Lib for the new LCD Display with ILI9341 controller
SPI_TFT_ILI9341.cpp
- Committer:
- dreschpe
- Date:
- 2014-01-26
- Revision:
- 6:fe07ae8329f7
- Parent:
- 5:55aed13f2630
- Child:
- 7:4c30bea883bc
File content as of revision 6:fe07ae8329f7:
/* mbed library for 240*320 pixel display TFT based on ILI9341 LCD Controller * Copyright (c) 2013 Peter Drescher - DC2PD * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // 12.06.13 fork from SPI_TFT code because controller is different ... // 14.07.13 Test with real display and bugfix // 18.10.13 Better Circle function from Michael Ammann // 22.10.13 Fixes for Kinetis Board - 8 bit spi // 26.01.14 Change interface for BMP_16 to also use SD-cards #include "SPI_TFT_ILI9341.h" #include "mbed.h" #define BPP 16 // Bits per pixel //extern Serial pc; //extern DigitalOut xx; // debug !! SPI_TFT_ILI9341::SPI_TFT_ILI9341(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, PinName dc, const char *name) : _spi(mosi, miso, sclk), _cs(cs), _reset(reset), _dc(dc), GraphicsDisplay(name) { clk = sclk; orientation = 0; char_x = 0; tft_reset(); } int SPI_TFT_ILI9341::width() { if (orientation == 0 || orientation == 2) return 240; else return 320; } int SPI_TFT_ILI9341::height() { if (orientation == 0 || orientation == 2) return 320; else return 240; } void SPI_TFT_ILI9341::set_orientation(unsigned int o) { orientation = o; wr_cmd(0x36); // MEMORY_ACCESS_CONTROL switch (orientation) { case 0: _spi.write(0x48); break; case 1: _spi.write(0x28); break; case 2: _spi.write(0x88); break; case 3: _spi.write(0xE8); break; } _cs = 1; WindowMax(); } // write command to tft register void SPI_TFT_ILI9341::wr_cmd(unsigned char cmd) { _dc = 0; _cs = 0; _spi.write(cmd); // mbed lib _dc = 1; } void SPI_TFT_ILI9341::wr_dat(unsigned char dat) { _spi.write(dat); // mbed lib } // the ILI9341 can read char SPI_TFT_ILI9341::rd_byte(unsigned char cmd) { char r; _dc = 0; _cs = 0; _spi.write(cmd); // mbed lib _cs = 1; r = _spi.write(0xff); _cs = 1; return(r); } // read 32 bit int SPI_TFT_ILI9341::rd_32(unsigned char cmd) { int d; char r; _dc = 0; _cs = 0; d = cmd; d = d << 1; _spi.format(9,3); // we have to add a dummy clock cycle _spi.write(d); _spi.format(8,3); _dc = 1; r = _spi.write(0xff); d = r; r = _spi.write(0xff); d = (d << 8) | r; r = _spi.write(0xff); d = (d << 8) | r; r = _spi.write(0xff); d = (d << 8) | r; _cs = 1; return(d); } int SPI_TFT_ILI9341::Read_ID(void){ int r; r = rd_byte(0x0A); r = rd_byte(0x0A); r = rd_byte(0x0A); r = rd_byte(0x0A); return(r); } // Init code based on MI0283QT datasheet void SPI_TFT_ILI9341::tft_reset() { _spi.format(8,3); // 8 bit spi mode 3 _spi.frequency(20000000); // 10 Mhz SPI clock _cs = 1; // cs high _dc = 1; // dc high _reset = 0; // display reset wait_us(50); _reset = 1; // end hardware reset wait_ms(5); wr_cmd(0x01); // SW reset wait_ms(5); wr_cmd(0x28); // display off /* Start Initial Sequence ----------------------------------------------------*/ wr_cmd(0xCF); _spi.write(0x00); _spi.write(0x83); _spi.write(0x30); _cs = 1; wr_cmd(0xED); _spi.write(0x64); _spi.write(0x03); _spi.write(0x12); _spi.write(0x81); _cs = 1; wr_cmd(0xE8); _spi.write(0x85); _spi.write(0x01); _spi.write(0x79); _cs = 1; wr_cmd(0xCB); _spi.write(0x39); _spi.write(0x2C); _spi.write(0x00); _spi.write(0x34); _spi.write(0x02); _cs = 1; wr_cmd(0xF7); _spi.write(0x20); _cs = 1; wr_cmd(0xEA); _spi.write(0x00); _spi.write(0x00); _cs = 1; wr_cmd(0xC0); // POWER_CONTROL_1 _spi.write(0x26); _cs = 1; wr_cmd(0xC1); // POWER_CONTROL_2 _spi.write(0x11); _cs = 1; wr_cmd(0xC5); // VCOM_CONTROL_1 _spi.write(0x35); _spi.write(0x3E); _cs = 1; wr_cmd(0xC7); // VCOM_CONTROL_2 _spi.write(0xBE); _cs = 1; wr_cmd(0x36); // MEMORY_ACCESS_CONTROL _spi.write(0x48); _cs = 1; wr_cmd(0x3A); // COLMOD_PIXEL_FORMAT_SET _spi.write(0x55); // 16 bit pixel _cs = 1; wr_cmd(0xB1); // Frame Rate _spi.write(0x00); _spi.write(0x1B); _cs = 1; wr_cmd(0xF2); // Gamma Function Disable _spi.write(0x08); _cs = 1; wr_cmd(0x26); _spi.write(0x01); // gamma set for curve 01/2/04/08 _cs = 1; wr_cmd(0xE0); // positive gamma correction _spi.write(0x1F); _spi.write(0x1A); _spi.write(0x18); _spi.write(0x0A); _spi.write(0x0F); _spi.write(0x06); _spi.write(0x45); _spi.write(0x87); _spi.write(0x32); _spi.write(0x0A); _spi.write(0x07); _spi.write(0x02); _spi.write(0x07); _spi.write(0x05); _spi.write(0x00); _cs = 1; wr_cmd(0xE1); // negativ gamma correction _spi.write(0x00); _spi.write(0x25); _spi.write(0x27); _spi.write(0x05); _spi.write(0x10); _spi.write(0x09); _spi.write(0x3A); _spi.write(0x78); _spi.write(0x4D); _spi.write(0x05); _spi.write(0x18); _spi.write(0x0D); _spi.write(0x38); _spi.write(0x3A); _spi.write(0x1F); _cs = 1; WindowMax (); //wr_cmd(0x34); // tearing effect off //_cs = 1; //wr_cmd(0x35); // tearing effect on //_cs = 1; wr_cmd(0xB7); // entry mode _spi.write(0x07); _cs = 1; wr_cmd(0xB6); // display function control _spi.write(0x0A); _spi.write(0x82); _spi.write(0x27); _spi.write(0x00); _cs = 1; wr_cmd(0x11); // sleep out _cs = 1; wait_ms(100); wr_cmd(0x29); // display on _cs = 1; wait_ms(100); } void SPI_TFT_ILI9341::pixel(int x, int y, int color) { wr_cmd(0x2A); _spi.write(x >> 8); _spi.write(x); _cs = 1; wr_cmd(0x2B); _spi.write(y >> 8); _spi.write(y); _cs = 1; wr_cmd(0x2C); // send pixel #if defined TARGET_KL25Z // 8 Bit SPI _spi.write(color >> 8); _spi.write(color & 0xff); #else _spi.format(16,3); // switch to 16 bit Mode 3 _spi.write(color); // Write D0..D15 _spi.format(8,3); #endif _cs = 1; } void SPI_TFT_ILI9341::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h) { wr_cmd(0x2A); _spi.write(x >> 8); _spi.write(x); _spi.write((x+w-1) >> 8); _spi.write(x+w-1); _cs = 1; wr_cmd(0x2B); _spi.write(y >> 8); _spi.write(y); _spi.write((y+h-1) >> 8); _spi.write(y+h-1); _cs = 1; } void SPI_TFT_ILI9341::WindowMax (void) { window (0, 0, width(), height()); } void SPI_TFT_ILI9341::cls (void) { int pixel = ( width() * height()); WindowMax(); wr_cmd(0x2C); // send pixel #if defined TARGET_KL25Z // 8 Bit SPI unsigned int i; for (i = 0; i < ( width() * height()); i++){ _spi.write(_background >> 8); _spi.write(_background & 0xff); } #else _spi.format(16,3); // switch to 16 bit Mode 3 unsigned int i; for (i = 0; i < ( width() * height()); i++) _spi.write(_background); _spi.format(8,3); #endif _cs = 1; } void SPI_TFT_ILI9341::circle(int x0, int y0, int r, int color) { int x = -r, y = 0, err = 2-2*r, e2; do { pixel(x0-x, y0+y,color); pixel(x0+x, y0+y,color); pixel(x0+x, y0-y,color); pixel(x0-x, y0-y,color); e2 = err; if (e2 <= y) { err += ++y*2+1; if (-x == y && e2 <= x) e2 = 0; } if (e2 > x) err += ++x*2+1; } while (x <= 0); } void SPI_TFT_ILI9341::fillcircle(int x0, int y0, int r, int color) { int x = -r, y = 0, err = 2-2*r, e2; do { vline(x0-x, y0-y, y0+y, color); vline(x0+x, y0-y, y0+y, color); e2 = err; if (e2 <= y) { err += ++y*2+1; if (-x == y && e2 <= x) e2 = 0; } if (e2 > x) err += ++x*2+1; } while (x <= 0); } void SPI_TFT_ILI9341::hline(int x0, int x1, int y, int color) { int w; w = x1 - x0 + 1; window(x0,y,w,1); wr_cmd(0x2C); // send pixel #if defined TARGET_KL25Z // 8 Bit SPI int j; for (j=0; j<w; j++) { _spi.write(color >> 8); _spi.write(color & 0xff); } #else _spi.format(16,3); // switch to 16 bit Mode 3 int j; for (j=0; j<w; j++) { _spi.write(color); } _spi.format(8,3); #endif _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::vline(int x, int y0, int y1, int color) { int h; h = y1 - y0 + 1; window(x,y0,1,h); wr_cmd(0x2C); // send pixel #if defined TARGET_KL25Z // 8 Bit SPI for (int y=0; y<h; y++) { _spi.write(color >> 8); _spi.write(color & 0xff); } #else _spi.format(16,3); // switch to 16 bit Mode 3 for (int y=0; y<h; y++) { _spi.write(color); } _spi.format(8,3); #endif _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::line(int x0, int y0, int x1, int y1, int color) { //WindowMax(); int dx = 0, dy = 0; int dx_sym = 0, dy_sym = 0; int dx_x2 = 0, dy_x2 = 0; int di = 0; dx = x1-x0; dy = y1-y0; if (dx == 0) { /* vertical line */ if (y1 > y0) vline(x0,y0,y1,color); else vline(x0,y1,y0,color); return; } if (dx > 0) { dx_sym = 1; } else { dx_sym = -1; } if (dy == 0) { /* horizontal line */ if (x1 > x0) hline(x0,x1,y0,color); else hline(x1,x0,y0,color); return; } if (dy > 0) { dy_sym = 1; } else { dy_sym = -1; } dx = dx_sym*dx; dy = dy_sym*dy; dx_x2 = dx*2; dy_x2 = dy*2; if (dx >= dy) { di = dy_x2 - dx; while (x0 != x1) { pixel(x0, y0, color); x0 += dx_sym; if (di<0) { di += dy_x2; } else { di += dy_x2 - dx_x2; y0 += dy_sym; } } pixel(x0, y0, color); } else { di = dx_x2 - dy; while (y0 != y1) { pixel(x0, y0, color); y0 += dy_sym; if (di < 0) { di += dx_x2; } else { di += dx_x2 - dy_x2; x0 += dx_sym; } } pixel(x0, y0, color); } return; } void SPI_TFT_ILI9341::rect(int x0, int y0, int x1, int y1, int color) { if (x1 > x0) hline(x0,x1,y0,color); else hline(x1,x0,y0,color); if (y1 > y0) vline(x0,y0,y1,color); else vline(x0,y1,y0,color); if (x1 > x0) hline(x0,x1,y1,color); else hline(x1,x0,y1,color); if (y1 > y0) vline(x1,y0,y1,color); else vline(x1,y1,y0,color); return; } void SPI_TFT_ILI9341::fillrect(int x0, int y0, int x1, int y1, int color) { int h = y1 - y0 + 1; int w = x1 - x0 + 1; int pixel = h * w; window(x0,y0,w,h); wr_cmd(0x2C); // send pixel #if defined TARGET_KL25Z // 8 Bit SPI for (int p=0; p<pixel; p++) { _spi.write(color >> 8); _spi.write(color & 0xff); } #else _spi.format(16,3); // switch to 16 bit Mode 3 for (int p=0; p<pixel; p++) { _spi.write(color); } _spi.format(8,3); #endif _cs = 1; WindowMax(); return; } void SPI_TFT_ILI9341::locate(int x, int y) { char_x = x; char_y = y; } int SPI_TFT_ILI9341::columns() { return width() / font[1]; } int SPI_TFT_ILI9341::rows() { return height() / font[2]; } int SPI_TFT_ILI9341::_putc(int value) { if (value == '\n') { // new line char_x = 0; char_y = char_y + font[2]; if (char_y >= height() - font[2]) { char_y = 0; } } else { character(char_x, char_y, value); } return value; } void SPI_TFT_ILI9341::character(int x, int y, int c) { unsigned int hor,vert,offset,bpl,j,i,b; unsigned char* zeichen; unsigned char z,w; if ((c < 31) || (c > 127)) return; // test char range // read font parameter from start of array offset = font[0]; // bytes / char hor = font[1]; // get hor size of font vert = font[2]; // get vert size of font bpl = font[3]; // bytes per line if (char_x + hor > width()) { char_x = 0; char_y = char_y + vert; if (char_y >= height() - font[2]) { char_y = 0; } } window(char_x, char_y,hor,vert); // char box wr_cmd(0x2C); // send pixel #ifndef TARGET_KL25Z // 16 Bit SPI _spi.format(16,3); #endif // switch to 16 bit Mode 3 zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap w = zeichen[0]; // width of actual char for (j=0; j<vert; j++) { // vert line for (i=0; i<hor; i++) { // horz line z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1]; b = 1 << (j & 0x07); if (( z & b ) == 0x00) { #ifndef TARGET_KL25Z // 16 Bit SPI _spi.write(_background); #else _spi.write(_background >> 8); _spi.write(_background & 0xff); #endif } else { #ifndef TARGET_KL25Z // 16 Bit SPI _spi.write(_foreground); #else _spi.write(_foreground >> 8); _spi.write(_foreground & 0xff); #endif } } } _cs = 1; #ifndef TARGET_KL25Z // 16 Bit SPI _spi.format(8,3); #endif WindowMax(); if ((w + 2) < hor) { // x offset to next char char_x += w + 2; } else char_x += hor; } void SPI_TFT_ILI9341::set_font(unsigned char* f) { font = f; } void SPI_TFT_ILI9341::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap) { unsigned int j; int padd; unsigned short *bitmap_ptr = (unsigned short *)bitmap; #if defined TARGET_KL25Z // 8 Bit SPI unsigned short pix_temp; #endif unsigned int i; // the lines are padded to multiple of 4 bytes in a bitmap padd = -1; do { padd ++; } while (2*(w + padd)%4 != 0); window(x, y, w, h); bitmap_ptr += ((h - 1)* (w + padd)); wr_cmd(0x2C); // send pixel #ifndef TARGET_KL25Z // 16 Bit SPI _spi.format(16,3); #endif // switch to 16 bit Mode 3 for (j = 0; j < h; j++) { //Lines for (i = 0; i < w; i++) { // one line #if defined TARGET_KL25Z // 8 Bit SPI pix_temp = *bitmap_ptr; _spi.write(pix_temp >> 8); _spi.write(pix_temp); bitmap_ptr++; #else _spi.write(*bitmap_ptr); // one line bitmap_ptr++; #endif } bitmap_ptr -= 2*w; bitmap_ptr -= padd; } _cs = 1; #ifndef TARGET_KL25Z // 16 Bit SPI _spi.format(8,3); #endif WindowMax(); } // local filesystem is not implemented in kinetis board , but you can add a SD card int SPI_TFT_ILI9341::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP) { #define OffsetPixelWidth 18 #define OffsetPixelHeigh 22 #define OffsetFileSize 34 #define OffsetPixData 10 #define OffsetBPP 28 char filename[50]; unsigned char BMP_Header[54]; unsigned short BPP_t; unsigned int PixelWidth,PixelHeigh,start_data; unsigned int i,off; int padd,j; unsigned short *line; // get the filename i=0; while (*Name_BMP!='\0') { filename[i++]=*Name_BMP++; } filename[i] = 0; FILE *Image = fopen((const char *)&filename[0], "rb"); // open the bmp file if (!Image) { return(0); // error file not found ! } fread(&BMP_Header[0],1,54,Image); // get the BMP Header if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) { // check magic byte fclose(Image); return(-1); // error no BMP file } BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8); if (BPP_t != 0x0010) { fclose(Image); return(-2); // error no 16 bit BMP } PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24); PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24); if (PixelHeigh > height() + y || PixelWidth > width() + x) { fclose(Image); return(-3); // to big } start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24); line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line if (line == NULL) { return(-4); // error no memory } // the bmp lines are padded to multiple of 4 bytes padd = -1; do { padd ++; } while ((PixelWidth * 2 + padd)%4 != 0); window(x, y,PixelWidth ,PixelHeigh); wr_cmd(0x2C); // send pixel #ifndef TARGET_KL25Z // only 8 Bit SPI _spi.format(16,3); #endif // switch to 16 bit Mode 3 for (j = PixelHeigh - 1; j >= 0; j--) { //Lines bottom up off = j * (PixelWidth * 2 + padd) + start_data; // start of line fseek(Image, off ,SEEK_SET); fread(line,1,PixelWidth * 2,Image); // read a line - slow for (i = 0; i < PixelWidth; i++) { // copy pixel data to TFT #ifndef TARGET_KL25Z // only 8 Bit SPI _spi.write(line[i]); // one 16 bit pixel #else _spi.write(line[i] >> 8); _spi.write(line[i]); #endif } } _cs = 1; _spi.format(8,3); free (line); fclose(Image); WindowMax(); return(1); }