Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of IEEE_14_Freescale by
robot.cpp
- Committer:
- soonerbot
- Date:
- 2014-03-11
- Revision:
- 15:b10859606504
- Parent:
- 14:a30aa3b29a2e
- Child:
- 17:e247d58d9f42
File content as of revision 15:b10859606504:
#include "robot.h" #define MIN(a,b) ((b<a)?(b):(a)) #define MAX(a,b) ((b>a)?(b):(a)) //this is the main place pinouts are put //also sets up the control system constants robot::robot() : spi(PTD2, PTD3, PTD1), bigenc(spi,PTD0), gyro(PTE0, PTE1), /* right(bigenc,0,1,PTA5), left(bigenc,2,3,PTA4), */motors(spi,PTD0), pingLeft(PTA13,PTD5) { //bigenc.setDirections(1,-1,1,1); //left.setReversed(1); x=y=rot=0; //set our set point in memory to match the current set point of the encoders const int *referenceCounts = bigenc.getReferences(); motors.setSetPoint(referenceCounts[0],referenceCounts[1]); //control system constants pfac=0.00035; ifac=0.00000001; dfac=0.000001; angfac=0.0000016; } //driveforward, but set up so that int robot::absDriveForward(double desangle, int distance){ return smoothMove(distance, 0, 5); /*Timer tim; int dir=1; // if we are traveling forward a negative distance, go backwards if(distance < 0){ dir = -1; //is multiplied by the final output distance = -distance; } int i,move; int maxSpeed=41; int stepsPerInc=2; int stepsToMax=(maxSpeed-1)*stepsPerInc; int distToMax=(maxSpeed*(maxSpeed-1)*stepsPerInc)/2; int stopRaise,startFall; if(distance<distToMax*2){ // can't get up to full speed before needing to slow down //find new max speed, time to get there, and distance there maxSpeed = ((2*stepsPerInc)+sqrt((double)(2*stepsPerInc)*((2*stepsPerInc)+8*distance)))/(4*stepsPerInc); stepsToMax=(maxSpeed-1)*stepsPerInc; distToMax=(maxSpeed*(maxSpeed-1)*stepsPerInc)/2; stopRaise = stepsToMax; startFall = stopRaise+(distance-distToMax*2)/(maxSpeed)+1; DBGPRINT("Insufficent Ramp-Up\r\n",1); } else { // can get up to full speed, so we will stopRaise=stepsToMax; startFall=stopRaise+(distance-distToMax*2)/maxSpeed+1; DBGPRINT("Sufficent Ramp-Up\r\n",1); } DBGPRINT("[%d %d %d] {%d, %d}\n\r",maxSpeed,stepsToMax,distToMax,stopRaise,startFall); tim.start(); move = 0; int totalMove=0; gyro.stop(); for(i=0;i<startFall+stepsToMax;i++){ //start clock for this frame tim.reset(); if(i<=stopRaise && i%stepsPerInc==0){ //increase speed every (stepsPerInc) steps up to maxSpeed move++; } if(i==startFall-1){ //calibration step before we start falling to get an exact result move = distance-totalMove-distToMax; } if(i>=startFall && (i-startFall)%stepsPerInc==0){ if(i==startFall) //reset move after calibration step move=maxSpeed; //decrement every stepsPerInc steps until stopped move--; } totalMove+=move; motors.moveForward(move*dir); //DBGPRINT("%d: %d\t%d\r\n",i,move,totalMove); while(tim.read_ms()<5); gyro.gyroUpkeep(); addforward(double(move*dir)*0.0035362); //waits until 10ms have passed for the 100hz timing while(tim.read_ms()<10); } gyro.start(); return totalMove*dir; */ } int robot::smoothMove(int distance, int rotate, int maxSpeed){ Timer tim; int dir=1; // if we are traveling forward a negative distance, go backwards if(distance < 0){ dir = -1; //is multiplied by the final output distance = -distance; } if(rotate) rotate=-1; else rotate=1; int i,move; //int maxSpeed=41; int stepsPerInc=2; int stepsToMax=(maxSpeed-1)*stepsPerInc; int distToMax=(maxSpeed*(maxSpeed-1)*stepsPerInc)/2; int stopRaise,startFall; if(distance<distToMax*2){ // can't get up to full speed before needing to slow down //find new max speed, time to get there, and distance there maxSpeed = ((2*stepsPerInc)+sqrt((double)(2*stepsPerInc)*((2*stepsPerInc)+8*distance)))/(4*stepsPerInc); stepsToMax=(maxSpeed-1)*stepsPerInc; distToMax=(maxSpeed*(maxSpeed-1)*stepsPerInc)/2; stopRaise = stepsToMax; startFall = stopRaise+(distance-distToMax*2)/(maxSpeed)+1; DBGPRINT("Insufficent Ramp-Up\r\n",1); } else { // can get up to full speed, so we will stopRaise=stepsToMax; startFall=stopRaise+(distance-distToMax*2)/maxSpeed+1; DBGPRINT("Sufficent Ramp-Up\r\n",1); } DBGPRINT("[%d %d %d] {%d, %d}\n\r",maxSpeed,stepsToMax,distToMax,stopRaise,startFall); tim.start(); move = 0; int totalMove=0; gyro.stop(); for(i=0;i<startFall+stepsToMax;i++){ //start clock for this frame tim.reset(); if(i<=stopRaise && i%stepsPerInc==0){ //increase speed every (stepsPerInc) steps up to maxSpeed move++; } if(i==startFall-1){ //calibration step before we start falling to get an exact result move = distance-totalMove-distToMax; } if(i>=startFall && (i-startFall)%stepsPerInc==0){ if(i==startFall) //reset move after calibration step move=maxSpeed; //decrement every stepsPerInc steps until stopped move--; } totalMove+=move; //motors.moveForward(move*dir); motors.moveWheels(move*dir,move*dir*rotate); //DBGPRINT("%d: %d\t%d\r\n",i,move,totalMove); while(tim.read_ms()<5); gyro.gyroUpkeep(); addforward(double(move*dir)*0.0035362); //waits until 10ms have passed for the 100hz timing while(tim.read_ms()<10); } gyro.start(); return totalMove*dir; tim.stop();//may not need } //this is the main thing that both turns and goes forward // desangle is a angle in degrees to head towards (this is relative to the direction the robot starts pointing in // distance is a distance to head in that direction in units of encoder ticks /*int robot::driveForward(double desangle, int distance){ bigenc.resetAll(); const int* constbuf = bigenc.getVals(); int prev[4]={0,0,0,0}; int distTraveled=0, i; double maxPow=0.4; int loopcount=0; double minmain=0.05; double minalt=0.05; //find a point in front of where we're heading int targetang = desangle*4050000.0/360.0;//gyro.getZ(); int startang = targetang; double angle=double(startang)*2*3.14159/4050000.0; double targx = x + double((distance==0)?10000:distance)*0.0035362*cos(angle)*1.5; double targy = y + double(( ==0)?10000:distance)*0.0035362*sin(angle)*1.5; int invfactor = 0; //if going backwards, point away from the point if(distance<0) { invfactor = 2025000; } double realfac=0.1; int pmain=distance; int imain=0; int dmain=0; int dterm=0; const int ptol = 75; const int dtol = 10; while((pmain <= -ptol || pmain >= ptol) || (dmain <= -dtol || dmain >= dtol)|| (realfac <= -0.03 || realfac >= 0.03) //|| (fmod(rot*180.0/3.14159-desangle+3600000.0,360.0) >= 1 && fmod(rot*180.0/3.14159-desangle+3600000.0,360.0) <= 359)){ //DBGPRINT("=%d of %d [%f] (%d, %d) \t{%f,\t%f,/t%f}",distTraveled,distance, maxPow, constbuf[0], constbuf[1],x,y,rot*180.0/3.14159); for(i=0;i<4;i++) prev[i]=constbuf[i]; //wait(0.05); constbuf = bigenc.getVals(); //control system (Proportional, Integral, Derivative) = PID controller pmain = distance - (constbuf[0]+constbuf[1])/2; imain += pmain; dmain = ((constbuf[0]+constbuf[1]) - (prev[0]+prev[1]))/2; //DBGPRINT("%f like %f [%f] {%d,%d,%f,%f}\n\r", gyro.compZ(invfactor+atan2(targy-y,targx-x)*4050000.0/(2*3.14159))*360.0/4050000.0,angle*180/3.14159,rot,pmain,dmain,fmod(rot*180.0/3.14159-desangle+3600000.0,360.0), realfac);\ //finds the difference between the angle to the imaginary point we're headed to and the current angle and turns it into a power level realfac = (gyro.compZ(invfactor+atan2(targy-y,targx-x)*4050000.0/(2*3.14159)))*angfac; realfac = MAX(MIN(realfac,0.3),-0.3); // limits how much the motors can turn to fix the angle //uses PID control for the forward/back motions and adds in the angular component //the forward/back motions is limited to a certain speed double leftpow = MAX(MIN(pfac*pmain+ifac*imain+dfac*dmain,maxPow),-maxPow)-realfac; double rightpow = MAX(MIN(pfac*pmain+ifac*imain+dfac*dmain,maxPow),-maxPow)+realfac; //if we haven't settled, but also aren't moving, then speed up until it moves if((pmain <= -ptol || pmain >= ptol) || (dmain <= -dtol || dmain >= dtol) || (realfac <= -0.02 || realfac >= 0.02) ){ if (leftpow>0){ if (leftpow<minalt){ leftpow=minalt; } }else if (leftpow>-minalt){ leftpow=-minalt; } if (rightpow>0){ if (rightpow<minmain){ rightpow=minmain; } }else if (rightpow>-minmain){ rightpow=-minmain; } } left.setPower(leftpow); right.setPower(rightpow); //how far we've moved in the last timestep int deltaTraveled=(constbuf[0]-prev[0]+constbuf[1]-prev[1])/2; //DBGPRINT("\t %d\r\n",deltaTraveled); addforward(double(deltaTraveled)*0.0035362); //update our position distTraveled+=deltaTraveled; loopcount++; //increase min speed so that it will actually move if((dmain<5&&dmain>-5)&&minmain<0.2){ minmain+=0.003; } else if (minmain>=0.05) { minmain-=0.003; } if((dterm<5&&dterm>-5)&&minalt<0.2){ minalt+=0.003; } else if (minalt>=0.05) { minalt-=0.003; } } left.brake(); right.brake(); DBGPRINT("Loops: %d\r\n",loopcount); //catch the slowdown movement wait(0.2); for(i=0;i<4;i++) prev[i]=constbuf[i]; //wait(0.05); constbuf = bigenc.getVals(); addforward(double(constbuf[0]-prev[0]+constbuf[1]-prev[1])*0.0035362/2.0); DBGPRINT("loss of %d and %d\n\r",constbuf[0]-prev[0],constbuf[1]-prev[1]); return 0; }*/ //add the motion in the direction that the robot is facing void robot::addforward(double dist){ double angle=double(gyro.getZ())*2*3.14159/4050000.0; x+=dist*cos(angle); y+=dist*sin(angle); rot=angle; } //doesn't work yet /*int robot::moveTo(double xInches, double yInches){ double power=.2; turntowards(xInches,yInches); double distance=sqrt(pow(xInches-x,2)+pow(yInches-y,2))/0.0035362; double angle=atan2(xInches-x,yInches-y)*180.0/3.14159; double currangle=double(gyro.getZ())*2*3.14159/4050000.0; bigenc.resetAll(); const int* constbuf = bigenc.getVals(); int prev[4]={0,0,0,0}; int distTraveled=0, i; double maxPow; DBGPRINT("going %f at angle %f from current of %f\r\n",distance,angle,currangle); while(distTraveled<distance){ angle=atan2(xInches-x,yInches-y)*180.0/3.14159; currangle=double(gyro.getZ())*2*3.14159/4050000.0; maxPow=MAX(double(distance-distTraveled-2000)/15000.0,0.1); if(currangle>angle+2.0){ //too far to the right, brake left left.brake(); } else { left.setPower(MIN(power,maxPow)); } if(currangle<angle-2){ right.brake(); } else { right.setPo wer(MIN(power,maxPow)); } DBGPRINT("=%d of %d [%f] (%d, %d, %d, %d) \t{%f,\t%f,\t%f}\r\n",distTraveled,distance, maxPow, constbuf[0], constbuf[1], constbuf[2], constbuf[3],x,y,rot*180.0/3.14159); for(i=0;i<4;i++) prev[i]=constbuf[i]; //wait(0.05); constbuf = bigenc.getVals(); int deltaTraveled=MAX((MIN(-constbuf[0]+prev[0],-constbuf[1]+prev[1])+MIN(constbuf[2]-prev[2],constbuf[3]-prev[3]))/2,0); addforward(double(deltaTraveled)*0.0035362); distTraveled+=deltaTraveled; //angle=atan2(xInches-x,yInches-y)*180.0/3.14159; } left.brake(); right.brake(); return 0; }*/ //also doesn't work /*int robot::turntowards(double xInches, double yInches){ double currangle=double(gyro.getZ())*2*3.14159/4050000.0; double angle=atan2(xInches-x,yInches-y)*180.0/3.14159; double finangle=angle; /*if(int(currangle-angle)%360>180){ //needs to turn positive degrees finangle=currangle+double(int(angle-currangle)%360); } else {//negative degrees finangle=currangle-double(int(currangle-angle)%360); } double acc=turn(0.4,finangle); if(acc<-0.75 && acc>0.75){ acc=turn(0.3,finangle); } return 1; }*/ //still no /*double robot::turn(double power, double degrees){ bigenc.resetAll(); const int* constbuf = bigenc.getVals(); int prev[4]={0,0,0,0}; int startz; startz=gyro.getZ(); int gyroticks=(degrees*4050000)/360; double maxPow; int nowz=startz; int dir=0; if(gyroticks>startz){ right.setPower(-power); left.setPower(power); dir=1; } else { right.setPower(power); left.setPower(-power); dir=-1; } while((gyroticks-nowz)*dir>0){ maxPow=MAX(double(abs(gyroticks-nowz))/4050000.0,0.25); if(gyroticks<nowz){ right.setPower(-MIN(power,maxPow)); left.setPower(MIN(power,maxPow)); } else { right.setPower(MIN(power,maxPow)); left.setPower(-MIN(power,maxPow)); } DBGPRINT("_%d of %d {%f, %f, %f}\r\n",(gyroticks-nowz)*dir, gyroticks,x,y,rot*180.0/3.14159); for(int i=0;i<4;i++) prev[i]=constbuf[i]; constbuf = bigenc.getVals(); int deltaTraveled; if(gyroticks<nowz){ deltaTraveled=(MIN(-constbuf[0]+prev[0],-constbuf[1]+prev[1])-MIN(-constbuf[2]+prev[2],-constbuf[3]+prev[3]))/2; } else { deltaTraveled=(-MIN(constbuf[0]-prev[0],constbuf[1]-prev[1])+MIN(constbuf[2]-prev[2],constbuf[3]-prev[3]))/2; } addforward(double(deltaTraveled)*0.0035362); nowz=gyro.getZ(); } //right.brake(); //left.brake(); return (gyroticks-nowz)*dir; }*/