Set Slave 4 master delay value.
garfieldsg 0:662207e34fba 1527 * @param delay New Slave 4 master delay value
garfieldsg 0:662207e34fba 1528 * @see getSlave4MasterDelay()
garfieldsg 0:662207e34fba 1529 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1530 */
garfieldsg 0:662207e34fba 1531 void MPU6050::setSlave4MasterDelay(uint8_t delay)
garfieldsg 0:662207e34fba 1532 {
garfieldsg 0:662207e34fba 1533 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
garfieldsg 0:662207e34fba 1534 }
garfieldsg 0:662207e34fba 1535 /** Get last available byte read from Slave 4.
garfieldsg 0:662207e34fba 1536 * This register stores the data read from Slave 4. This field is populated
garfieldsg 0:662207e34fba 1537 * after a read transaction.
garfieldsg 0:662207e34fba 1538 * @return Last available byte read from to Slave 4
garfieldsg 0:662207e34fba 1539 * @see MPU6050_RA_I2C_SLV4_DI
garfieldsg 0:662207e34fba 1540 */
garfieldsg 0:662207e34fba 1541 uint8_t MPU6050::getSlate4InputByte()
garfieldsg 0:662207e34fba 1542 {
garfieldsg 0:662207e34fba 1543 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
garfieldsg 0:662207e34fba 1544 return buffer[0];
garfieldsg 0:662207e34fba 1545 }
garfieldsg 0:662207e34fba 1546
garfieldsg 0:662207e34fba 1547 // I2C_MST_STATUS register
garfieldsg 0:662207e34fba 1548
garfieldsg 0:662207e34fba 1549 /** Get FSYNC interrupt status.
garfieldsg 0:662207e34fba 1550 * This bit reflects the status of the FSYNC interrupt from an external device
garfieldsg 0:662207e34fba 1551 * into the MPU-60X0. This is used as a way to pass an external interrupt
garfieldsg 0:662207e34fba 1552 * through the MPU-60X0 to the host application processor. When set to 1, this
garfieldsg 0:662207e34fba 1553 * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
garfieldsg 0:662207e34fba 1554 * (Register 55).
garfieldsg 0:662207e34fba 1555 * @return FSYNC interrupt status
garfieldsg 0:662207e34fba 1556 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1557 */
garfieldsg 0:662207e34fba 1558 bool MPU6050::getPassthroughStatus()
garfieldsg 0:662207e34fba 1559 {
garfieldsg 0:662207e34fba 1560 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
garfieldsg 0:662207e34fba 1561 return buffer[0];
garfieldsg 0:662207e34fba 1562 }
garfieldsg 0:662207e34fba 1563 /** Get Slave 4 transaction done status.
garfieldsg 0:662207e34fba 1564 * Automatically sets to 1 when a Slave 4 transaction has completed. This
garfieldsg 0:662207e34fba 1565 * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
garfieldsg 0:662207e34fba 1566 * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
garfieldsg 0:662207e34fba 1567 * I2C_SLV4_CTRL register (Register 52).
garfieldsg 0:662207e34fba 1568 * @return Slave 4 transaction done status
garfieldsg 0:662207e34fba 1569 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1570 */
garfieldsg 0:662207e34fba 1571 bool MPU6050::getSlave4IsDone()
garfieldsg 0:662207e34fba 1572 {
garfieldsg 0:662207e34fba 1573 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
garfieldsg 0:662207e34fba 1574 return buffer[0];
garfieldsg 0:662207e34fba 1575 }
garfieldsg 0:662207e34fba 1576 /** Get master arbitration lost status.
garfieldsg 0:662207e34fba 1577 * This bit automatically sets to 1 when the I2C Master has lost arbitration of
garfieldsg 0:662207e34fba 1578 * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
garfieldsg 0:662207e34fba 1579 * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1580 * @return Master arbitration lost status
garfieldsg 0:662207e34fba 1581 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1582 */
garfieldsg 0:662207e34fba 1583 bool MPU6050::getLostArbitration()
garfieldsg 0:662207e34fba 1584 {
garfieldsg 0:662207e34fba 1585 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
garfieldsg 0:662207e34fba 1586 return buffer[0];
garfieldsg 0:662207e34fba 1587 }
garfieldsg 0:662207e34fba 1588 /** Get Slave 4 NACK status.
garfieldsg 0:662207e34fba 1589 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1590 * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1591 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1592 * @return Slave 4 NACK interrupt status
garfieldsg 0:662207e34fba 1593 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1594 */
garfieldsg 0:662207e34fba 1595 bool MPU6050::getSlave4Nack()
garfieldsg 0:662207e34fba 1596 {
garfieldsg 0:662207e34fba 1597 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1598 return buffer[0];
garfieldsg 0:662207e34fba 1599 }
garfieldsg 0:662207e34fba 1600 /** Get Slave 3 NACK status.
garfieldsg 0:662207e34fba 1601 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1602 * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1603 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1604 * @return Slave 3 NACK interrupt status
garfieldsg 0:662207e34fba 1605 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1606 */
garfieldsg 0:662207e34fba 1607 bool MPU6050::getSlave3Nack()
garfieldsg 0:662207e34fba 1608 {
garfieldsg 0:662207e34fba 1609 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1610 return buffer[0];
garfieldsg 0:662207e34fba 1611 }
garfieldsg 0:662207e34fba 1612 /** Get Slave 2 NACK status.
garfieldsg 0:662207e34fba 1613 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1614 * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1615 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1616 * @return Slave 2 NACK interrupt status
garfieldsg 0:662207e34fba 1617 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1618 */
garfieldsg 0:662207e34fba 1619 bool MPU6050::getSlave2Nack()
garfieldsg 0:662207e34fba 1620 {
garfieldsg 0:662207e34fba 1621 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1622 return buffer[0];
garfieldsg 0:662207e34fba 1623 }
garfieldsg 0:662207e34fba 1624 /** Get Slave 1 NACK status.
garfieldsg 0:662207e34fba 1625 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1626 * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1627 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1628 * @return Slave 1 NACK interrupt status
garfieldsg 0:662207e34fba 1629 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1630 */
garfieldsg 0:662207e34fba 1631 bool MPU6050::getSlave1Nack()
garfieldsg 0:662207e34fba 1632 {
garfieldsg 0:662207e34fba 1633 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1634 return buffer[0];
garfieldsg 0:662207e34fba 1635 }
garfieldsg 0:662207e34fba 1636 /** Get Slave 0 NACK status.
garfieldsg 0:662207e34fba 1637 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1638 * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1639 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1640 * @return Slave 0 NACK interrupt status
garfieldsg 0:662207e34fba 1641 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1642 */
garfieldsg 0:662207e34fba 1643 bool MPU6050::getSlave0Nack()
garfieldsg 0:662207e34fba 1644 {
garfieldsg 0:662207e34fba 1645 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1646 return buffer[0];
garfieldsg 0:662207e34fba 1647 }
garfieldsg 0:662207e34fba 1648
garfieldsg 0:662207e34fba 1649 // INT_PIN_CFG register
garfieldsg 0:662207e34fba 1650
garfieldsg 0:662207e34fba 1651 /** Get interrupt logic level mode.
garfieldsg 0:662207e34fba 1652 * Will be set 0 for active-high, 1 for active-low.
garfieldsg 0:662207e34fba 1653 * @return Current interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1654 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1655 * @see MPU6050_INTCFG_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1656 */
garfieldsg 0:662207e34fba 1657 bool MPU6050::getInterruptMode()
garfieldsg 0:662207e34fba 1658 {
garfieldsg 0:662207e34fba 1659 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
garfieldsg 0:662207e34fba 1660 return buffer[0];
garfieldsg 0:662207e34fba 1661 }
garfieldsg 0:662207e34fba 1662 /** Set interrupt logic level mode.
garfieldsg 0:662207e34fba 1663 * @param mode New interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1664 * @see getInterruptMode()
garfieldsg 0:662207e34fba 1665 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1666 * @see MPU6050_INTCFG_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1667 */
garfieldsg 0:662207e34fba 1668 void MPU6050::setInterruptMode(bool mode)
garfieldsg 0:662207e34fba 1669 {
garfieldsg 0:662207e34fba 1670 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
garfieldsg 0:662207e34fba 1671 }
garfieldsg 0:662207e34fba 1672 /** Get interrupt drive mode.
garfieldsg 0:662207e34fba 1673 * Will be set 0 for push-pull, 1 for open-drain.
garfieldsg 0:662207e34fba 1674 * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
garfieldsg 0:662207e34fba 1675 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1676 * @see MPU6050_INTCFG_INT_OPEN_BIT
garfieldsg 0:662207e34fba 1677 */
garfieldsg 0:662207e34fba 1678 bool MPU6050::getInterruptDrive()
garfieldsg 0:662207e34fba 1679 {
garfieldsg 0:662207e34fba 1680 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
garfieldsg 0:662207e34fba 1681 return buffer[0];
garfieldsg 0:662207e34fba 1682 }
garfieldsg 0:662207e34fba 1683 /** Set interrupt drive mode.
garfieldsg 0:662207e34fba 1684 * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
garfieldsg 0:662207e34fba 1685 * @see getInterruptDrive()
garfieldsg 0:662207e34fba 1686 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1687 * @see MPU6050_INTCFG_INT_OPEN_BIT
garfieldsg 0:662207e34fba 1688 */
garfieldsg 0:662207e34fba 1689 void MPU6050::setInterruptDrive(bool drive)
garfieldsg 0:662207e34fba 1690 {
garfieldsg 0:662207e34fba 1691 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
garfieldsg 0:662207e34fba 1692 }
garfieldsg 0:662207e34fba 1693 /** Get interrupt latch mode.
garfieldsg 0:662207e34fba 1694 * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
garfieldsg 0:662207e34fba 1695 * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
garfieldsg 0:662207e34fba 1696 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1697 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
garfieldsg 0:662207e34fba 1698 */
garfieldsg 0:662207e34fba 1699 bool MPU6050::getInterruptLatch()
garfieldsg 0:662207e34fba 1700 {
garfieldsg 0:662207e34fba 1701 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1702 return buffer[0];
garfieldsg 0:662207e34fba 1703 }
garfieldsg 0:662207e34fba 1704 /** Set interrupt latch mode.
garfieldsg 0:662207e34fba 1705 * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
garfieldsg 0:662207e34fba 1706 * @see getInterruptLatch()
garfieldsg 0:662207e34fba 1707 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1708 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
garfieldsg 0:662207e34fba 1709 */
garfieldsg 0:662207e34fba 1710 void MPU6050::setInterruptLatch(bool latch)
garfieldsg 0:662207e34fba 1711 {
garfieldsg 0:662207e34fba 1712 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
garfieldsg 0:662207e34fba 1713 }
garfieldsg 0:662207e34fba 1714 /** Get interrupt latch clear mode.
garfieldsg 0:662207e34fba 1715 * Will be set 0 for status-read-only, 1 for any-register-read.
garfieldsg 0:662207e34fba 1716 * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
garfieldsg 0:662207e34fba 1717 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1718 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
garfieldsg 0:662207e34fba 1719 */
garfieldsg 0:662207e34fba 1720 bool MPU6050::getInterruptLatchClear()
garfieldsg 0:662207e34fba 1721 {
garfieldsg 0:662207e34fba 1722 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
garfieldsg 0:662207e34fba 1723 return buffer[0];
garfieldsg 0:662207e34fba 1724 }
garfieldsg 0:662207e34fba 1725 /** Set interrupt latch clear mode.
garfieldsg 0:662207e34fba 1726 * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
garfieldsg 0:662207e34fba 1727 * @see getInterruptLatchClear()
garfieldsg 0:662207e34fba 1728 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1729 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
garfieldsg 0:662207e34fba 1730 */
garfieldsg 0:662207e34fba 1731 void MPU6050::setInterruptLatchClear(bool clear)
garfieldsg 0:662207e34fba 1732 {
garfieldsg 0:662207e34fba 1733 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
garfieldsg 0:662207e34fba 1734 }
garfieldsg 0:662207e34fba 1735 /** Get FSYNC interrupt logic level mode.
garfieldsg 0:662207e34fba 1736 * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1737 * @see getFSyncInterruptMode()
garfieldsg 0:662207e34fba 1738 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1739 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1740 */
garfieldsg 0:662207e34fba 1741 bool MPU6050::getFSyncInterruptLevel()
garfieldsg 0:662207e34fba 1742 {
garfieldsg 0:662207e34fba 1743 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
garfieldsg 0:662207e34fba 1744 return buffer[0];
garfieldsg 0:662207e34fba 1745 }
garfieldsg 0:662207e34fba 1746 /** Set FSYNC interrupt logic level mode.
garfieldsg 0:662207e34fba 1747 * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1748 * @see getFSyncInterruptMode()
garfieldsg 0:662207e34fba 1749 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1750 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1751 */
garfieldsg 0:662207e34fba 1752 void MPU6050::setFSyncInterruptLevel(bool level)
garfieldsg 0:662207e34fba 1753 {
garfieldsg 0:662207e34fba 1754 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
garfieldsg 0:662207e34fba 1755 }
garfieldsg 0:662207e34fba 1756 /** Get FSYNC pin interrupt enabled setting.
garfieldsg 0:662207e34fba 1757 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1758 * @return Current interrupt enabled setting
garfieldsg 0:662207e34fba 1759 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1760 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
garfieldsg 0:662207e34fba 1761 */
garfieldsg 0:662207e34fba 1762 bool MPU6050::getFSyncInterruptEnabled()
garfieldsg 0:662207e34fba 1763 {
garfieldsg 0:662207e34fba 1764 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1765 return buffer[0];
garfieldsg 0:662207e34fba 1766 }
garfieldsg 0:662207e34fba 1767 /** Set FSYNC pin interrupt enabled setting.
garfieldsg 0:662207e34fba 1768 * @param enabled New FSYNC pin interrupt enabled setting
garfieldsg 0:662207e34fba 1769 * @see getFSyncInterruptEnabled()
garfieldsg 0:662207e34fba 1770 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1771 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
garfieldsg 0:662207e34fba 1772 */
garfieldsg 0:662207e34fba 1773 void MPU6050::setFSyncInterruptEnabled(bool enabled)
garfieldsg 0:662207e34fba 1774 {
garfieldsg 0:662207e34fba 1775 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1776 }
garfieldsg 0:662207e34fba 1777 /** Get I2C bypass enabled status.
garfieldsg 0:662207e34fba 1778 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
garfieldsg 0:662207e34fba 1779 * 0, the host application processor will be able to directly access the
garfieldsg 0:662207e34fba 1780 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
garfieldsg 0:662207e34fba 1781 * application processor will not be able to directly access the auxiliary I2C
garfieldsg 0:662207e34fba 1782 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
garfieldsg 0:662207e34fba 1783 * bit[5]).
garfieldsg 0:662207e34fba 1784 * @return Current I2C bypass enabled status
garfieldsg 0:662207e34fba 1785 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1786 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
garfieldsg 0:662207e34fba 1787 */
garfieldsg 0:662207e34fba 1788 bool MPU6050::getI2CBypassEnabled()
garfieldsg 0:662207e34fba 1789 {
garfieldsg 0:662207e34fba 1790 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1791 return buffer[0];
garfieldsg 0:662207e34fba 1792 }
garfieldsg 0:662207e34fba 1793 /** Set I2C bypass enabled status.
garfieldsg 0:662207e34fba 1794 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
garfieldsg 0:662207e34fba 1795 * 0, the host application processor will be able to directly access the
garfieldsg 0:662207e34fba 1796 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
garfieldsg 0:662207e34fba 1797 * application processor will not be able to directly access the auxiliary I2C
garfieldsg 0:662207e34fba 1798 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
garfieldsg 0:662207e34fba 1799 * bit[5]).
garfieldsg 0:662207e34fba 1800 * @param enabled New I2C bypass enabled status
garfieldsg 0:662207e34fba 1801 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1802 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
garfieldsg 0:662207e34fba 1803 */
garfieldsg 0:662207e34fba 1804 void MPU6050::setI2CBypassEnabled(bool enabled)
garfieldsg 0:662207e34fba 1805 {
garfieldsg 0:662207e34fba 1806 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1807 }
garfieldsg 0:662207e34fba 1808 /** Get reference clock output enabled status.
garfieldsg 0:662207e34fba 1809 * When this bit is equal to 1, a reference clock output is provided at the
garfieldsg 0:662207e34fba 1810 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
garfieldsg 0:662207e34fba 1811 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
garfieldsg 0:662207e34fba 1812 * Specification document.
garfieldsg 0:662207e34fba 1813 * @return Current reference clock output enabled status
garfieldsg 0:662207e34fba 1814 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1815 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
garfieldsg 0:662207e34fba 1816 */
garfieldsg 0:662207e34fba 1817 bool MPU6050::getClockOutputEnabled()
garfieldsg 0:662207e34fba 1818 {
garfieldsg 0:662207e34fba 1819 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1820 return buffer[0];
garfieldsg 0:662207e34fba 1821 }
garfieldsg 0:662207e34fba 1822 /** Set reference clock output enabled status.
garfieldsg 0:662207e34fba 1823 * When this bit is equal to 1, a reference clock output is provided at the
garfieldsg 0:662207e34fba 1824 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
garfieldsg 0:662207e34fba 1825 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
garfieldsg 0:662207e34fba 1826 * Specification document.
garfieldsg 0:662207e34fba 1827 * @param enabled New reference clock output enabled status
garfieldsg 0:662207e34fba 1828 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1829 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
garfieldsg 0:662207e34fba 1830 */
garfieldsg 0:662207e34fba 1831 void MPU6050::setClockOutputEnabled(bool enabled)
garfieldsg 0:662207e34fba 1832 {
garfieldsg 0:662207e34fba 1833 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1834 }
garfieldsg 0:662207e34fba 1835
garfieldsg 0:662207e34fba 1836 // INT_ENABLE register
garfieldsg 0:662207e34fba 1837
garfieldsg 0:662207e34fba 1838 /** Get full interrupt enabled status.
garfieldsg 0:662207e34fba 1839 * Full register byte for all interrupts, for quick reading. Each bit will be
garfieldsg 0:662207e34fba 1840 * set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1841 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1842 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1843 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1844 **/
garfieldsg 0:662207e34fba 1845 uint8_t MPU6050::getIntEnabled()
garfieldsg 0:662207e34fba 1846 {
garfieldsg 0:662207e34fba 1847 i2Cdev.readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
garfieldsg 0:662207e34fba 1848 return buffer[0];
garfieldsg 0:662207e34fba 1849 }
garfieldsg 0:662207e34fba 1850 /** Set full interrupt enabled status.
garfieldsg 0:662207e34fba 1851 * Full register byte for all interrupts, for quick reading. Each bit should be
garfieldsg 0:662207e34fba 1852 * set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1853 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1854 * @see getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1855 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1856 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1857 **/
garfieldsg 0:662207e34fba 1858 void MPU6050::setIntEnabled(uint8_t enabled)
garfieldsg 0:662207e34fba 1859 {
garfieldsg 0:662207e34fba 1860 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
garfieldsg 0:662207e34fba 1861 }
garfieldsg 0:662207e34fba 1862 /** Get Free Fall interrupt enabled status.
garfieldsg 0:662207e34fba 1863 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1864 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1865 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1866 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1867 **/
garfieldsg 0:662207e34fba 1868 bool MPU6050::getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1869 {
garfieldsg 0:662207e34fba 1870 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
garfieldsg 0:662207e34fba 1871 return buffer[0];
garfieldsg 0:662207e34fba 1872 }
garfieldsg 0:662207e34fba 1873 /** Set Free Fall interrupt enabled status.
garfieldsg 0:662207e34fba 1874 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1875 * @see getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1876 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1877 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1878 **/
garfieldsg 0:662207e34fba 1879 void MPU6050::setIntFreefallEnabled(bool enabled)
garfieldsg 0:662207e34fba 1880 {
garfieldsg 0:662207e34fba 1881 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
garfieldsg 0:662207e34fba 1882 }
garfieldsg 0:662207e34fba 1883 /** Get Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1884 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1885 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1886 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1887 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1888 **/
garfieldsg 0:662207e34fba 1889 bool MPU6050::getIntMotionEnabled()
garfieldsg 0:662207e34fba 1890 {
garfieldsg 0:662207e34fba 1891 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
garfieldsg 0:662207e34fba 1892 return buffer[0];
garfieldsg 0:662207e34fba 1893 }
garfieldsg 0:662207e34fba 1894 /** Set Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1895 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1896 * @see getIntMotionEnabled()
garfieldsg 0:662207e34fba 1897 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1898 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1899 **/
garfieldsg 0:662207e34fba 1900 void MPU6050::setIntMotionEnabled(bool enabled)
garfieldsg 0:662207e34fba 1901 {
garfieldsg 0:662207e34fba 1902 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
garfieldsg 0:662207e34fba 1903 }
garfieldsg 0:662207e34fba 1904 /** Get Zero Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1905 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1906 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1907 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1908 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1909 **/
garfieldsg 0:662207e34fba 1910 bool MPU6050::getIntZeroMotionEnabled()
garfieldsg 0:662207e34fba 1911 {
garfieldsg 0:662207e34fba 1912 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
garfieldsg 0:662207e34fba 1913 return buffer[0];
garfieldsg 0:662207e34fba 1914 }
garfieldsg 0:662207e34fba 1915 /** Set Zero Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1916 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1917 * @see getIntZeroMotionEnabled()
garfieldsg 0:662207e34fba 1918 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1919 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1920 **/
garfieldsg 0:662207e34fba 1921 void MPU6050::setIntZeroMotionEnabled(bool enabled)
garfieldsg 0:662207e34fba 1922 {
garfieldsg 0:662207e34fba 1923 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
garfieldsg 0:662207e34fba 1924 }
garfieldsg 0:662207e34fba 1925 /** Get FIFO Buffer Overflow interrupt enabled status.
garfieldsg 0:662207e34fba 1926 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1927 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1928 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1929 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1930 **/
garfieldsg 0:662207e34fba 1931 bool MPU6050::getIntFIFOBufferOverflowEnabled()
garfieldsg 0:662207e34fba 1932 {
garfieldsg 0:662207e34fba 1933 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
garfieldsg 0:662207e34fba 1934 return buffer[0];
garfieldsg 0:662207e34fba 1935 }
garfieldsg 0:662207e34fba 1936 /** Set FIFO Buffer Overflow interrupt enabled status.
garfieldsg 0:662207e34fba 1937 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1938 * @see getIntFIFOBufferOverflowEnabled()
garfieldsg 0:662207e34fba 1939 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1940 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1941 **/
garfieldsg 0:662207e34fba 1942 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled)
garfieldsg 0:662207e34fba 1943 {
garfieldsg 0:662207e34fba 1944 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
garfieldsg 0:662207e34fba 1945 }
garfieldsg 0:662207e34fba 1946 /** Get I2C Master interrupt enabled status.
garfieldsg 0:662207e34fba 1947 * This enables any of the I2C Master interrupt sources to generate an
garfieldsg 0:662207e34fba 1948 * interrupt. Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1949 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1950 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1951 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1952 **/
garfieldsg 0:662207e34fba 1953 bool MPU6050::getIntI2CMasterEnabled()
garfieldsg 0:662207e34fba 1954 {
garfieldsg 0:662207e34fba 1955 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
garfieldsg 0:662207e34fba 1956 return buffer[0];
garfieldsg 0:662207e34fba 1957 }
garfieldsg 0:662207e34fba 1958 /** Set I2C Master interrupt enabled status.
garfieldsg 0:662207e34fba 1959 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1960 * @see getIntI2CMasterEnabled()
garfieldsg 0:662207e34fba 1961 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1962 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1963 **/
garfieldsg 0:662207e34fba 1964 void MPU6050::setIntI2CMasterEnabled(bool enabled)
garfieldsg 0:662207e34fba 1965 {
garfieldsg 0:662207e34fba 1966 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
garfieldsg 0:662207e34fba 1967 }
garfieldsg 0:662207e34fba 1968 /** Get Data Ready interrupt enabled setting.
garfieldsg 0:662207e34fba 1969 * This event occurs each time a write operation to all of the sensor registers
garfieldsg 0:662207e34fba 1970 * has been completed. Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1971 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1972 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1973 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1974 */
garfieldsg 0:662207e34fba 1975 bool MPU6050::getIntDataReadyEnabled()
garfieldsg 0:662207e34fba 1976 {
garfieldsg 0:662207e34fba 1977 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
garfieldsg 0:662207e34fba 1978 return buffer[0];
garfieldsg 0:662207e34fba 1979 }
garfieldsg 0:662207e34fba 1980 /** Set Data Ready interrupt enabled status.
garfieldsg 0:662207e34fba 1981 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1982 * @see getIntDataReadyEnabled()
garfieldsg 0:662207e34fba 1983 * @see MPU6050_RA_INT_CFG
garfieldsg 0:662207e34fba 1984 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1985 */
garfieldsg 0:662207e34fba 1986 void MPU6050::setIntDataReadyEnabled(bool enabled)
garfieldsg 0:662207e34fba 1987 {
garfieldsg 0:662207e34fba 1988 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
garfieldsg 0:662207e34fba 1989 }
garfieldsg 0:662207e34fba 1990
garfieldsg 0:662207e34fba 1991 // INT_STATUS register
garfieldsg 0:662207e34fba 1992
garfieldsg 0:662207e34fba 1993 /** Get full set of interrupt status bits.
garfieldsg 0:662207e34fba 1994 * These bits clear to 0 after the register has been read. Very useful
garfieldsg 0:662207e34fba 1995 * for getting multiple INT statuses, since each single bit read clears
garfieldsg 0:662207e34fba 1996 * all of them because it has to read the whole byte.
garfieldsg 0:662207e34fba 1997 * @return Current interrupt status
garfieldsg 0:662207e34fba 1998 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1999 */
garfieldsg 0:662207e34fba 2000 uint8_t MPU6050::getIntStatus()
garfieldsg 0:662207e34fba 2001 {
garfieldsg 0:662207e34fba 2002 i2Cdev.readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
garfieldsg 0:662207e34fba 2003 return buffer[0];
garfieldsg 0:662207e34fba 2004 }
garfieldsg 0:662207e34fba 2005 /** Get Free Fall interrupt status.
garfieldsg 0:662207e34fba 2006 * This bit automatically sets to 1 when a Free Fall interrupt has been
garfieldsg 0:662207e34fba 2007 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 2008 * @return Current interrupt status
garfieldsg 0:662207e34fba 2009 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 2010 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 2011 */
garfieldsg 0:662207e34fba 2012 bool MPU6050::getIntFreefallStatus()
garfieldsg 0:662207e34fba 2013 {
garfieldsg 0:662207e34fba 2014 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
garfieldsg 0:662207e34fba 2015 return buffer[0];
garfieldsg 0:662207e34fba 2016 }
garfieldsg 0:662207e34fba 2017 /** Get Motion Detection interrupt status.
garfieldsg 0:662207e34fba 2018 * This bit automatically sets to 1 when a Motion Detection interrupt has been
garfieldsg 0:662207e34fba 2019 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 2020 * @return Current interrupt status
garfieldsg 0:662207e34fba 2021 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 2022 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 2023 */
garfieldsg 0:662207e34fba 2024 bool MPU6050::getIntMotionStatus()
garfieldsg 0:662207e34fba 2025 {
garfieldsg 0:662207e34fba 2026 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
garfieldsg 0:662207e34fba 2027 return buffer[0];
garfieldsg 0:662207e34fba 2028 }
garfieldsg 0:662207e34fba 2029 /** Get Zero Motion Detection interrupt status.
garfieldsg 0:662207e34fba 2030 * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
garfieldsg 0:662207e34fba 2031 * been generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 2032 * @return Current interrupt status
garfieldsg 0:662207e34fba 2033 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 2034 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 2035 */
garfieldsg 0:662207e34fba 2036 bool MPU6050::getIntZeroMotionStatus()
garfieldsg 0:662207e34fba 2037 {
garfieldsg 0:662207e34fba 2038 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
garfieldsg 0:662207e34fba 2039 return buffer[0];
garfieldsg 0:662207e34fba 2040 }
garfieldsg 0:662207e34fba 2041 /** Get FIFO Buffer Overflow interrupt status.
garfieldsg 0:662207e34fba 2042 * This bit automatically sets to 1 when a Free Fall interrupt has been
garfieldsg 0:662207e34fba 2043 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 2044 * @return Current interrupt status
garfieldsg 0:662207e34fba 2045 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 2046 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 2047 */
garfieldsg 0:662207e34fba 2048 bool MPU6050::getIntFIFOBufferOverflowStatus()
garfieldsg 0:662207e34fba 2049 {
garfieldsg 0:662207e34fba 2050 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
garfieldsg 0:662207e34fba 2051 return buffer[0];
garfieldsg 0:662207e34fba 2052 }
garfieldsg 0:662207e34fba 2053 /** Get I2C Master interrupt status.
garfieldsg 0:662207e34fba 2054 * This bit automatically sets to 1 when an I2C Master interrupt has been
garfieldsg 0:662207e34fba 2055 * generated. For a list of I2C Master interrupts, please refer to Register 54.
garfieldsg 0:662207e34fba 2056 * The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 2057 * @return Current interrupt status
garfieldsg 0:662207e34fba 2058 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 2059 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 2060 */
garfieldsg 0:662207e34fba 2061 bool MPU6050::getIntI2CMasterStatus()
garfieldsg 0:662207e34fba 2062 {
garfieldsg 0:662207e34fba 2063 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
garfieldsg 0:662207e34fba 2064 return buffer[0];
garfieldsg 0:662207e34fba 2065 }
garfieldsg 0:662207e34fba 2066 /** Get Data Ready interrupt status.
garfieldsg 0:662207e34fba 2067 * This bit automatically sets to 1 when a Data Ready interrupt has been
garfieldsg 0:662207e34fba 2068 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 2069 * @return Current interrupt status
garfieldsg 0:662207e34fba 2070 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 2071 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 2072 */
garfieldsg 0:662207e34fba 2073 bool MPU6050::getIntDataReadyStatus()
garfieldsg 0:662207e34fba 2074 {
garfieldsg 0:662207e34fba 2075 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
garfieldsg 0:662207e34fba 2076 return buffer[0];
garfieldsg 0:662207e34fba 2077 }
garfieldsg 0:662207e34fba 2078
garfieldsg 0:662207e34fba 2079 // ACCEL_*OUT_* registers
garfieldsg 0:662207e34fba 2080
garfieldsg 0:662207e34fba 2081 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
garfieldsg 0:662207e34fba 2082 * FUNCTION NOT FULLY IMPLEMENTED YET.
garfieldsg 0:662207e34fba 2083 * @param ax 16-bit signed integer container for accelerometer X-axis value
garfieldsg 0:662207e34fba 2084 * @param ay 16-bit signed integer container for accelerometer Y-axis value
garfieldsg 0:662207e34fba 2085 * @param az 16-bit signed integer container for accelerometer Z-axis value
garfieldsg 0:662207e34fba 2086 * @param gx 16-bit signed integer container for gyroscope X-axis value
garfieldsg 0:662207e34fba 2087 * @param gy 16-bit signed integer container for gyroscope Y-axis value
garfieldsg 0:662207e34fba 2088 * @param gz 16-bit signed integer container for gyroscope Z-axis value
garfieldsg 0:662207e34fba 2089 * @param mx 16-bit signed integer container for magnetometer X-axis value
garfieldsg 0:662207e34fba 2090 * @param my 16-bit signed integer container for magnetometer Y-axis value
garfieldsg 0:662207e34fba 2091 * @param mz 16-bit signed integer container for magnetometer Z-axis value
garfieldsg 0:662207e34fba 2092 * @see getMotion6()
garfieldsg 0:662207e34fba 2093 * @see getAcceleration()
garfieldsg 0:662207e34fba 2094 * @see getRotation()
garfieldsg 0:662207e34fba 2095 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 2096 */
garfieldsg 0:662207e34fba 2097 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz)
garfieldsg 0:662207e34fba 2098 {
garfieldsg 0:662207e34fba 2099 getMotion6(ax, ay, az, gx, gy, gz);
garfieldsg 0:662207e34fba 2100 // TODO: magnetometer integration
garfieldsg 0:662207e34fba 2101 }
garfieldsg 0:662207e34fba 2102 /** Get raw 6-axis motion sensor readings (accel/gyro).
garfieldsg 0:662207e34fba 2103 * Retrieves all currently available motion sensor values.
garfieldsg 0:662207e34fba 2104 * @param ax 16-bit signed integer container for accelerometer X-axis value
garfieldsg 0:662207e34fba 2105 * @param ay 16-bit signed integer container for accelerometer Y-axis value
garfieldsg 0:662207e34fba 2106 * @param az 16-bit signed integer container for accelerometer Z-axis value
garfieldsg 0:662207e34fba 2107 * @param gx 16-bit signed integer container for gyroscope X-axis value
garfieldsg 0:662207e34fba 2108 * @param gy 16-bit signed integer container for gyroscope Y-axis value
garfieldsg 0:662207e34fba 2109 * @param gz 16-bit signed integer container for gyroscope Z-axis value
garfieldsg 0:662207e34fba 2110 * @see getAcceleration()
garfieldsg 0:662207e34fba 2111 * @see getRotation()
garfieldsg 0:662207e34fba 2112 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 2113 */
garfieldsg 0:662207e34fba 2114 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz)
garfieldsg 0:662207e34fba 2115 {
garfieldsg 0:662207e34fba 2116 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
garfieldsg 0:662207e34fba 2117 *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2118 *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 2119 *az = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 2120 *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
garfieldsg 0:662207e34fba 2121 *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
garfieldsg 0:662207e34fba 2122 *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
garfieldsg 0:662207e34fba 2123 }
garfieldsg 0:662207e34fba 2124 /** Get 3-axis accelerometer readings.
garfieldsg 0:662207e34fba 2125 * These registers store the most recent accelerometer measurements.
garfieldsg 0:662207e34fba 2126 * Accelerometer measurements are written to these registers at the Sample Rate
garfieldsg 0:662207e34fba 2127 * as defined in Register 25.
garfieldsg 0:662207e34fba 2128 *
garfieldsg 0:662207e34fba 2129 * The accelerometer measurement registers, along with the temperature
garfieldsg 0:662207e34fba 2130 * measurement registers, gyroscope measurement registers, and external sensor
garfieldsg 0:662207e34fba 2131 * data registers, are composed of two sets of registers: an internal register
garfieldsg 0:662207e34fba 2132 * set and a user-facing read register set.
garfieldsg 0:662207e34fba 2133 *
garfieldsg 0:662207e34fba 2134 * The data within the accelerometer sensors' internal register set is always
garfieldsg 0:662207e34fba 2135 * updated at the Sample Rate. Meanwhile, the user-facing read register set
garfieldsg 0:662207e34fba 2136 * duplicates the internal register set's data values whenever the serial
garfieldsg 0:662207e34fba 2137 * interface is idle. This guarantees that a burst read of sensor registers will
garfieldsg 0:662207e34fba 2138 * read measurements from the same sampling instant. Note that if burst reads
garfieldsg 0:662207e34fba 2139 * are not used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 2140 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 2141 *
garfieldsg 0:662207e34fba 2142 * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
garfieldsg 0:662207e34fba 2143 * (Register 28). For each full scale setting, the accelerometers' sensitivity
garfieldsg 0:662207e34fba 2144 * per LSB in ACCEL_xOUT is shown in the table below:
garfieldsg 0:662207e34fba 2145 *
garfieldsg 0:662207e34fba 2146 * <pre>
garfieldsg 0:662207e34fba 2147 * AFS_SEL | Full Scale Range | LSB Sensitivity
garfieldsg 0:662207e34fba 2148 * --------+------------------+----------------
garfieldsg 0:662207e34fba 2149 * 0 | +/- 2g | 8192 LSB/mg
garfieldsg 0:662207e34fba 2150 * 1 | +/- 4g | 4096 LSB/mg
garfieldsg 0:662207e34fba 2151 * 2 | +/- 8g | 2048 LSB/mg
garfieldsg 0:662207e34fba 2152 * 3 | +/- 16g | 1024 LSB/mg
garfieldsg 0:662207e34fba 2153 * </pre>
garfieldsg 0:662207e34fba 2154 *
garfieldsg 0:662207e34fba 2155 * @param x 16-bit signed integer container for X-axis acceleration
garfieldsg 0:662207e34fba 2156 * @param y 16-bit signed integer container for Y-axis acceleration
garfieldsg 0:662207e34fba 2157 * @param z 16-bit signed integer container for Z-axis acceleration
garfieldsg 0:662207e34fba 2158 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 2159 */
garfieldsg 0:662207e34fba 2160 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z)
garfieldsg 0:662207e34fba 2161 {
garfieldsg 0:662207e34fba 2162 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
garfieldsg 0:662207e34fba 2163 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2164 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 2165 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 2166 }
garfieldsg 0:662207e34fba 2167 /** Get X-axis accelerometer reading.
garfieldsg 0:662207e34fba 2168 * @return X-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2169 * @see getMotion6()
garfieldsg 0:662207e34fba 2170 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 2171 */
garfieldsg 0:662207e34fba 2172 int16_t MPU6050::getAccelerationX()
garfieldsg 0:662207e34fba 2173 {
garfieldsg 0:662207e34fba 2174 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2175 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2176 }
garfieldsg 0:662207e34fba 2177 /** Get Y-axis accelerometer reading.
garfieldsg 0:662207e34fba 2178 * @return Y-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2179 * @see getMotion6()
garfieldsg 0:662207e34fba 2180 * @see MPU6050_RA_ACCEL_YOUT_H
garfieldsg 0:662207e34fba 2181 */
garfieldsg 0:662207e34fba 2182 int16_t MPU6050::getAccelerationY()
garfieldsg 0:662207e34fba 2183 {
garfieldsg 0:662207e34fba 2184 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2185 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2186 }
garfieldsg 0:662207e34fba 2187 /** Get Z-axis accelerometer reading.
garfieldsg 0:662207e34fba 2188 * @return Z-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2189 * @see getMotion6()
garfieldsg 0:662207e34fba 2190 * @see MPU6050_RA_ACCEL_ZOUT_H
garfieldsg 0:662207e34fba 2191 */
garfieldsg 0:662207e34fba 2192 int16_t MPU6050::getAccelerationZ()
garfieldsg 0:662207e34fba 2193 {
garfieldsg 0:662207e34fba 2194 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2195 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2196 }
garfieldsg 0:662207e34fba 2197
garfieldsg 0:662207e34fba 2198 // TEMP_OUT_* registers
garfieldsg 0:662207e34fba 2199
garfieldsg 0:662207e34fba 2200 /** Get current internal temperature.
garfieldsg 0:662207e34fba 2201 * @return Temperature reading in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2202 * @see MPU6050_RA_TEMP_OUT_H
garfieldsg 0:662207e34fba 2203 */
garfieldsg 0:662207e34fba 2204 int16_t MPU6050::getTemperature()
garfieldsg 0:662207e34fba 2205 {
garfieldsg 0:662207e34fba 2206 i2Cdev.readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2207 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2208 }
garfieldsg 0:662207e34fba 2209
garfieldsg 0:662207e34fba 2210 // GYRO_*OUT_* registers
garfieldsg 0:662207e34fba 2211
garfieldsg 0:662207e34fba 2212 /** Get 3-axis gyroscope readings.
garfieldsg 0:662207e34fba 2213 * These gyroscope measurement registers, along with the accelerometer
garfieldsg 0:662207e34fba 2214 * measurement registers, temperature measurement registers, and external sensor
garfieldsg 0:662207e34fba 2215 * data registers, are composed of two sets of registers: an internal register
garfieldsg 0:662207e34fba 2216 * set and a user-facing read register set.
garfieldsg 0:662207e34fba 2217 * The data within the gyroscope sensors' internal register set is always
garfieldsg 0:662207e34fba 2218 * updated at the Sample Rate. Meanwhile, the user-facing read register set
garfieldsg 0:662207e34fba 2219 * duplicates the internal register set's data values whenever the serial
garfieldsg 0:662207e34fba 2220 * interface is idle. This guarantees that a burst read of sensor registers will
garfieldsg 0:662207e34fba 2221 * read measurements from the same sampling instant. Note that if burst reads
garfieldsg 0:662207e34fba 2222 * are not used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 2223 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 2224 *
garfieldsg 0:662207e34fba 2225 * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
garfieldsg 0:662207e34fba 2226 * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
garfieldsg 0:662207e34fba 2227 * LSB in GYRO_xOUT is shown in the table below:
garfieldsg 0:662207e34fba 2228 *
garfieldsg 0:662207e34fba 2229 * <pre>
garfieldsg 0:662207e34fba 2230 * FS_SEL | Full Scale Range | LSB Sensitivity
garfieldsg 0:662207e34fba 2231 * -------+--------------------+----------------
garfieldsg 0:662207e34fba 2232 * 0 | +/- 250 degrees/s | 131 LSB/deg/s
garfieldsg 0:662207e34fba 2233 * 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
garfieldsg 0:662207e34fba 2234 * 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
garfieldsg 0:662207e34fba 2235 * 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
garfieldsg 0:662207e34fba 2236 * </pre>
garfieldsg 0:662207e34fba 2237 *
garfieldsg 0:662207e34fba 2238 * @param x 16-bit signed integer container for X-axis rotation
garfieldsg 0:662207e34fba 2239 * @param y 16-bit signed integer container for Y-axis rotation
garfieldsg 0:662207e34fba 2240 * @param z 16-bit signed integer container for Z-axis rotation
garfieldsg 0:662207e34fba 2241 * @see getMotion6()
garfieldsg 0:662207e34fba 2242 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 2243 */
garfieldsg 0:662207e34fba 2244 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z)
garfieldsg 0:662207e34fba 2245 {
garfieldsg 0:662207e34fba 2246 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
garfieldsg 0:662207e34fba 2247 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2248 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 2249 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 2250 }
garfieldsg 0:662207e34fba 2251 /** Get X-axis gyroscope reading.
garfieldsg 0:662207e34fba 2252 * @return X-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2253 * @see getMotion6()
garfieldsg 0:662207e34fba 2254 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 2255 */
garfieldsg 0:662207e34fba 2256 int16_t MPU6050::getRotationX()
garfieldsg 0:662207e34fba 2257 {
garfieldsg 0:662207e34fba 2258 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2259 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2260 }
garfieldsg 0:662207e34fba 2261 /** Get Y-axis gyroscope reading.
garfieldsg 0:662207e34fba 2262 * @return Y-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2263 * @see getMotion6()
garfieldsg 0:662207e34fba 2264 * @see MPU6050_RA_GYRO_YOUT_H
garfieldsg 0:662207e34fba 2265 */
garfieldsg 0:662207e34fba 2266 int16_t MPU6050::getRotationY()
garfieldsg 0:662207e34fba 2267 {
garfieldsg 0:662207e34fba 2268 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2269 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2270 }
garfieldsg 0:662207e34fba 2271 /** Get Z-axis gyroscope reading.
garfieldsg 0:662207e34fba 2272 * @return Z-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2273 * @see getMotion6()
garfieldsg 0:662207e34fba 2274 * @see MPU6050_RA_GYRO_ZOUT_H
garfieldsg 0:662207e34fba 2275 */
garfieldsg 0:662207e34fba 2276 int16_t MPU6050::getRotationZ()
garfieldsg 0:662207e34fba 2277 {
garfieldsg 0:662207e34fba 2278 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2279 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2280 }
garfieldsg 0:662207e34fba 2281
garfieldsg 0:662207e34fba 2282 // EXT_SENS_DATA_* registers
garfieldsg 0:662207e34fba 2283
garfieldsg 0:662207e34fba 2284 /** Read single byte from external sensor data register.
garfieldsg 0:662207e34fba 2285 * These registers store data read from external sensors by the Slave 0, 1, 2,
garfieldsg 0:662207e34fba 2286 * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
garfieldsg 0:662207e34fba 2287 * I2C_SLV4_DI (Register 53).
garfieldsg 0:662207e34fba 2288 *
garfieldsg 0:662207e34fba 2289 * External sensor data is written to these registers at the Sample Rate as
garfieldsg 0:662207e34fba 2290 * defined in Register 25. This access rate can be reduced by using the Slave
garfieldsg 0:662207e34fba 2291 * Delay Enable registers (Register 103).
garfieldsg 0:662207e34fba 2292 *
garfieldsg 0:662207e34fba 2293 * External sensor data registers, along with the gyroscope measurement
garfieldsg 0:662207e34fba 2294 * registers, accelerometer measurement registers, and temperature measurement
garfieldsg 0:662207e34fba 2295 * registers, are composed of two sets of registers: an internal register set
garfieldsg 0:662207e34fba 2296 * and a user-facing read register set.
garfieldsg 0:662207e34fba 2297 *
garfieldsg 0:662207e34fba 2298 * The data within the external sensors' internal register set is always updated
garfieldsg 0:662207e34fba 2299 * at the Sample Rate (or the reduced access rate) whenever the serial interface
garfieldsg 0:662207e34fba 2300 * is idle. This guarantees that a burst read of sensor registers will read
garfieldsg 0:662207e34fba 2301 * measurements from the same sampling instant. Note that if burst reads are not
garfieldsg 0:662207e34fba 2302 * used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 2303 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 2304 *
garfieldsg 0:662207e34fba 2305 * Data is placed in these external sensor data registers according to
garfieldsg 0:662207e34fba 2306 * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
garfieldsg 0:662207e34fba 2307 * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
garfieldsg 0:662207e34fba 2308 * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
garfieldsg 0:662207e34fba 2309 * defined in Register 25) or delayed rate (if specified in Register 52 and
garfieldsg 0:662207e34fba 2310 * 103). During each Sample cycle, slave reads are performed in order of Slave
garfieldsg 0:662207e34fba 2311 * number. If all slaves are enabled with more than zero bytes to be read, the
garfieldsg 0:662207e34fba 2312 * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
garfieldsg 0:662207e34fba 2313 *
garfieldsg 0:662207e34fba 2314 * Each enabled slave will have EXT_SENS_DATA registers associated with it by
garfieldsg 0:662207e34fba 2315 * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
garfieldsg 0:662207e34fba 2316 * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
garfieldsg 0:662207e34fba 2317 * change the higher numbered slaves' associated registers. Furthermore, if
garfieldsg 0:662207e34fba 2318 * fewer total bytes are being read from the external sensors as a result of
garfieldsg 0:662207e34fba 2319 * such a change, then the data remaining in the registers which no longer have
garfieldsg 0:662207e34fba 2320 * an associated slave device (i.e. high numbered registers) will remain in
garfieldsg 0:662207e34fba 2321 * these previously allocated registers unless reset.
garfieldsg 0:662207e34fba 2322 *
garfieldsg 0:662207e34fba 2323 * If the sum of the read lengths of all SLVx transactions exceed the number of
garfieldsg 0:662207e34fba 2324 * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
garfieldsg 0:662207e34fba 2325 * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
garfieldsg 0:662207e34fba 2326 * the slaves cannot be greater than 24 or some bytes will be lost.
garfieldsg 0:662207e34fba 2327 *
garfieldsg 0:662207e34fba 2328 * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
garfieldsg 0:662207e34fba 2329 * information regarding the characteristics of Slave 4, please refer to
garfieldsg 0:662207e34fba 2330 * Registers 49 to 53.
garfieldsg 0:662207e34fba 2331 *
garfieldsg 0:662207e34fba 2332 * EXAMPLE:
garfieldsg 0:662207e34fba 2333 * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
garfieldsg 0:662207e34fba 2334 * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
garfieldsg 0:662207e34fba 2335 * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
garfieldsg 0:662207e34fba 2336 * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
garfieldsg 0:662207e34fba 2337 * will be associated with Slave 1. If Slave 2 is enabled as well, registers
garfieldsg 0:662207e34fba 2338 * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
garfieldsg 0:662207e34fba 2339 *
garfieldsg 0:662207e34fba 2340 * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
garfieldsg 0:662207e34fba 2341 * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
garfieldsg 0:662207e34fba 2342 * instead.
garfieldsg 0:662207e34fba 2343 *
garfieldsg 0:662207e34fba 2344 * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
garfieldsg 0:662207e34fba 2345 * If a slave is disabled at any time, the space initially allocated to the
garfieldsg 0:662207e34fba 2346 * slave in the EXT_SENS_DATA register, will remain associated with that slave.
garfieldsg 0:662207e34fba 2347 * This is to avoid dynamic adjustment of the register allocation.
garfieldsg 0:662207e34fba 2348 *
garfieldsg 0:662207e34fba 2349 * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
garfieldsg 0:662207e34fba 2350 * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
garfieldsg 0:662207e34fba 2351 *
garfieldsg 0:662207e34fba 2352 * This above is also true if one of the slaves gets NACKed and stops
garfieldsg 0:662207e34fba 2353 * functioning.
garfieldsg 0:662207e34fba 2354 *
garfieldsg 0:662207e34fba 2355 * @param position Starting position (0-23)
garfieldsg 0:662207e34fba 2356 * @return Byte read from register
garfieldsg 0:662207e34fba 2357 */
garfieldsg 0:662207e34fba 2358 uint8_t MPU6050::getExternalSensorByte(int position)
garfieldsg 0:662207e34fba 2359 {
garfieldsg 0:662207e34fba 2360 i2Cdev.readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
garfieldsg 0:662207e34fba 2361 return buffer[0];
garfieldsg 0:662207e34fba 2362 }
garfieldsg 0:662207e34fba 2363 /** Read word (2 bytes) from external sensor data registers.
garfieldsg 0:662207e34fba 2364 * @param position Starting position (0-21)
garfieldsg 0:662207e34fba 2365 * @return Word read from register
garfieldsg 0:662207e34fba 2366 * @see getExternalSensorByte()
garfieldsg 0:662207e34fba 2367 */
garfieldsg 0:662207e34fba 2368 uint16_t MPU6050::getExternalSensorWord(int position)
garfieldsg 0:662207e34fba 2369 {
garfieldsg 0:662207e34fba 2370 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
garfieldsg 0:662207e34fba 2371 return (((uint16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2372 }
garfieldsg 0:662207e34fba 2373 /** Read double word (4 bytes) from external sensor data registers.
garfieldsg 0:662207e34fba 2374 * @param position Starting position (0-20)
garfieldsg 0:662207e34fba 2375 * @return Double word read from registers
garfieldsg 0:662207e34fba 2376 * @see getExternalSensorByte()
garfieldsg 0:662207e34fba 2377 */
garfieldsg 0:662207e34fba 2378 uint32_t MPU6050::getExternalSensorDWord(int position)
garfieldsg 0:662207e34fba 2379 {
garfieldsg 0:662207e34fba 2380 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
garfieldsg 0:662207e34fba 2381 return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 2382 }
garfieldsg 0:662207e34fba 2383
garfieldsg 0:662207e34fba 2384 // MOT_DETECT_STATUS register
garfieldsg 0:662207e34fba 2385
garfieldsg 0:662207e34fba 2386 /** Get X-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2387 * @return Motion detection status
garfieldsg 0:662207e34fba 2388 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2389 * @see MPU6050_MOTION_MOT_XNEG_BIT
garfieldsg 0:662207e34fba 2390 */
garfieldsg 0:662207e34fba 2391 bool MPU6050::getXNegMotionDetected()
garfieldsg 0:662207e34fba 2392 {
garfieldsg 0:662207e34fba 2393 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2394 return buffer[0];
garfieldsg 0:662207e34fba 2395 }
garfieldsg 0:662207e34fba 2396 /** Get X-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2397 * @return Motion detection status
garfieldsg 0:662207e34fba 2398 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2399 * @see MPU6050_MOTION_MOT_XPOS_BIT
garfieldsg 0:662207e34fba 2400 */
garfieldsg 0:662207e34fba 2401 bool MPU6050::getXPosMotionDetected()
garfieldsg 0:662207e34fba 2402 {
garfieldsg 0:662207e34fba 2403 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2404 return buffer[0];
garfieldsg 0:662207e34fba 2405 }
garfieldsg 0:662207e34fba 2406 /** Get Y-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2407 * @return Motion detection status
garfieldsg 0:662207e34fba 2408 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2409 * @see MPU6050_MOTION_MOT_YNEG_BIT
garfieldsg 0:662207e34fba 2410 */
garfieldsg 0:662207e34fba 2411 bool MPU6050::getYNegMotionDetected()
garfieldsg 0:662207e34fba 2412 {
garfieldsg 0:662207e34fba 2413 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2414 return buffer[0];
garfieldsg 0:662207e34fba 2415 }
garfieldsg 0:662207e34fba 2416 /** Get Y-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2417 * @return Motion detection status
garfieldsg 0:662207e34fba 2418 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2419 * @see MPU6050_MOTION_MOT_YPOS_BIT
garfieldsg 0:662207e34fba 2420 */
garfieldsg 0:662207e34fba 2421 bool MPU6050::getYPosMotionDetected()
garfieldsg 0:662207e34fba 2422 {
garfieldsg 0:662207e34fba 2423 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2424 return buffer[0];
garfieldsg 0:662207e34fba 2425 }
garfieldsg 0:662207e34fba 2426 /** Get Z-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2427 * @return Motion detection status
garfieldsg 0:662207e34fba 2428 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2429 * @see MPU6050_MOTION_MOT_ZNEG_BIT
garfieldsg 0:662207e34fba 2430 */
garfieldsg 0:662207e34fba 2431 bool MPU6050::getZNegMotionDetected()
garfieldsg 0:662207e34fba 2432 {
garfieldsg 0:662207e34fba 2433 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2434 return buffer[0];
garfieldsg 0:662207e34fba 2435 }
garfieldsg 0:662207e34fba 2436 /** Get Z-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2437 * @return Motion detection status
garfieldsg 0:662207e34fba 2438 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2439 * @see MPU6050_MOTION_MOT_ZPOS_BIT
garfieldsg 0:662207e34fba 2440 */
garfieldsg 0:662207e34fba 2441 bool MPU6050::getZPosMotionDetected()
garfieldsg 0:662207e34fba 2442 {
garfieldsg 0:662207e34fba 2443 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2444 return buffer[0];
garfieldsg 0:662207e34fba 2445 }
garfieldsg 0:662207e34fba 2446 /** Get zero motion detection interrupt status.
garfieldsg 0:662207e34fba 2447 * @return Motion detection status
garfieldsg 0:662207e34fba 2448 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2449 * @see MPU6050_MOTION_MOT_ZRMOT_BIT
garfieldsg 0:662207e34fba 2450 */
garfieldsg 0:662207e34fba 2451 bool MPU6050::getZeroMotionDetected()
garfieldsg 0:662207e34fba 2452 {
garfieldsg 0:662207e34fba 2453 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
garfieldsg 0:662207e34fba 2454 return buffer[0];
garfieldsg 0:662207e34fba 2455 }
garfieldsg 0:662207e34fba 2456
garfieldsg 0:662207e34fba 2457 // I2C_SLV*_DO register
garfieldsg 0:662207e34fba 2458
garfieldsg 0:662207e34fba 2459 /** Write byte to Data Output container for specified slave.
garfieldsg 0:662207e34fba 2460 * This register holds the output data written into Slave when Slave is set to
garfieldsg 0:662207e34fba 2461 * write mode. For further information regarding Slave control, please
garfieldsg 0:662207e34fba 2462 * refer to Registers 37 to 39 and immediately following.
garfieldsg 0:662207e34fba 2463 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 2464 * @param data Byte to write
garfieldsg 0:662207e34fba 2465 * @see MPU6050_RA_I2C_SLV0_DO
garfieldsg 0:662207e34fba 2466 */
garfieldsg 0:662207e34fba 2467 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data)
garfieldsg 0:662207e34fba 2468 {
garfieldsg 0:662207e34fba 2469 if (num > 3) return;
garfieldsg 0:662207e34fba 2470 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
garfieldsg 0:662207e34fba 2471 }
garfieldsg 0:662207e34fba 2472
garfieldsg 0:662207e34fba 2473 // I2C_MST_DELAY_CTRL register
garfieldsg 0:662207e34fba 2474
garfieldsg 0:662207e34fba 2475 /** Get external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2476 * This register is used to specify the timing of external sensor data
garfieldsg 0:662207e34fba 2477 * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
garfieldsg 0:662207e34fba 2478 * sensor data is delayed until all data has been received.
garfieldsg 0:662207e34fba 2479 * @return Current external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2480 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2481 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
garfieldsg 0:662207e34fba 2482 */
garfieldsg 0:662207e34fba 2483 bool MPU6050::getExternalShadowDelayEnabled()
garfieldsg 0:662207e34fba 2484 {
garfieldsg 0:662207e34fba 2485 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
garfieldsg 0:662207e34fba 2486 return buffer[0];
garfieldsg 0:662207e34fba 2487 }
garfieldsg 0:662207e34fba 2488 /** Set external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2489 * @param enabled New external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2490 * @see getExternalShadowDelayEnabled()
garfieldsg 0:662207e34fba 2491 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2492 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
garfieldsg 0:662207e34fba 2493 */
garfieldsg 0:662207e34fba 2494 void MPU6050::setExternalShadowDelayEnabled(bool enabled)
garfieldsg 0:662207e34fba 2495 {
garfieldsg 0:662207e34fba 2496 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
garfieldsg 0:662207e34fba 2497 }
garfieldsg 0:662207e34fba 2498 /** Get slave delay enabled status.
garfieldsg 0:662207e34fba 2499 * When a particular slave delay is enabled, the rate of access for the that
garfieldsg 0:662207e34fba 2500 * slave device is reduced. When a slave's access rate is decreased relative to
garfieldsg 0:662207e34fba 2501 * the Sample Rate, the slave is accessed every:
garfieldsg 0:662207e34fba 2502 *
garfieldsg 0:662207e34fba 2503 * 1 / (1 + I2C_MST_DLY) Samples
garfieldsg 0:662207e34fba 2504 *
garfieldsg 0:662207e34fba 2505 * This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
garfieldsg 0:662207e34fba 2506 * and DLPF_CFG (register 26).
garfieldsg 0:662207e34fba 2507 *
garfieldsg 0:662207e34fba 2508 * For further information regarding I2C_MST_DLY, please refer to register 52.
garfieldsg 0:662207e34fba 2509 * For further information regarding the Sample Rate, please refer to register 25.
garfieldsg 0:662207e34fba 2510 *
garfieldsg 0:662207e34fba 2511 * @param num Slave number (0-4)
garfieldsg 0:662207e34fba 2512 * @return Current slave delay enabled status.
garfieldsg 0:662207e34fba 2513 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2514 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
garfieldsg 0:662207e34fba 2515 */
garfieldsg 0:662207e34fba 2516 bool MPU6050::getSlaveDelayEnabled(uint8_t num)
garfieldsg 0:662207e34fba 2517 {
garfieldsg 0:662207e34fba 2518 // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
garfieldsg 0:662207e34fba 2519 if (num > 4) return 0;
garfieldsg 0:662207e34fba 2520 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
garfieldsg 0:662207e34fba 2521 return buffer[0];
garfieldsg 0:662207e34fba 2522 }
garfieldsg 0:662207e34fba 2523 /** Set slave delay enabled status.
garfieldsg 0:662207e34fba 2524 * @param num Slave number (0-4)
garfieldsg 0:662207e34fba 2525 * @param enabled New slave delay enabled status.
garfieldsg 0:662207e34fba 2526 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2527 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
garfieldsg 0:662207e34fba 2528 */
garfieldsg 0:662207e34fba 2529 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled)
garfieldsg 0:662207e34fba 2530 {
garfieldsg 0:662207e34fba 2531 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
garfieldsg 0:662207e34fba 2532 }
garfieldsg 0:662207e34fba 2533
garfieldsg 0:662207e34fba 2534 // SIGNAL_PATH_RESET register
garfieldsg 0:662207e34fba 2535
garfieldsg 0:662207e34fba 2536 /** Reset gyroscope signal path.
garfieldsg 0:662207e34fba 2537 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2538 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2539 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2540 * @see MPU6050_PATHRESET_GYRO_RESET_BIT
garfieldsg 0:662207e34fba 2541 */
garfieldsg 0:662207e34fba 2542 void MPU6050::resetGyroscopePath()
garfieldsg 0:662207e34fba 2543 {
garfieldsg 0:662207e34fba 2544 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
garfieldsg 0:662207e34fba 2545 }
garfieldsg 0:662207e34fba 2546 /** Reset accelerometer signal path.
garfieldsg 0:662207e34fba 2547 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2548 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2549 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2550 * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
garfieldsg 0:662207e34fba 2551 */
garfieldsg 0:662207e34fba 2552 void MPU6050::resetAccelerometerPath()
garfieldsg 0:662207e34fba 2553 {
garfieldsg 0:662207e34fba 2554 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
garfieldsg 0:662207e34fba 2555 }
garfieldsg 0:662207e34fba 2556 /** Reset temperature sensor signal path.
garfieldsg 0:662207e34fba 2557 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2558 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2559 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2560 * @see MPU6050_PATHRESET_TEMP_RESET_BIT
garfieldsg 0:662207e34fba 2561 */
garfieldsg 0:662207e34fba 2562 void MPU6050::resetTemperaturePath()
garfieldsg 0:662207e34fba 2563 {
garfieldsg 0:662207e34fba 2564 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
garfieldsg 0:662207e34fba 2565 }
garfieldsg 0:662207e34fba 2566
garfieldsg 0:662207e34fba 2567 // MOT_DETECT_CTRL register
garfieldsg 0:662207e34fba 2568
garfieldsg 0:662207e34fba 2569 /** Get accelerometer power-on delay.
garfieldsg 0:662207e34fba 2570 * The accelerometer data path provides samples to the sensor registers, Motion
garfieldsg 0:662207e34fba 2571 * detection, Zero Motion detection, and Free Fall detection modules. The
garfieldsg 0:662207e34fba 2572 * signal path contains filters which must be flushed on wake-up with new
garfieldsg 0:662207e34fba 2573 * samples before the detection modules begin operations. The default wake-up
garfieldsg 0:662207e34fba 2574 * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
garfieldsg 0:662207e34fba 2575 * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
garfieldsg 0:662207e34fba 2576 * any value above zero unless instructed otherwise by InvenSense. Please refer
garfieldsg 0:662207e34fba 2577 * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
garfieldsg 0:662207e34fba 2578 * further information regarding the detection modules.
garfieldsg 0:662207e34fba 2579 * @return Current accelerometer power-on delay
garfieldsg 0:662207e34fba 2580 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2581 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
garfieldsg 0:662207e34fba 2582 */
garfieldsg 0:662207e34fba 2583 uint8_t MPU6050::getAccelerometerPowerOnDelay()
garfieldsg 0:662207e34fba 2584 {
garfieldsg 0:662207e34fba 2585 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
garfieldsg 0:662207e34fba 2586 return buffer[0];
garfieldsg 0:662207e34fba 2587 }
garfieldsg 0:662207e34fba 2588 /** Set accelerometer power-on delay.
garfieldsg 0:662207e34fba 2589 * @param delay New accelerometer power-on delay (0-3)
garfieldsg 0:662207e34fba 2590 * @see getAccelerometerPowerOnDelay()
garfieldsg 0:662207e34fba 2591 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2592 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
garfieldsg 0:662207e34fba 2593 */
garfieldsg 0:662207e34fba 2594 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay)
garfieldsg 0:662207e34fba 2595 {
garfieldsg 0:662207e34fba 2596 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
garfieldsg 0:662207e34fba 2597 }
garfieldsg 0:662207e34fba 2598 /** Get Free Fall detection counter decrement configuration.
garfieldsg 0:662207e34fba 2599 * Detection is registered by the Free Fall detection module after accelerometer
garfieldsg 0:662207e34fba 2600 * measurements meet their respective threshold conditions over a specified
garfieldsg 0:662207e34fba 2601 * number of samples. When the threshold conditions are met, the corresponding
garfieldsg 0:662207e34fba 2602 * detection counter increments by 1. The user may control the rate at which the
garfieldsg 0:662207e34fba 2603 * detection counter decrements when the threshold condition is not met by
garfieldsg 0:662207e34fba 2604 * configuring FF_COUNT. The decrement rate can be set according to the
garfieldsg 0:662207e34fba 2605 * following table:
garfieldsg 0:662207e34fba 2606 *
garfieldsg 0:662207e34fba 2607 * <pre>
garfieldsg 0:662207e34fba 2608 * FF_COUNT | Counter Decrement
garfieldsg 0:662207e34fba 2609 * ---------+------------------
garfieldsg 0:662207e34fba 2610 * 0 | Reset
garfieldsg 0:662207e34fba 2611 * 1 | 1
garfieldsg 0:662207e34fba 2612 * 2 | 2
garfieldsg 0:662207e34fba 2613 * 3 | 4
garfieldsg 0:662207e34fba 2614 * </pre>
garfieldsg 0:662207e34fba 2615 *
garfieldsg 0:662207e34fba 2616 * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
garfieldsg 0:662207e34fba 2617 * reset the counter to 0. For further information on Free Fall detection,
garfieldsg 0:662207e34fba 2618 * please refer to Registers 29 to 32.
garfieldsg 0:662207e34fba 2619 *
garfieldsg 0:662207e34fba 2620 * @return Current decrement configuration
garfieldsg 0:662207e34fba 2621 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2622 * @see MPU6050_DETECT_FF_COUNT_BIT
garfieldsg 0:662207e34fba 2623 */
garfieldsg 0:662207e34fba 2624 uint8_t MPU6050::getFreefallDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2625 {
garfieldsg 0:662207e34fba 2626 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
garfieldsg 0:662207e34fba 2627 return buffer[0];
garfieldsg 0:662207e34fba 2628 }
garfieldsg 0:662207e34fba 2629 /** Set Free Fall detection counter decrement configuration.
garfieldsg 0:662207e34fba 2630 * @param decrement New decrement configuration value
garfieldsg 0:662207e34fba 2631 * @see getFreefallDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2632 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2633 * @see MPU6050_DETECT_FF_COUNT_BIT
garfieldsg 0:662207e34fba 2634 */
garfieldsg 0:662207e34fba 2635 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement)
garfieldsg 0:662207e34fba 2636 {
garfieldsg 0:662207e34fba 2637 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
garfieldsg 0:662207e34fba 2638 }
garfieldsg 0:662207e34fba 2639 /** Get Motion detection counter decrement configuration.
garfieldsg 0:662207e34fba 2640 * Detection is registered by the Motion detection module after accelerometer
garfieldsg 0:662207e34fba 2641 * measurements meet their respective threshold conditions over a specified
garfieldsg 0:662207e34fba 2642 * number of samples. When the threshold conditions are met, the corresponding
garfieldsg 0:662207e34fba 2643 * detection counter increments by 1. The user may control the rate at which the
garfieldsg 0:662207e34fba 2644 * detection counter decrements when the threshold condition is not met by
garfieldsg 0:662207e34fba 2645 * configuring MOT_COUNT. The decrement rate can be set according to the
garfieldsg 0:662207e34fba 2646 * following table:
garfieldsg 0:662207e34fba 2647 *
garfieldsg 0:662207e34fba 2648 * <pre>
garfieldsg 0:662207e34fba 2649 * MOT_COUNT | Counter Decrement
garfieldsg 0:662207e34fba 2650 * ----------+------------------
garfieldsg 0:662207e34fba 2651 * 0 | Reset
garfieldsg 0:662207e34fba 2652 * 1 | 1
garfieldsg 0:662207e34fba 2653 * 2 | 2
garfieldsg 0:662207e34fba 2654 * 3 | 4
garfieldsg 0:662207e34fba 2655 * </pre>
garfieldsg 0:662207e34fba 2656 *
garfieldsg 0:662207e34fba 2657 * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
garfieldsg 0:662207e34fba 2658 * reset the counter to 0. For further information on Motion detection,
garfieldsg 0:662207e34fba 2659 * please refer to Registers 29 to 32.
garfieldsg 0:662207e34fba 2660 *
garfieldsg 0:662207e34fba 2661 */
garfieldsg 0:662207e34fba 2662 uint8_t MPU6050::getMotionDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2663 {
garfieldsg 0:662207e34fba 2664 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
garfieldsg 0:662207e34fba 2665 return buffer[0];
garfieldsg 0:662207e34fba 2666 }
garfieldsg 0:662207e34fba 2667 /** Set Motion detection counter decrement configuration.
garfieldsg 0:662207e34fba 2668 * @param decrement New decrement configuration value
garfieldsg 0:662207e34fba 2669 * @see getMotionDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2670 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2671 * @see MPU6050_DETECT_MOT_COUNT_BIT
garfieldsg 0:662207e34fba 2672 */
garfieldsg 0:662207e34fba 2673 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement)
garfieldsg 0:662207e34fba 2674 {
garfieldsg 0:662207e34fba 2675 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
garfieldsg 0:662207e34fba 2676 }
garfieldsg 0:662207e34fba 2677
garfieldsg 0:662207e34fba 2678 // USER_CTRL register
garfieldsg 0:662207e34fba 2679
garfieldsg 0:662207e34fba 2680 /** Get FIFO enabled status.
garfieldsg 0:662207e34fba 2681 * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
garfieldsg 0:662207e34fba 2682 * cannot be written to or read from while disabled. The FIFO buffer's state
garfieldsg 0:662207e34fba 2683 * does not change unless the MPU-60X0 is power cycled.
garfieldsg 0:662207e34fba 2684 * @return Current FIFO enabled status
garfieldsg 0:662207e34fba 2685 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2686 * @see MPU6050_USERCTRL_FIFO_EN_BIT
garfieldsg 0:662207e34fba 2687 */
garfieldsg 0:662207e34fba 2688 bool MPU6050::getFIFOEnabled()
garfieldsg 0:662207e34fba 2689 {
garfieldsg 0:662207e34fba 2690 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2691 return buffer[0];
garfieldsg 0:662207e34fba 2692 }
garfieldsg 0:662207e34fba 2693 /** Set FIFO enabled status.
garfieldsg 0:662207e34fba 2694 * @param enabled New FIFO enabled status
garfieldsg 0:662207e34fba 2695 * @see getFIFOEnabled()
garfieldsg 0:662207e34fba 2696 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2697 * @see MPU6050_USERCTRL_FIFO_EN_BIT
garfieldsg 0:662207e34fba 2698 */
garfieldsg 0:662207e34fba 2699 void MPU6050::setFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 2700 {
garfieldsg 0:662207e34fba 2701 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2702 }
garfieldsg 0:662207e34fba 2703 /** Get I2C Master Mode enabled status.
garfieldsg 0:662207e34fba 2704 * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
garfieldsg 0:662207e34fba 2705 * external sensor slave devices on the auxiliary I2C bus. When this bit is
garfieldsg 0:662207e34fba 2706 * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
garfieldsg 0:662207e34fba 2707 * driven by the primary I2C bus (SDA and SCL). This is a precondition to
garfieldsg 0:662207e34fba 2708 * enabling Bypass Mode. For further information regarding Bypass Mode, please
garfieldsg 0:662207e34fba 2709 * refer to Register 55.
garfieldsg 0:662207e34fba 2710 * @return Current I2C Master Mode enabled status
garfieldsg 0:662207e34fba 2711 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2712 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
garfieldsg 0:662207e34fba 2713 */
garfieldsg 0:662207e34fba 2714 bool MPU6050::getI2CMasterModeEnabled()
garfieldsg 0:662207e34fba 2715 {
garfieldsg 0:662207e34fba 2716 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2717 return buffer[0];
garfieldsg 0:662207e34fba 2718 }
garfieldsg 0:662207e34fba 2719 /** Set I2C Master Mode enabled status.
garfieldsg 0:662207e34fba 2720 * @param enabled New I2C Master Mode enabled status
garfieldsg 0:662207e34fba 2721 * @see getI2CMasterModeEnabled()
garfieldsg 0:662207e34fba 2722 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2723 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
garfieldsg 0:662207e34fba 2724 */
garfieldsg 0:662207e34fba 2725 void MPU6050::setI2CMasterModeEnabled(bool enabled)
garfieldsg 0:662207e34fba 2726 {
garfieldsg 0:662207e34fba 2727 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2728 }
garfieldsg 0:662207e34fba 2729 /** Switch from I2C to SPI mode (MPU-6000 only)
garfieldsg 0:662207e34fba 2730 * If this is set, the primary SPI interface will be enabled in place of the
garfieldsg 0:662207e34fba 2731 * disabled primary I2C interface.
garfieldsg 0:662207e34fba 2732 */
garfieldsg 0:662207e34fba 2733 void MPU6050::switchSPIEnabled(bool enabled)
garfieldsg 0:662207e34fba 2734 {
garfieldsg 0:662207e34fba 2735 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
garfieldsg 0:662207e34fba 2736 }
garfieldsg 0:662207e34fba 2737 /** Reset the FIFO.
garfieldsg 0:662207e34fba 2738 * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
garfieldsg 0:662207e34fba 2739 * bit automatically clears to 0 after the reset has been triggered.
garfieldsg 0:662207e34fba 2740 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2741 * @see MPU6050_USERCTRL_FIFO_RESET_BIT
garfieldsg 0:662207e34fba 2742 */
garfieldsg 0:662207e34fba 2743 void MPU6050::resetFIFO()
garfieldsg 0:662207e34fba 2744 {
garfieldsg 0:662207e34fba 2745 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
garfieldsg 0:662207e34fba 2746 }
garfieldsg 0:662207e34fba 2747 /** Reset the I2C Master.
garfieldsg 0:662207e34fba 2748 * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
garfieldsg 0:662207e34fba 2749 * This bit automatically clears to 0 after the reset has been triggered.
garfieldsg 0:662207e34fba 2750 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2751 * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
garfieldsg 0:662207e34fba 2752 */
garfieldsg 0:662207e34fba 2753 void MPU6050::resetI2CMaster()
garfieldsg 0:662207e34fba 2754 {
garfieldsg 0:662207e34fba 2755 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
garfieldsg 0:662207e34fba 2756 }
garfieldsg 0:662207e34fba 2757 /** Reset all sensor registers and signal paths.
garfieldsg 0:662207e34fba 2758 * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
garfieldsg 0:662207e34fba 2759 * accelerometers, and temperature sensor). This operation will also clear the
garfieldsg 0:662207e34fba 2760 * sensor registers. This bit automatically clears to 0 after the reset has been
garfieldsg 0:662207e34fba 2761 * triggered.
garfieldsg 0:662207e34fba 2762 *
garfieldsg 0:662207e34fba 2763 * When resetting only the signal path (and not the sensor registers), please
garfieldsg 0:662207e34fba 2764 * use Register 104, SIGNAL_PATH_RESET.
garfieldsg 0:662207e34fba 2765 *
garfieldsg 0:662207e34fba 2766 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2767 * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
garfieldsg 0:662207e34fba 2768 */
garfieldsg 0:662207e34fba 2769 void MPU6050::resetSensors()
garfieldsg 0:662207e34fba 2770 {
garfieldsg 0:662207e34fba 2771 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
garfieldsg 0:662207e34fba 2772 }
garfieldsg 0:662207e34fba 2773
garfieldsg 0:662207e34fba 2774 // PWR_MGMT_1 register
garfieldsg 0:662207e34fba 2775
garfieldsg 0:662207e34fba 2776 /** Trigger a full device reset.
garfieldsg 0:662207e34fba 2777 * A small delay of ~50ms may be desirable after triggering a reset.
garfieldsg 0:662207e34fba 2778 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2779 * @see MPU6050_PWR1_DEVICE_RESET_BIT
garfieldsg 0:662207e34fba 2780 */
garfieldsg 0:662207e34fba 2781 void MPU6050::reset()
garfieldsg 0:662207e34fba 2782 {
garfieldsg 0:662207e34fba 2783 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
garfieldsg 0:662207e34fba 2784 }
garfieldsg 0:662207e34fba 2785 /** Get sleep mode status.
garfieldsg 0:662207e34fba 2786 * Setting the SLEEP bit in the register puts the device into very low power
garfieldsg 0:662207e34fba 2787 * sleep mode. In this mode, only the serial interface and internal registers
garfieldsg 0:662207e34fba 2788 * remain active, allowing for a very low standby current. Clearing this bit
garfieldsg 0:662207e34fba 2789 * puts the device back into normal mode. To save power, the individual standby
garfieldsg 0:662207e34fba 2790 * selections for each of the gyros should be used if any gyro axis is not used
garfieldsg 0:662207e34fba 2791 * by the application.
garfieldsg 0:662207e34fba 2792 * @return Current sleep mode enabled status
garfieldsg 0:662207e34fba 2793 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2794 * @see MPU6050_PWR1_SLEEP_BIT
garfieldsg 0:662207e34fba 2795 */
garfieldsg 0:662207e34fba 2796 bool MPU6050::getSleepEnabled()
garfieldsg 0:662207e34fba 2797 {
garfieldsg 0:662207e34fba 2798 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
garfieldsg 0:662207e34fba 2799 return buffer[0];
garfieldsg 0:662207e34fba 2800 }
garfieldsg 0:662207e34fba 2801 /** Set sleep mode status.
garfieldsg 0:662207e34fba 2802 * @param enabled New sleep mode enabled status
garfieldsg 0:662207e34fba 2803 * @see getSleepEnabled()
garfieldsg 0:662207e34fba 2804 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2805 * @see MPU6050_PWR1_SLEEP_BIT
garfieldsg 0:662207e34fba 2806 */
garfieldsg 0:662207e34fba 2807 void MPU6050::setSleepEnabled(bool enabled)
garfieldsg 0:662207e34fba 2808 {
garfieldsg 0:662207e34fba 2809 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
garfieldsg 0:662207e34fba 2810 }
garfieldsg 0:662207e34fba 2811 /** Get wake cycle enabled status.
garfieldsg 0:662207e34fba 2812 * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
garfieldsg 0:662207e34fba 2813 * between sleep mode and waking up to take a single sample of data from active
garfieldsg 0:662207e34fba 2814 * sensors at a rate determined by LP_WAKE_CTRL (register 108).
garfieldsg 0:662207e34fba 2815 * @return Current sleep mode enabled status
garfieldsg 0:662207e34fba 2816 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2817 * @see MPU6050_PWR1_CYCLE_BIT
garfieldsg 0:662207e34fba 2818 */
garfieldsg 0:662207e34fba 2819 bool MPU6050::getWakeCycleEnabled()
garfieldsg 0:662207e34fba 2820 {
garfieldsg 0:662207e34fba 2821 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
garfieldsg 0:662207e34fba 2822 return buffer[0];
garfieldsg 0:662207e34fba 2823 }
garfieldsg 0:662207e34fba 2824 /** Set wake cycle enabled status.
garfieldsg 0:662207e34fba 2825 * @param enabled New sleep mode enabled status
garfieldsg 0:662207e34fba 2826 * @see getWakeCycleEnabled()
garfieldsg 0:662207e34fba 2827 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2828 * @see MPU6050_PWR1_CYCLE_BIT
garfieldsg 0:662207e34fba 2829 */
garfieldsg 0:662207e34fba 2830 void MPU6050::setWakeCycleEnabled(bool enabled)
garfieldsg 0:662207e34fba 2831 {
garfieldsg 0:662207e34fba 2832 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
garfieldsg 0:662207e34fba 2833 }
garfieldsg 0:662207e34fba 2834 /** Get temperature sensor enabled status.
garfieldsg 0:662207e34fba 2835 * Control the usage of the internal temperature sensor.
garfieldsg 0:662207e34fba 2836 *
garfieldsg 0:662207e34fba 2837 * Note: this register stores the *disabled* value, but for consistency with the
garfieldsg 0:662207e34fba 2838 * rest of the code, the function is named and used with standard true/false
garfieldsg 0:662207e34fba 2839 * values to indicate whether the sensor is enabled or disabled, respectively.
garfieldsg 0:662207e34fba 2840 *
garfieldsg 0:662207e34fba 2841 * @return Current temperature sensor enabled status
garfieldsg 0:662207e34fba 2842 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2843 * @see MPU6050_PWR1_TEMP_DIS_BIT
garfieldsg 0:662207e34fba 2844 */
garfieldsg 0:662207e34fba 2845 bool MPU6050::getTempSensorEnabled()
garfieldsg 0:662207e34fba 2846 {
garfieldsg 0:662207e34fba 2847 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 2848 return buffer[0] == 0; // 1 is actually disabled here
garfieldsg 0:662207e34fba 2849 }
garfieldsg 0:662207e34fba 2850 /** Set temperature sensor enabled status.
garfieldsg 0:662207e34fba 2851 * Note: this register stores the *disabled* value, but for consistency with the
garfieldsg 0:662207e34fba 2852 * rest of the code, the function is named and used with standard true/false
garfieldsg 0:662207e34fba 2853 * values to indicate whether the sensor is enabled or disabled, respectively.
garfieldsg 0:662207e34fba 2854 *
garfieldsg 0:662207e34fba 2855 * @param enabled New temperature sensor enabled status
garfieldsg 0:662207e34fba 2856 * @see getTempSensorEnabled()
garfieldsg 0:662207e34fba 2857 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2858 * @see MPU6050_PWR1_TEMP_DIS_BIT
garfieldsg 0:662207e34fba 2859 */
garfieldsg 0:662207e34fba 2860 void MPU6050::setTempSensorEnabled(bool enabled)
garfieldsg 0:662207e34fba 2861 {
garfieldsg 0:662207e34fba 2862 // 1 is actually disabled here
garfieldsg 0:662207e34fba 2863 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
garfieldsg 0:662207e34fba 2864 }
garfieldsg 0:662207e34fba 2865 /** Get clock source setting.
garfieldsg 0:662207e34fba 2866 * @return Current clock source setting
garfieldsg 0:662207e34fba 2867 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2868 * @see MPU6050_PWR1_CLKSEL_BIT
garfieldsg 0:662207e34fba 2869 * @see MPU6050_PWR1_CLKSEL_LENGTH
garfieldsg 0:662207e34fba 2870 */
garfieldsg 0:662207e34fba 2871 uint8_t MPU6050::getClockSource()
garfieldsg 0:662207e34fba 2872 {
garfieldsg 0:662207e34fba 2873 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 2874 return buffer[0];
garfieldsg 0:662207e34fba 2875 }
garfieldsg 0:662207e34fba 2876 /** Set clock source setting.
garfieldsg 0:662207e34fba 2877 * An internal 8MHz oscillator, gyroscope based clock, or external sources can
garfieldsg 0:662207e34fba 2878 * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
garfieldsg 0:662207e34fba 2879 * or an external source is chosen as the clock source, the MPU-60X0 can operate
garfieldsg 0:662207e34fba 2880 * in low power modes with the gyroscopes disabled.
garfieldsg 0:662207e34fba 2881 *
garfieldsg 0:662207e34fba 2882 * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
garfieldsg 0:662207e34fba 2883 * However, it is highly recommended that the device be configured to use one of
garfieldsg 0:662207e34fba 2884 * the gyroscopes (or an external clock source) as the clock reference for
garfieldsg 0:662207e34fba 2885 * improved stability. The clock source can be selected according to the following table:
garfieldsg 0:662207e34fba 2886 *
garfieldsg 0:662207e34fba 2887 * <pre>
garfieldsg 0:662207e34fba 2888 * CLK_SEL | Clock Source
garfieldsg 0:662207e34fba 2889 * --------+--------------------------------------
garfieldsg 0:662207e34fba 2890 * 0 | Internal oscillator
garfieldsg 0:662207e34fba 2891 * 1 | PLL with X Gyro reference
garfieldsg 0:662207e34fba 2892 * 2 | PLL with Y Gyro reference
garfieldsg 0:662207e34fba 2893 * 3 | PLL with Z Gyro reference
garfieldsg 0:662207e34fba 2894 * 4 | PLL with external 32.768kHz reference
garfieldsg 0:662207e34fba 2895 * 5 | PLL with external 19.2MHz reference
garfieldsg 0:662207e34fba 2896 * 6 | Reserved
garfieldsg 0:662207e34fba 2897 * 7 | Stops the clock and keeps the timing generator in reset
garfieldsg 0:662207e34fba 2898 * </pre>
garfieldsg 0:662207e34fba 2899 *
garfieldsg 0:662207e34fba 2900 * @param source New clock source setting
garfieldsg 0:662207e34fba 2901 * @see getClockSource()
garfieldsg 0:662207e34fba 2902 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2903 * @see MPU6050_PWR1_CLKSEL_BIT
garfieldsg 0:662207e34fba 2904 * @see MPU6050_PWR1_CLKSEL_LENGTH
garfieldsg 0:662207e34fba 2905 */
garfieldsg 0:662207e34fba 2906 void MPU6050::setClockSource(uint8_t source)
garfieldsg 0:662207e34fba 2907 {
garfieldsg 0:662207e34fba 2908 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
garfieldsg 0:662207e34fba 2909 }
garfieldsg 0:662207e34fba 2910
garfieldsg 0:662207e34fba 2911 // PWR_MGMT_2 register
garfieldsg 0:662207e34fba 2912
garfieldsg 0:662207e34fba 2913 /** Get wake frequency in Accel-Only Low Power Mode.
garfieldsg 0:662207e34fba 2914 * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
garfieldsg 0:662207e34fba 2915 * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
garfieldsg 0:662207e34fba 2916 * the device will power off all devices except for the primary I2C interface,
garfieldsg 0:662207e34fba 2917 * waking only the accelerometer at fixed intervals to take a single
garfieldsg 0:662207e34fba 2918 * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
garfieldsg 0:662207e34fba 2919 * as shown below:
garfieldsg 0:662207e34fba 2920 *
garfieldsg 0:662207e34fba 2921 * <pre>
garfieldsg 0:662207e34fba 2922 * LP_WAKE_CTRL | Wake-up Frequency
garfieldsg 0:662207e34fba 2923 * -------------+------------------
garfieldsg 0:662207e34fba 2924 * 0 | 1.25 Hz
garfieldsg 0:662207e34fba 2925 * 1 | 2.5 Hz
garfieldsg 0:662207e34fba 2926 * 2 | 5 Hz
garfieldsg 0:662207e34fba 2927 * 3 | 10 Hz
garfieldsg 0:662207e34fba 2928 * <pre>
garfieldsg 0:662207e34fba 2929 *
garfieldsg 0:662207e34fba 2930 * For further information regarding the MPU-60X0's power modes, please refer to
garfieldsg 0:662207e34fba 2931 * Register 107.
garfieldsg 0:662207e34fba 2932 *
garfieldsg 0:662207e34fba 2933 * @return Current wake frequency
garfieldsg 0:662207e34fba 2934 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2935 */
garfieldsg 0:662207e34fba 2936 uint8_t MPU6050::getWakeFrequency()
garfieldsg 0:662207e34fba 2937 {
garfieldsg 0:662207e34fba 2938 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
garfieldsg 0:662207e34fba 2939 return buffer[0];
garfieldsg 0:662207e34fba 2940 }
garfieldsg 0:662207e34fba 2941 /** Set wake frequency in Accel-Only Low Power Mode.
garfieldsg 0:662207e34fba 2942 * @param frequency New wake frequency
garfieldsg 0:662207e34fba 2943 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2944 */
garfieldsg 0:662207e34fba 2945 void MPU6050::setWakeFrequency(uint8_t frequency)
garfieldsg 0:662207e34fba 2946 {
garfieldsg 0:662207e34fba 2947 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
garfieldsg 0:662207e34fba 2948 }
garfieldsg 0:662207e34fba 2949
garfieldsg 0:662207e34fba 2950 /** Get X-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2951 * If enabled, the X-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2952 * @return Current X-axis standby enabled status
garfieldsg 0:662207e34fba 2953 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2954 * @see MPU6050_PWR2_STBY_XA_BIT
garfieldsg 0:662207e34fba 2955 */
garfieldsg 0:662207e34fba 2956 bool MPU6050::getStandbyXAccelEnabled()
garfieldsg 0:662207e34fba 2957 {
garfieldsg 0:662207e34fba 2958 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
garfieldsg 0:662207e34fba 2959 return buffer[0];
garfieldsg 0:662207e34fba 2960 }
garfieldsg 0:662207e34fba 2961 /** Set X-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2962 * @param New X-axis standby enabled status
garfieldsg 0:662207e34fba 2963 * @see getStandbyXAccelEnabled()
garfieldsg 0:662207e34fba 2964 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2965 * @see MPU6050_PWR2_STBY_XA_BIT
garfieldsg 0:662207e34fba 2966 */
garfieldsg 0:662207e34fba 2967 void MPU6050::setStandbyXAccelEnabled(bool enabled)
garfieldsg 0:662207e34fba 2968 {
garfieldsg 0:662207e34fba 2969 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
garfieldsg 0:662207e34fba 2970 }
garfieldsg 0:662207e34fba 2971 /** Get Y-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2972 * If enabled, the Y-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2973 * @return Current Y-axis standby enabled status
garfieldsg 0:662207e34fba 2974 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2975 * @see MPU6050_PWR2_STBY_YA_BIT
garfieldsg 0:662207e34fba 2976 */
garfieldsg 0:662207e34fba 2977 bool MPU6050::getStandbyYAccelEnabled()
garfieldsg 0:662207e34fba 2978 {
garfieldsg 0:662207e34fba 2979 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
garfieldsg 0:662207e34fba 2980 return buffer[0];
garfieldsg 0:662207e34fba 2981 }
garfieldsg 0:662207e34fba 2982 /** Set Y-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2983 * @param New Y-axis standby enabled status
garfieldsg 0:662207e34fba 2984 * @see getStandbyYAccelEnabled()
garfieldsg 0:662207e34fba 2985 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2986 * @see MPU6050_PWR2_STBY_YA_BIT
garfieldsg 0:662207e34fba 2987 */
garfieldsg 0:662207e34fba 2988 void MPU6050::setStandbyYAccelEnabled(bool enabled)
garfieldsg 0:662207e34fba 2989 {
garfieldsg 0:662207e34fba 2990 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
garfieldsg 0:662207e34fba 2991 }
garfieldsg 0:662207e34fba 2992 /** Get Z-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2993 * If enabled, the Z-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2994 * @return Current Z-axis standby enabled status
garfieldsg 0:662207e34fba 2995 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2996 * @see MPU6050_PWR2_STBY_ZA_BIT
garfieldsg 0:662207e34fba 2997 */
garfieldsg 0:662207e34fba 2998 bool MPU6050::getStandbyZAccelEnabled()
garfieldsg 0:662207e34fba 2999 {
garfieldsg 0:662207e34fba 3000 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
garfieldsg 0:662207e34fba 3001 return buffer[0];
garfieldsg 0:662207e34fba 3002 }
garfieldsg 0:662207e34fba 3003 /** Set Z-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 3004 * @param New Z-axis standby enabled status
garfieldsg 0:662207e34fba 3005 * @see getStandbyZAccelEnabled()
garfieldsg 0:662207e34fba 3006 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 3007 * @see MPU6050_PWR2_STBY_ZA_BIT
garfieldsg 0:662207e34fba 3008 */
garfieldsg 0:662207e34fba 3009 void MPU6050::setStandbyZAccelEnabled(bool enabled)
garfieldsg 0:662207e34fba 3010 {
garfieldsg 0:662207e34fba 3011 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
garfieldsg 0:662207e34fba 3012 }
garfieldsg 0:662207e34fba 3013 /** Get X-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 3014 * If enabled, the X-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 3015 * @return Current X-axis standby enabled status
garfieldsg 0:662207e34fba 3016 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 3017 * @see MPU6050_PWR2_STBY_XG_BIT
garfieldsg 0:662207e34fba 3018 */
garfieldsg 0:662207e34fba 3019 bool MPU6050::getStandbyXGyroEnabled()
garfieldsg 0:662207e34fba 3020 {
garfieldsg 0:662207e34fba 3021 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
garfieldsg 0:662207e34fba 3022 return buffer[0];
garfieldsg 0:662207e34fba 3023 }
garfieldsg 0:662207e34fba 3024 /** Set X-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 3025 * @param New X-axis standby enabled status
garfieldsg 0:662207e34fba 3026 * @see getStandbyXGyroEnabled()
garfieldsg 0:662207e34fba 3027 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 3028 * @see MPU6050_PWR2_STBY_XG_BIT
garfieldsg 0:662207e34fba 3029 */
garfieldsg 0:662207e34fba 3030 void MPU6050::setStandbyXGyroEnabled(bool enabled)
garfieldsg 0:662207e34fba 3031 {
garfieldsg 0:662207e34fba 3032 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
garfieldsg 0:662207e34fba 3033 }
garfieldsg 0:662207e34fba 3034 /** Get Y-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 3035 * If enabled, the Y-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 3036 * @return Current Y-axis standby enabled status
garfieldsg 0:662207e34fba 3037 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 3038 * @see MPU6050_PWR2_STBY_YG_BIT
garfieldsg 0:662207e34fba 3039 */
garfieldsg 0:662207e34fba 3040 bool MPU6050::getStandbyYGyroEnabled()
garfieldsg 0:662207e34fba 3041 {
garfieldsg 0:662207e34fba 3042 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
garfieldsg 0:662207e34fba 3043 return buffer[0];
garfieldsg 0:662207e34fba 3044 }
garfieldsg 0:662207e34fba 3045 /** Set Y-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 3046 * @param New Y-axis standby enabled status
garfieldsg 0:662207e34fba 3047 * @see getStandbyYGyroEnabled()
garfieldsg 0:662207e34fba 3048 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 3049 * @see MPU6050_PWR2_STBY_YG_BIT
garfieldsg 0:662207e34fba 3050 */
garfieldsg 0:662207e34fba 3051 void MPU6050::setStandbyYGyroEnabled(bool enabled)
garfieldsg 0:662207e34fba 3052 {
garfieldsg 0:662207e34fba 3053 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
garfieldsg 0:662207e34fba 3054 }
garfieldsg 0:662207e34fba 3055 /** Get Z-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 3056 * If enabled, the Z-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 3057 * @return Current Z-axis standby enabled status
garfieldsg 0:662207e34fba 3058 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 3059 * @see MPU6050_PWR2_STBY_ZG_BIT
garfieldsg 0:662207e34fba 3060 */
garfieldsg 0:662207e34fba 3061 bool MPU6050::getStandbyZGyroEnabled()
garfieldsg 0:662207e34fba 3062 {
garfieldsg 0:662207e34fba 3063 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
garfieldsg 0:662207e34fba 3064 return buffer[0];
garfieldsg 0:662207e34fba 3065 }
garfieldsg 0:662207e34fba 3066 /** Set Z-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 3067 * @param New Z-axis standby enabled status
garfieldsg 0:662207e34fba 3068 * @see getStandbyZGyroEnabled()
garfieldsg 0:662207e34fba 3069 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 3070 * @see MPU6050_PWR2_STBY_ZG_BIT
garfieldsg 0:662207e34fba 3071 */
garfieldsg 0:662207e34fba 3072 void MPU6050::setStandbyZGyroEnabled(bool enabled)
garfieldsg 0:662207e34fba 3073 {
garfieldsg 0:662207e34fba 3074 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
garfieldsg 0:662207e34fba 3075 }
garfieldsg 0:662207e34fba 3076
garfieldsg 0:662207e34fba 3077 // FIFO_COUNT* registers
garfieldsg 0:662207e34fba 3078
garfieldsg 0:662207e34fba 3079 /** Get current FIFO buffer size.
garfieldsg 0:662207e34fba 3080 * This value indicates the number of bytes stored in the FIFO buffer. This
garfieldsg 0:662207e34fba 3081 * number is in turn the number of bytes that can be read from the FIFO buffer
garfieldsg 0:662207e34fba 3082 * and it is directly proportional to the number of samples available given the
garfieldsg 0:662207e34fba 3083 * set of sensor data bound to be stored in the FIFO (register 35 and 36).
garfieldsg 0:662207e34fba 3084 * @return Current FIFO buffer size
garfieldsg 0:662207e34fba 3085 */
garfieldsg 0:662207e34fba 3086 uint16_t MPU6050::getFIFOCount()
garfieldsg 0:662207e34fba 3087 {
garfieldsg 0:662207e34fba 3088 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
garfieldsg 0:662207e34fba 3089 return (((uint16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3090 }
garfieldsg 0:662207e34fba 3091
garfieldsg 0:662207e34fba 3092 // FIFO_R_W register
garfieldsg 0:662207e34fba 3093
garfieldsg 0:662207e34fba 3094 /** Get byte from FIFO buffer.
garfieldsg 0:662207e34fba 3095 * This register is used to read and write data from the FIFO buffer. Data is
garfieldsg 0:662207e34fba 3096 * written to the FIFO in order of register number (from lowest to highest). If
garfieldsg 0:662207e34fba 3097 * all the FIFO enable flags (see below) are enabled and all External Sensor
garfieldsg 0:662207e34fba 3098 * Data registers (Registers 73 to 96) are associated with a Slave device, the
garfieldsg 0:662207e34fba 3099 * contents of registers 59 through 96 will be written in order at the Sample
garfieldsg 0:662207e34fba 3100 * Rate.
garfieldsg 0:662207e34fba 3101 *
garfieldsg 0:662207e34fba 3102 * The contents of the sensor data registers (Registers 59 to 96) are written
garfieldsg 0:662207e34fba 3103 * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
garfieldsg 0:662207e34fba 3104 * in FIFO_EN (Register 35). An additional flag for the sensor data registers
garfieldsg 0:662207e34fba 3105 * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
garfieldsg 0:662207e34fba 3106 *
garfieldsg 0:662207e34fba 3107 * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
garfieldsg 0:662207e34fba 3108 * automatically set to 1. This bit is located in INT_STATUS (Register 58).
garfieldsg 0:662207e34fba 3109 * When the FIFO buffer has overflowed, the oldest data will be lost and new
garfieldsg 0:662207e34fba 3110 * data will be written to the FIFO.
garfieldsg 0:662207e34fba 3111 *
garfieldsg 0:662207e34fba 3112 * If the FIFO buffer is empty, reading this register will return the last byte
garfieldsg 0:662207e34fba 3113 * that was previously read from the FIFO until new data is available. The user
garfieldsg 0:662207e34fba 3114 * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
garfieldsg 0:662207e34fba 3115 * empty.
garfieldsg 0:662207e34fba 3116 *
garfieldsg 0:662207e34fba 3117 * @return Byte from FIFO buffer
garfieldsg 0:662207e34fba 3118 */
garfieldsg 0:662207e34fba 3119 uint8_t MPU6050::getFIFOByte()
garfieldsg 0:662207e34fba 3120 {
garfieldsg 0:662207e34fba 3121 i2Cdev.readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
garfieldsg 0:662207e34fba 3122 return buffer[0];
garfieldsg 0:662207e34fba 3123 }
garfieldsg 0:662207e34fba 3124 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length)
garfieldsg 0:662207e34fba 3125 {
garfieldsg 0:662207e34fba 3126 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
garfieldsg 0:662207e34fba 3127 }
garfieldsg 0:662207e34fba 3128 /** Write byte to FIFO buffer.
garfieldsg 0:662207e34fba 3129 * @see getFIFOByte()
garfieldsg 0:662207e34fba 3130 * @see MPU6050_RA_FIFO_R_W
garfieldsg 0:662207e34fba 3131 */
garfieldsg 0:662207e34fba 3132 void MPU6050::setFIFOByte(uint8_t data)
garfieldsg 0:662207e34fba 3133 {
garfieldsg 0:662207e34fba 3134 i2Cdev.writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
garfieldsg 0:662207e34fba 3135 }
garfieldsg 0:662207e34fba 3136
garfieldsg 0:662207e34fba 3137 // WHO_AM_I register
garfieldsg 0:662207e34fba 3138
garfieldsg 0:662207e34fba 3139 /** Get Device ID.
garfieldsg 0:662207e34fba 3140 * This register is used to verify the identity of the device (0b110100, 0x34).
garfieldsg 0:662207e34fba 3141 * @return Device ID (6 bits only! should be 0x34)
garfieldsg 0:662207e34fba 3142 * @see MPU6050_RA_WHO_AM_I
garfieldsg 0:662207e34fba 3143 * @see MPU6050_WHO_AM_I_BIT
garfieldsg 0:662207e34fba 3144 * @see MPU6050_WHO_AM_I_LENGTH
garfieldsg 0:662207e34fba 3145 */
garfieldsg 0:662207e34fba 3146 uint8_t MPU6050::getDeviceID()
garfieldsg 0:662207e34fba 3147 {
garfieldsg 0:662207e34fba 3148 i2Cdev.readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
garfieldsg 0:662207e34fba 3149 return buffer[0];
garfieldsg 0:662207e34fba 3150 }
garfieldsg 0:662207e34fba 3151 /** Set Device ID.
garfieldsg 0:662207e34fba 3152 * Write a new ID into the WHO_AM_I register (no idea why this should ever be
garfieldsg 0:662207e34fba 3153 * necessary though).
garfieldsg 0:662207e34fba 3154 * @param id New device ID to set.
garfieldsg 0:662207e34fba 3155 * @see getDeviceID()
garfieldsg 0:662207e34fba 3156 * @see MPU6050_RA_WHO_AM_I
garfieldsg 0:662207e34fba 3157 * @see MPU6050_WHO_AM_I_BIT
garfieldsg 0:662207e34fba 3158 * @see MPU6050_WHO_AM_I_LENGTH
garfieldsg 0:662207e34fba 3159 */
garfieldsg 0:662207e34fba 3160 void MPU6050::setDeviceID(uint8_t id)
garfieldsg 0:662207e34fba 3161 {
garfieldsg 0:662207e34fba 3162 i2Cdev.writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
garfieldsg 0:662207e34fba 3163 }
garfieldsg 0:662207e34fba 3164
garfieldsg 0:662207e34fba 3165 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
garfieldsg 0:662207e34fba 3166
garfieldsg 0:662207e34fba 3167 // XG_OFFS_TC register
garfieldsg 0:662207e34fba 3168
garfieldsg 0:662207e34fba 3169 uint8_t MPU6050::getOTPBankValid()
garfieldsg 0:662207e34fba 3170 {
garfieldsg 0:662207e34fba 3171 i2Cdev.readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
garfieldsg 0:662207e34fba 3172 return buffer[0];
garfieldsg 0:662207e34fba 3173 }
garfieldsg 0:662207e34fba 3174 void MPU6050::setOTPBankValid(bool enabled)
garfieldsg 0:662207e34fba 3175 {
garfieldsg 0:662207e34fba 3176 i2Cdev.writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
garfieldsg 0:662207e34fba 3177 }
garfieldsg 0:662207e34fba 3178 int8_t MPU6050::getXGyroOffset()
garfieldsg 0:662207e34fba 3179 {
garfieldsg 0:662207e34fba 3180 i2Cdev.readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 3181 return buffer[0];
garfieldsg 0:662207e34fba 3182 }
garfieldsg 0:662207e34fba 3183 void MPU6050::setXGyroOffset(int8_t offset)
garfieldsg 0:662207e34fba 3184 {
garfieldsg 0:662207e34fba 3185 i2Cdev.writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 3186 }
garfieldsg 0:662207e34fba 3187
garfieldsg 0:662207e34fba 3188 // YG_OFFS_TC register
garfieldsg 0:662207e34fba 3189
garfieldsg 0:662207e34fba 3190 int8_t MPU6050::getYGyroOffset()
garfieldsg 0:662207e34fba 3191 {
garfieldsg 0:662207e34fba 3192 i2Cdev.readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 3193 return buffer[0];
garfieldsg 0:662207e34fba 3194 }
garfieldsg 0:662207e34fba 3195 void MPU6050::setYGyroOffset(int8_t offset)
garfieldsg 0:662207e34fba 3196 {
garfieldsg 0:662207e34fba 3197 i2Cdev.writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 3198 }
garfieldsg 0:662207e34fba 3199
garfieldsg 0:662207e34fba 3200 // ZG_OFFS_TC register
garfieldsg 0:662207e34fba 3201
garfieldsg 0:662207e34fba 3202 int8_t MPU6050::getZGyroOffset()
garfieldsg 0:662207e34fba 3203 {
garfieldsg 0:662207e34fba 3204 i2Cdev.readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 3205 return buffer[0];
garfieldsg 0:662207e34fba 3206 }
garfieldsg 0:662207e34fba 3207 void MPU6050::setZGyroOffset(int8_t offset)
garfieldsg 0:662207e34fba 3208 {
garfieldsg 0:662207e34fba 3209 i2Cdev.writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 3210 }
garfieldsg 0:662207e34fba 3211
garfieldsg 0:662207e34fba 3212 // X_FINE_GAIN register
garfieldsg 0:662207e34fba 3213
garfieldsg 0:662207e34fba 3214 int8_t MPU6050::getXFineGain()
garfieldsg 0:662207e34fba 3215 {
garfieldsg 0:662207e34fba 3216 i2Cdev.readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 3217 return buffer[0];
garfieldsg 0:662207e34fba 3218 }
garfieldsg 0:662207e34fba 3219 void MPU6050::setXFineGain(int8_t gain)
garfieldsg 0:662207e34fba 3220 {
garfieldsg 0:662207e34fba 3221 i2Cdev.writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 3222 }
garfieldsg 0:662207e34fba 3223
garfieldsg 0:662207e34fba 3224 // Y_FINE_GAIN register
garfieldsg 0:662207e34fba 3225
garfieldsg 0:662207e34fba 3226 int8_t MPU6050::getYFineGain()
garfieldsg 0:662207e34fba 3227 {
garfieldsg 0:662207e34fba 3228 i2Cdev.readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 3229 return buffer[0];
garfieldsg 0:662207e34fba 3230 }
garfieldsg 0:662207e34fba 3231 void MPU6050::setYFineGain(int8_t gain)
garfieldsg 0:662207e34fba 3232 {
garfieldsg 0:662207e34fba 3233 i2Cdev.writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 3234 }
garfieldsg 0:662207e34fba 3235
garfieldsg 0:662207e34fba 3236 // Z_FINE_GAIN register
garfieldsg 0:662207e34fba 3237
garfieldsg 0:662207e34fba 3238 int8_t MPU6050::getZFineGain()
garfieldsg 0:662207e34fba 3239 {
garfieldsg 0:662207e34fba 3240 i2Cdev.readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 3241 return buffer[0];
garfieldsg 0:662207e34fba 3242 }
garfieldsg 0:662207e34fba 3243 void MPU6050::setZFineGain(int8_t gain)
garfieldsg 0:662207e34fba 3244 {
garfieldsg 0:662207e34fba 3245 i2Cdev.writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 3246 }
garfieldsg 0:662207e34fba 3247
garfieldsg 0:662207e34fba 3248 // XA_OFFS_* registers
garfieldsg 0:662207e34fba 3249
garfieldsg 0:662207e34fba 3250 int16_t MPU6050::getXAccelOffset()
garfieldsg 0:662207e34fba 3251 {
garfieldsg 0:662207e34fba 3252 i2Cdev.readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 3253 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3254 }
garfieldsg 0:662207e34fba 3255 void MPU6050::setXAccelOffset(int16_t offset)
garfieldsg 0:662207e34fba 3256 {
garfieldsg 0:662207e34fba 3257 i2Cdev.writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
garfieldsg 0:662207e34fba 3258 }
garfieldsg 0:662207e34fba 3259
garfieldsg 0:662207e34fba 3260 // YA_OFFS_* register
garfieldsg 0:662207e34fba 3261
garfieldsg 0:662207e34fba 3262 int16_t MPU6050::getYAccelOffset()
garfieldsg 0:662207e34fba 3263 {
garfieldsg 0:662207e34fba 3264 i2Cdev.readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 3265 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3266 }
garfieldsg 0:662207e34fba 3267 void MPU6050::setYAccelOffset(int16_t offset)
garfieldsg 0:662207e34fba 3268 {
garfieldsg 0:662207e34fba 3269 i2Cdev.writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
garfieldsg 0:662207e34fba 3270 }
garfieldsg 0:662207e34fba 3271
garfieldsg 0:662207e34fba 3272 // ZA_OFFS_* register
garfieldsg 0:662207e34fba 3273
garfieldsg 0:662207e34fba 3274 int16_t MPU6050::getZAccelOffset()
garfieldsg 0:662207e34fba 3275 {
garfieldsg 0:662207e34fba 3276 i2Cdev.readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 3277 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3278 }
garfieldsg 0:662207e34fba 3279 void MPU6050::setZAccelOffset(int16_t offset)
garfieldsg 0:662207e34fba 3280 {
garfieldsg 0:662207e34fba 3281 i2Cdev.writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
garfieldsg 0:662207e34fba 3282 }
garfieldsg 0:662207e34fba 3283
garfieldsg 0:662207e34fba 3284 // XG_OFFS_USR* registers
garfieldsg 0:662207e34fba 3285
garfieldsg 0:662207e34fba 3286 int16_t MPU6050::getXGyroOffsetUser()
garfieldsg 0:662207e34fba 3287 {
garfieldsg 0:662207e34fba 3288 i2Cdev.readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 3289 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3290 }
garfieldsg 0:662207e34fba 3291 void MPU6050::setXGyroOffsetUser(int16_t offset)
garfieldsg 0:662207e34fba 3292 {
garfieldsg 0:662207e34fba 3293 i2Cdev.writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 3294 }
garfieldsg 0:662207e34fba 3295
garfieldsg 0:662207e34fba 3296 // YG_OFFS_USR* register
garfieldsg 0:662207e34fba 3297
garfieldsg 0:662207e34fba 3298 int16_t MPU6050::getYGyroOffsetUser()
garfieldsg 0:662207e34fba 3299 {
garfieldsg 0:662207e34fba 3300 i2Cdev.readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 3301 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3302 }
garfieldsg 0:662207e34fba 3303 void MPU6050::setYGyroOffsetUser(int16_t offset)
garfieldsg 0:662207e34fba 3304 {
garfieldsg 0:662207e34fba 3305 i2Cdev.writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 3306 }
garfieldsg 0:662207e34fba 3307
garfieldsg 0:662207e34fba 3308 // ZG_OFFS_USR* register
garfieldsg 0:662207e34fba 3309
garfieldsg 0:662207e34fba 3310 int16_t MPU6050::getZGyroOffsetUser()
garfieldsg 0:662207e34fba 3311 {
garfieldsg 0:662207e34fba 3312 i2Cdev.readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 3313 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3314 }
garfieldsg 0:662207e34fba 3315 void MPU6050::setZGyroOffsetUser(int16_t offset)
garfieldsg 0:662207e34fba 3316 {
garfieldsg 0:662207e34fba 3317 i2Cdev.writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 3318 }
garfieldsg 0:662207e34fba 3319
garfieldsg 0:662207e34fba 3320 // INT_ENABLE register (DMP functions)
garfieldsg 0:662207e34fba 3321
garfieldsg 0:662207e34fba 3322 bool MPU6050::getIntPLLReadyEnabled()
garfieldsg 0:662207e34fba 3323 {
garfieldsg 0:662207e34fba 3324 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
garfieldsg 0:662207e34fba 3325 return buffer[0];
garfieldsg 0:662207e34fba 3326 }
garfieldsg 0:662207e34fba 3327 void MPU6050::setIntPLLReadyEnabled(bool enabled)
garfieldsg 0:662207e34fba 3328 {
garfieldsg 0:662207e34fba 3329 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
garfieldsg 0:662207e34fba 3330 }
garfieldsg 0:662207e34fba 3331 bool MPU6050::getIntDMPEnabled()
garfieldsg 0:662207e34fba 3332 {
garfieldsg 0:662207e34fba 3333 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
garfieldsg 0:662207e34fba 3334 return buffer[0];
garfieldsg 0:662207e34fba 3335 }
garfieldsg 0:662207e34fba 3336 void MPU6050::setIntDMPEnabled(bool enabled)
garfieldsg 0:662207e34fba 3337 {
garfieldsg 0:662207e34fba 3338 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
garfieldsg 0:662207e34fba 3339 }
garfieldsg 0:662207e34fba 3340
garfieldsg 0:662207e34fba 3341 // DMP_INT_STATUS
garfieldsg 0:662207e34fba 3342
garfieldsg 0:662207e34fba 3343 bool MPU6050::getDMPInt5Status()
garfieldsg 0:662207e34fba 3344 {
garfieldsg 0:662207e34fba 3345 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
garfieldsg 0:662207e34fba 3346 return buffer[0];
garfieldsg 0:662207e34fba 3347 }
garfieldsg 0:662207e34fba 3348 bool MPU6050::getDMPInt4Status()
garfieldsg 0:662207e34fba 3349 {
garfieldsg 0:662207e34fba 3350 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
garfieldsg 0:662207e34fba 3351 return buffer[0];
garfieldsg 0:662207e34fba 3352 }
garfieldsg 0:662207e34fba 3353 bool MPU6050::getDMPInt3Status()
garfieldsg 0:662207e34fba 3354 {
garfieldsg 0:662207e34fba 3355 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
garfieldsg 0:662207e34fba 3356 return buffer[0];
garfieldsg 0:662207e34fba 3357 }
garfieldsg 0:662207e34fba 3358 bool MPU6050::getDMPInt2Status()
garfieldsg 0:662207e34fba 3359 {
garfieldsg 0:662207e34fba 3360 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
garfieldsg 0:662207e34fba 3361 return buffer[0];
garfieldsg 0:662207e34fba 3362 }
garfieldsg 0:662207e34fba 3363 bool MPU6050::getDMPInt1Status()
garfieldsg 0:662207e34fba 3364 {
garfieldsg 0:662207e34fba 3365 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
garfieldsg 0:662207e34fba 3366 return buffer[0];
garfieldsg 0:662207e34fba 3367 }
garfieldsg 0:662207e34fba 3368 bool MPU6050::getDMPInt0Status()
garfieldsg 0:662207e34fba 3369 {
garfieldsg 0:662207e34fba 3370 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
garfieldsg 0:662207e34fba 3371 return buffer[0];
garfieldsg 0:662207e34fba 3372 }
garfieldsg 0:662207e34fba 3373
garfieldsg 0:662207e34fba 3374 // INT_STATUS register (DMP functions)
garfieldsg 0:662207e34fba 3375
garfieldsg 0:662207e34fba 3376 bool MPU6050::getIntPLLReadyStatus()
garfieldsg 0:662207e34fba 3377 {
garfieldsg 0:662207e34fba 3378 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
garfieldsg 0:662207e34fba 3379 return buffer[0];
garfieldsg 0:662207e34fba 3380 }
garfieldsg 0:662207e34fba 3381 bool MPU6050::getIntDMPStatus()
garfieldsg 0:662207e34fba 3382 {
garfieldsg 0:662207e34fba 3383 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
garfieldsg 0:662207e34fba 3384 return buffer[0];
garfieldsg 0:662207e34fba 3385 }
garfieldsg 0:662207e34fba 3386
garfieldsg 0:662207e34fba 3387 // USER_CTRL register (DMP functions)
garfieldsg 0:662207e34fba 3388
garfieldsg 0:662207e34fba 3389 bool MPU6050::getDMPEnabled()
garfieldsg 0:662207e34fba 3390 {
garfieldsg 0:662207e34fba 3391 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
garfieldsg 0:662207e34fba 3392 return buffer[0];
garfieldsg 0:662207e34fba 3393 }
garfieldsg 0:662207e34fba 3394 void MPU6050::setDMPEnabled(bool enabled)
garfieldsg 0:662207e34fba 3395 {
garfieldsg 0:662207e34fba 3396 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
garfieldsg 0:662207e34fba 3397 }
garfieldsg 0:662207e34fba 3398 void MPU6050::resetDMP()
garfieldsg 0:662207e34fba 3399 {
garfieldsg 0:662207e34fba 3400 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
garfieldsg 0:662207e34fba 3401 }
garfieldsg 0:662207e34fba 3402
garfieldsg 0:662207e34fba 3403 // BANK_SEL register
garfieldsg 0:662207e34fba 3404
garfieldsg 0:662207e34fba 3405 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank)
garfieldsg 0:662207e34fba 3406 {
garfieldsg 0:662207e34fba 3407 bank &= 0x1F;
garfieldsg 0:662207e34fba 3408 if (userBank) bank |= 0x20;
garfieldsg 0:662207e34fba 3409 if (prefetchEnabled) bank |= 0x40;
garfieldsg 0:662207e34fba 3410 i2Cdev.writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
garfieldsg 0:662207e34fba 3411 }
OsmanKameric 2:e2081d9de7af 3412 //Read certain register
OsmanKameric 2:e2081d9de7af 3413 uint8_t MPU6050::readThisByte(uint8_t address)
OsmanKameric 2:e2081d9de7af 3414 {
OsmanKameric 2:e2081d9de7af 3415 i2Cdev.readByte(devAddr, address, buffer);
OsmanKameric 2:e2081d9de7af 3416 return buffer[0];
OsmanKameric 2:e2081d9de7af 3417 }
garfieldsg 0:662207e34fba 3418 // MEM_START_ADDR register
garfieldsg 0:662207e34fba 3419
garfieldsg 0:662207e34fba 3420 void MPU6050::setMemoryStartAddress(uint8_t address)
garfieldsg 0:662207e34fba 3421 {
garfieldsg 0:662207e34fba 3422 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
garfieldsg 0:662207e34fba 3423 }
garfieldsg 0:662207e34fba 3424
garfieldsg 0:662207e34fba 3425 // MEM_R_W register
garfieldsg 0:662207e34fba 3426
garfieldsg 0:662207e34fba 3427 uint8_t MPU6050::readMemoryByte()
garfieldsg 0:662207e34fba 3428 {
garfieldsg 0:662207e34fba 3429 i2Cdev.readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
garfieldsg 0:662207e34fba 3430 return buffer[0];
garfieldsg 0:662207e34fba 3431 }
garfieldsg 0:662207e34fba 3432 void MPU6050::writeMemoryByte(uint8_t data)
garfieldsg 0:662207e34fba 3433 {
garfieldsg 0:662207e34fba 3434 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
garfieldsg 0:662207e34fba 3435 }
garfieldsg 0:662207e34fba 3436 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address)
garfieldsg 0:662207e34fba 3437 {
garfieldsg 0:662207e34fba 3438 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3439 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3440 uint8_t chunkSize;
garfieldsg 0:662207e34fba 3441 for (uint16_t i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 3442 // determine correct chunk size according to bank position and data size
garfieldsg 0:662207e34fba 3443 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
garfieldsg 0:662207e34fba 3444
garfieldsg 0:662207e34fba 3445 // make sure we don't go past the data size
garfieldsg 0:662207e34fba 3446 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
garfieldsg 0:662207e34fba 3447
garfieldsg 0:662207e34fba 3448 // make sure this chunk doesn't go past the bank boundary (256 bytes)
garfieldsg 0:662207e34fba 3449 if (chunkSize > 256 - address) chunkSize = 256 - address;
garfieldsg 0:662207e34fba 3450
garfieldsg 0:662207e34fba 3451 // read the chunk of data as specified
garfieldsg 0:662207e34fba 3452 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
garfieldsg 0:662207e34fba 3453
garfieldsg 0:662207e34fba 3454 // increase byte index by [chunkSize]
garfieldsg 0:662207e34fba 3455 i += chunkSize;
garfieldsg 0:662207e34fba 3456
garfieldsg 0:662207e34fba 3457 // uint8_t automatically wraps to 0 at 256
garfieldsg 0:662207e34fba 3458 address += chunkSize;
garfieldsg 0:662207e34fba 3459
garfieldsg 0:662207e34fba 3460 // if we aren't done, update bank (if necessary) and address
garfieldsg 0:662207e34fba 3461 if (i < dataSize) {
garfieldsg 0:662207e34fba 3462 if (address == 0) bank++;
garfieldsg 0:662207e34fba 3463 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3464 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3465 }
garfieldsg 0:662207e34fba 3466 }
garfieldsg 0:662207e34fba 3467 }
garfieldsg 0:662207e34fba 3468 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem)
garfieldsg 0:662207e34fba 3469 {
garfieldsg 0:662207e34fba 3470 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3471 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3472 uint8_t chunkSize;
garfieldsg 0:662207e34fba 3473 uint8_t *verifyBuffer;
garfieldsg 0:662207e34fba 3474 uint8_t *progBuffer;
garfieldsg 0:662207e34fba 3475 uint16_t i;
garfieldsg 0:662207e34fba 3476 uint8_t j;
garfieldsg 0:662207e34fba 3477 if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
garfieldsg 0:662207e34fba 3478 if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
garfieldsg 0:662207e34fba 3479 for (i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 3480 // determine correct chunk size according to bank position and data size
garfieldsg 0:662207e34fba 3481 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
garfieldsg 0:662207e34fba 3482
garfieldsg 0:662207e34fba 3483 // make sure we don't go past the data size
garfieldsg 0:662207e34fba 3484 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
garfieldsg 0:662207e34fba 3485
garfieldsg 0:662207e34fba 3486 // make sure this chunk doesn't go past the bank boundary (256 bytes)
garfieldsg 0:662207e34fba 3487 if (chunkSize > 256 - address) chunkSize = 256 - address;
garfieldsg 0:662207e34fba 3488
garfieldsg 0:662207e34fba 3489 if (useProgMem) {
garfieldsg 0:662207e34fba 3490 // write the chunk of data as specified
garfieldsg 0:662207e34fba 3491 for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
garfieldsg 0:662207e34fba 3492 } else {
garfieldsg 0:662207e34fba 3493 // write the chunk of data as specified
garfieldsg 0:662207e34fba 3494 progBuffer = (uint8_t *)data + i;
garfieldsg 0:662207e34fba 3495 }
garfieldsg 0:662207e34fba 3496
garfieldsg 0:662207e34fba 3497 i2Cdev.writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
garfieldsg 0:662207e34fba 3498
garfieldsg 0:662207e34fba 3499 // verify data if needed
garfieldsg 0:662207e34fba 3500 if (verify && verifyBuffer) {
garfieldsg 0:662207e34fba 3501 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3502 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3503 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
garfieldsg 0:662207e34fba 3504 if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
garfieldsg 0:662207e34fba 3505 /*Serial.print("Block write verification error, bank ");
garfieldsg 0:662207e34fba 3506 Serial.print(bank, DEC);
garfieldsg 0:662207e34fba 3507 Serial.print(", address ");
garfieldsg 0:662207e34fba 3508 Serial.print(address, DEC);
garfieldsg 0:662207e34fba 3509 Serial.print("!\nExpected:");
garfieldsg 0:662207e34fba 3510 for (j = 0; j < chunkSize; j++) {
garfieldsg 0:662207e34fba 3511 Serial.print(" 0x");
garfieldsg 0:662207e34fba 3512 if (progBuffer[j] < 16) Serial.print("0");
garfieldsg 0:662207e34fba 3513 Serial.print(progBuffer[j], HEX);
garfieldsg 0:662207e34fba 3514 }
garfieldsg 0:662207e34fba 3515 Serial.print("\nReceived:");
garfieldsg 0:662207e34fba 3516 for (uint8_t j = 0; j < chunkSize; j++) {
garfieldsg 0:662207e34fba 3517 Serial.print(" 0x");
garfieldsg 0:662207e34fba 3518 if (verifyBuffer[i + j] < 16) Serial.print("0");
garfieldsg 0:662207e34fba 3519 Serial.print(verifyBuffer[i + j], HEX);
garfieldsg 0:662207e34fba 3520 }
garfieldsg 0:662207e34fba 3521 Serial.print("\n");*/
garfieldsg 0:662207e34fba 3522 free(verifyBuffer);
garfieldsg 0:662207e34fba 3523 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3524 return false; // uh oh.
garfieldsg 0:662207e34fba 3525 }
garfieldsg 0:662207e34fba 3526 }
garfieldsg 0:662207e34fba 3527
garfieldsg 0:662207e34fba 3528 // increase byte index by [chunkSize]
garfieldsg 0:662207e34fba 3529 i += chunkSize;
garfieldsg 0:662207e34fba 3530
garfieldsg 0:662207e34fba 3531 // uint8_t automatically wraps to 0 at 256
garfieldsg 0:662207e34fba 3532 address += chunkSize;
garfieldsg 0:662207e34fba 3533
garfieldsg 0:662207e34fba 3534 // if we aren't done, update bank (if necessary) and address
garfieldsg 0:662207e34fba 3535 if (i < dataSize) {
garfieldsg 0:662207e34fba 3536 if (address == 0) bank++;
garfieldsg 0:662207e34fba 3537 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3538 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3539 }
garfieldsg 0:662207e34fba 3540 }
garfieldsg 0:662207e34fba 3541 if (verify) free(verifyBuffer);
garfieldsg 0:662207e34fba 3542 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3543 return true;
garfieldsg 0:662207e34fba 3544 }
garfieldsg 0:662207e34fba 3545 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify)
garfieldsg 0:662207e34fba 3546 {
garfieldsg 0:662207e34fba 3547 return writeMemoryBlock(data, dataSize, bank, address, verify, true);
garfieldsg 0:662207e34fba 3548 }
garfieldsg 0:662207e34fba 3549 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem)
garfieldsg 0:662207e34fba 3550 {
garfieldsg 0:662207e34fba 3551 uint8_t *progBuffer, success, special;
garfieldsg 0:662207e34fba 3552 uint16_t i, j;
garfieldsg 0:662207e34fba 3553 if (useProgMem) {
garfieldsg 0:662207e34fba 3554 progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
garfieldsg 0:662207e34fba 3555 }
garfieldsg 0:662207e34fba 3556
garfieldsg 0:662207e34fba 3557 // config set data is a long string of blocks with the following structure:
garfieldsg 0:662207e34fba 3558 // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
garfieldsg 0:662207e34fba 3559 uint8_t bank, offset, length;
garfieldsg 0:662207e34fba 3560 for (i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 3561 if (useProgMem) {
garfieldsg 0:662207e34fba 3562 bank = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3563 offset = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3564 length = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3565 } else {
garfieldsg 0:662207e34fba 3566 bank = data[i++];
garfieldsg 0:662207e34fba 3567 offset = data[i++];
garfieldsg 0:662207e34fba 3568 length = data[i++];
garfieldsg 0:662207e34fba 3569 }
garfieldsg 0:662207e34fba 3570
garfieldsg 0:662207e34fba 3571 // write data or perform special action
garfieldsg 0:662207e34fba 3572 if (length > 0) {
garfieldsg 0:662207e34fba 3573 // regular block of data to write
garfieldsg 0:662207e34fba 3574 /*Serial.print("Writing config block to bank ");
garfieldsg 0:662207e34fba 3575 Serial.print(bank);
garfieldsg 0:662207e34fba 3576 Serial.print(", offset ");
garfieldsg 0:662207e34fba 3577 Serial.print(offset);
garfieldsg 0:662207e34fba 3578 Serial.print(", length=");
garfieldsg 0:662207e34fba 3579 Serial.println(length);*/
garfieldsg 0:662207e34fba 3580 if (useProgMem) {
garfieldsg 0:662207e34fba 3581 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
garfieldsg 0:662207e34fba 3582 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
garfieldsg 0:662207e34fba 3583 } else {
garfieldsg 0:662207e34fba 3584 progBuffer = (uint8_t *)data + i;
garfieldsg 0:662207e34fba 3585 }
garfieldsg 0:662207e34fba 3586 success = writeMemoryBlock(progBuffer, length, bank, offset, true);
garfieldsg 0:662207e34fba 3587 i += length;
garfieldsg 0:662207e34fba 3588 } else {
garfieldsg 0:662207e34fba 3589 // special instruction
garfieldsg 0:662207e34fba 3590 // NOTE: this kind of behavior (what and when to do certain things)
garfieldsg 0:662207e34fba 3591 // is totally undocumented. This code is in here based on observed
garfieldsg 0:662207e34fba 3592 // behavior only, and exactly why (or even whether) it has to be here
garfieldsg 0:662207e34fba 3593 // is anybody's guess for now.
garfieldsg 0:662207e34fba 3594 if (useProgMem) {
garfieldsg 0:662207e34fba 3595 special = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3596 } else {
garfieldsg 0:662207e34fba 3597 special = data[i++];
garfieldsg 0:662207e34fba 3598 }
garfieldsg 0:662207e34fba 3599 /*Serial.print("Special command code ");
garfieldsg 0:662207e34fba 3600 Serial.print(special, HEX);
garfieldsg 0:662207e34fba 3601 Serial.println(" found...");*/
garfieldsg 0:662207e34fba 3602 if (special == 0x01) {
garfieldsg 0:662207e34fba 3603 // enable DMP-related interrupts
garfieldsg 0:662207e34fba 3604
garfieldsg 0:662207e34fba 3605 //setIntZeroMotionEnabled(true);
garfieldsg 0:662207e34fba 3606 //setIntFIFOBufferOverflowEnabled(true);
garfieldsg 0:662207e34fba 3607 //setIntDMPEnabled(true);
garfieldsg 0:662207e34fba 3608 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation
garfieldsg 0:662207e34fba 3609
garfieldsg 0:662207e34fba 3610 success = true;
garfieldsg 0:662207e34fba 3611 } else {
garfieldsg 0:662207e34fba 3612 // unknown special command
garfieldsg 0:662207e34fba 3613 success = false;
garfieldsg 0:662207e34fba 3614 }
garfieldsg 0:662207e34fba 3615 }
garfieldsg 0:662207e34fba 3616
garfieldsg 0:662207e34fba 3617 if (!success) {
garfieldsg 0:662207e34fba 3618 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3619 return false; // uh oh
garfieldsg 0:662207e34fba 3620 }
garfieldsg 0:662207e34fba 3621 }
garfieldsg 0:662207e34fba 3622 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3623 return true;
garfieldsg 0:662207e34fba 3624 }
garfieldsg 0:662207e34fba 3625 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize)
garfieldsg 0:662207e34fba 3626 {
garfieldsg 0:662207e34fba 3627 return writeDMPConfigurationSet(data, dataSize, false);
garfieldsg 0:662207e34fba 3628 }
garfieldsg 0:662207e34fba 3629
garfieldsg 0:662207e34fba 3630 // DMP_CFG_1 register
garfieldsg 0:662207e34fba 3631
garfieldsg 0:662207e34fba 3632 uint8_t MPU6050::getDMPConfig1()
garfieldsg 0:662207e34fba 3633 {
garfieldsg 0:662207e34fba 3634 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
garfieldsg 0:662207e34fba 3635 return buffer[0];
garfieldsg 0:662207e34fba 3636 }
garfieldsg 0:662207e34fba 3637 void MPU6050::setDMPConfig1(uint8_t config)
garfieldsg 0:662207e34fba 3638 {
garfieldsg 0:662207e34fba 3639 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
garfieldsg 0:662207e34fba 3640 }
garfieldsg 0:662207e34fba 3641
garfieldsg 0:662207e34fba 3642 // DMP_CFG_2 register
garfieldsg 0:662207e34fba 3643
garfieldsg 0:662207e34fba 3644 uint8_t MPU6050::getDMPConfig2()
garfieldsg 0:662207e34fba 3645 {
garfieldsg 0:662207e34fba 3646 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
garfieldsg 0:662207e34fba 3647 return buffer[0];
garfieldsg 0:662207e34fba 3648 }
garfieldsg 0:662207e34fba 3649 void MPU6050::setDMPConfig2(uint8_t config)
garfieldsg 0:662207e34fba 3650 {
garfieldsg 0:662207e34fba 3651 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
garfieldsg 0:662207e34fba 3652 }