CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_var_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_var_q15.c 00009 * 00010 * Description: Variance of an array of Q15 type. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated. 00025 * -------------------------------------------------------------------- */ 00026 00027 #include "arm_math.h" 00028 00029 /** 00030 * @ingroup groupStats 00031 */ 00032 00033 /** 00034 * @addtogroup variance 00035 * @{ 00036 */ 00037 00038 /** 00039 * @brief Variance of the elements of a Q15 vector. 00040 * @param[in] *pSrc points to the input vector 00041 * @param[in] blockSize length of the input vector 00042 * @param[out] *pResult variance value returned here 00043 * @return none. 00044 * 00045 * @details 00046 * <b>Scaling and Overflow Behavior:</b> 00047 * 00048 * \par 00049 * The function is implemented using a 64-bit internal accumulator. 00050 * The input is represented in 1.15 format. 00051 * Intermediate multiplication yields a 2.30 format, and this 00052 * result is added without saturation to a 64-bit accumulator in 34.30 format. 00053 * With 33 guard bits in the accumulator, there is no risk of overflow, and the 00054 * full precision of the intermediate multiplication is preserved. 00055 * Finally, the 34.30 result is truncated to 34.15 format by discarding the lower 00056 * 15 bits, and then saturated to yield a result in 1.15 format. 00057 * 00058 */ 00059 00060 00061 void arm_var_q15( 00062 q15_t * pSrc, 00063 uint32_t blockSize, 00064 q31_t * pResult) 00065 { 00066 q63_t sum = 0; /* Accumulator */ 00067 q31_t meanOfSquares, squareOfMean; /* Mean of square and square of mean */ 00068 q15_t mean; /* mean */ 00069 q31_t in; /* Input variable */ 00070 q15_t in1; /* Temporary variable */ 00071 uint32_t blkCnt; /* loop counter */ 00072 q15_t t; /* Temporary variable */ 00073 q15_t *pIn; /* Temporary pointer */ 00074 00075 pIn = pSrc; 00076 00077 /*loop Unrolling */ 00078 blkCnt = blockSize >> 2u; 00079 00080 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00081 ** a second loop below computes the remaining 1 to 3 samples. */ 00082 while(blkCnt > 0u) 00083 { 00084 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00085 /* Compute Sum of squares of the input samples 00086 * and then store the result in a temporary variable, sum. */ 00087 in = *__SIMD32(pSrc)++; 00088 sum = __SMLALD(in, in, sum); 00089 in = *__SIMD32(pSrc)++; 00090 sum = __SMLALD(in, in, sum); 00091 00092 /* Decrement the loop counter */ 00093 blkCnt--; 00094 } 00095 00096 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00097 ** No loop unrolling is used. */ 00098 blkCnt = blockSize % 0x4u; 00099 00100 while(blkCnt > 0u) 00101 { 00102 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00103 /* Compute Sum of squares of the input samples 00104 * and then store the result in a temporary variable, sum. */ 00105 in1 = *pSrc++; 00106 sum = __SMLALD(in1, in1, sum); 00107 00108 /* Decrement the loop counter */ 00109 blkCnt--; 00110 } 00111 00112 /* Compute Mean of squares of the input samples 00113 * and then store the result in a temporary variable, meanOfSquares. */ 00114 t = (q15_t) ((1.0f / (float32_t) (blockSize - 1u)) * 16384); 00115 sum = __SSAT((sum >> 15u), 16u); 00116 00117 meanOfSquares = (q31_t) ((sum * t) >> 14u); 00118 00119 /* Reset the accumulator */ 00120 sum = 0; 00121 00122 /*loop Unrolling */ 00123 blkCnt = blockSize >> 2u; 00124 00125 /* Reset the input working pointer */ 00126 pSrc = pIn; 00127 00128 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00129 ** a second loop below computes the remaining 1 to 3 samples. */ 00130 while(blkCnt > 0u) 00131 { 00132 /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) */ 00133 /* Compute sum of all input values and then store the result in a temporary variable, sum. */ 00134 sum += *pSrc++; 00135 sum += *pSrc++; 00136 sum += *pSrc++; 00137 sum += *pSrc++; 00138 00139 /* Decrement the loop counter */ 00140 blkCnt--; 00141 } 00142 00143 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00144 ** No loop unrolling is used. */ 00145 blkCnt = blockSize % 0x4u; 00146 00147 while(blkCnt > 0u) 00148 { 00149 /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) */ 00150 /* Compute sum of all input values and then store the result in a temporary variable, sum. */ 00151 sum += *pSrc++; 00152 00153 /* Decrement the loop counter */ 00154 blkCnt--; 00155 } 00156 00157 /* Compute mean of all input values */ 00158 t = (q15_t) ((1.0f / (float32_t) (blockSize * (blockSize - 1u))) * 32768); 00159 mean = __SSAT(sum, 16u); 00160 00161 /* Compute square of mean */ 00162 squareOfMean = ((q31_t) mean * mean) >> 15; 00163 squareOfMean = (q31_t) (((q63_t) squareOfMean * t) >> 15); 00164 00165 /* Compute variance and then store the result to the destination */ 00166 *pResult = (meanOfSquares - squareOfMean); 00167 00168 } 00169 00170 /** 00171 * @} end of variance group 00172 */
Generated on Tue Jul 12 2022 14:13:55 by 1.7.2