CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_power_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_power_q15.c 00009 * 00010 * Description: sum of the square of the elements in an array of Q15 type 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated. 00025 * -------------------------------------------------------------------- */ 00026 00027 #include "arm_math.h" 00028 00029 /** 00030 * @ingroup groupStats 00031 */ 00032 00033 /** 00034 * @addtogroup power 00035 * @{ 00036 */ 00037 00038 /** 00039 * @brief Sum of the squares of the elements of a Q15 vector. 00040 * @param[in] *pSrc points to the input vector 00041 * @param[in] blockSize length of the input vector 00042 * @param[out] *pResult sum of the squares value returned here 00043 * @return none. 00044 * 00045 * @details 00046 * <b>Scaling and Overflow Behavior:</b> 00047 * 00048 * \par 00049 * The function is implemented using a 64-bit internal accumulator. 00050 * The input is represented in 1.15 format. 00051 * Intermediate multiplication yields a 2.30 format, and this 00052 * result is added without saturation to a 64-bit accumulator in 34.30 format. 00053 * With 33 guard bits in the accumulator, there is no risk of overflow, and the 00054 * full precision of the intermediate multiplication is preserved. 00055 * Finally, the return result is in 34.30 format. 00056 * 00057 */ 00058 00059 void arm_power_q15( 00060 q15_t * pSrc, 00061 uint32_t blockSize, 00062 q63_t * pResult) 00063 { 00064 q63_t sum = 0; /* Temporary result storage */ 00065 q31_t in32; /* Temporary variable to store input value */ 00066 q15_t in16; /* Temporary variable to store input value */ 00067 uint32_t blkCnt; /* loop counter */ 00068 00069 00070 /* loop Unrolling */ 00071 blkCnt = blockSize >> 2u; 00072 00073 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00074 ** a second loop below computes the remaining 1 to 3 samples. */ 00075 while(blkCnt > 0u) 00076 { 00077 /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */ 00078 /* Compute Power and then store the result in a temporary variable, sum. */ 00079 in32 = *__SIMD32(pSrc)++; 00080 sum = __SMLALD(in32, in32, sum); 00081 in32 = *__SIMD32(pSrc)++; 00082 sum = __SMLALD(in32, in32, sum); 00083 00084 /* Decrement the loop counter */ 00085 blkCnt--; 00086 } 00087 00088 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00089 ** No loop unrolling is used. */ 00090 blkCnt = blockSize % 0x4u; 00091 00092 while(blkCnt > 0u) 00093 { 00094 /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */ 00095 /* Compute Power and then store the result in a temporary variable, sum. */ 00096 in16 = *pSrc++; 00097 sum = __SMLALD(in16, in16, sum); 00098 00099 /* Decrement the loop counter */ 00100 blkCnt--; 00101 } 00102 00103 /* Store the results in 34.30 format */ 00104 *pResult = sum; 00105 } 00106 00107 /** 00108 * @} end of power group 00109 */
Generated on Tue Jul 12 2022 14:13:54 by 1.7.2