CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_rms_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_rms_q15.c 00009 * 00010 * Description: Processing function for the Q15 RMS 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated. 00025 * ---------------------------------------------------------------------------- */ 00026 00027 #include "arm_math.h" 00028 00029 /** 00030 * @addtogroup RMS 00031 * @{ 00032 */ 00033 00034 /** 00035 * @brief Root Mean Square of the elements of a Q15 vector. 00036 * @param[in] *pSrc points to the input vector 00037 * @param[in] blockSize length of the input vector 00038 * @param[out] *pResult rms value returned here 00039 * @return none. 00040 * 00041 * @details 00042 * <b>Scaling and Overflow Behavior:</b> 00043 * 00044 * \par 00045 * The function is implemented using a 64-bit internal accumulator. 00046 * The input is represented in 1.15 format. 00047 * Intermediate multiplication yields a 2.30 format, and this 00048 * result is added without saturation to a 64-bit accumulator in 34.30 format. 00049 * With 33 guard bits in the accumulator, there is no risk of overflow, and the 00050 * full precision of the intermediate multiplication is preserved. 00051 * Finally, the 34.30 result is truncated to 34.15 format by discarding the lower 00052 * 15 bits, and then saturated to yield a result in 1.15 format. 00053 * 00054 */ 00055 00056 void arm_rms_q15( 00057 q15_t * pSrc, 00058 uint32_t blockSize, 00059 q15_t * pResult) 00060 { 00061 q63_t sum = 0; /* accumulator */ 00062 q31_t in; /* temporary variable to store the input value */ 00063 q15_t in1; /* temporary variable to store the input value */ 00064 uint32_t blkCnt; /* loop counter */ 00065 00066 /* loop Unrolling */ 00067 blkCnt = blockSize >> 2u; 00068 00069 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00070 ** a second loop below computes the remaining 1 to 3 samples. */ 00071 while(blkCnt > 0u) 00072 { 00073 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00074 /* Compute sum of the squares and then store the results in a temporary variable, sum */ 00075 in = *__SIMD32(pSrc)++; 00076 sum = __SMLALD(in, in, sum); 00077 in = *__SIMD32(pSrc)++; 00078 sum = __SMLALD(in, in, sum); 00079 00080 /* Decrement the loop counter */ 00081 blkCnt--; 00082 } 00083 00084 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00085 ** No loop unrolling is used. */ 00086 blkCnt = blockSize % 0x4u; 00087 00088 while(blkCnt > 0u) 00089 { 00090 /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ 00091 /* Compute sum of the squares and then store the results in a temporary variable, sum */ 00092 in1 = *pSrc++; 00093 sum = __SMLALD(in1, in1, sum); 00094 00095 /* Decrement the loop counter */ 00096 blkCnt--; 00097 } 00098 00099 /* Truncating and saturating the accumulator to 1.15 format */ 00100 sum = __SSAT((q31_t) (sum >> 15), 16); 00101 00102 in1 = (q15_t) (sum / blockSize); 00103 00104 /* Store the result in the destination */ 00105 arm_sqrt_q15(in1, pResult); 00106 } 00107 00108 /** 00109 * @} end of RMS group 00110 */
Generated on Tue Jul 12 2022 14:13:54 by 1.7.2