CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_fir_lattice_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_lattice_f32.c 00009 * 00010 * Description: Processing function for the floating-point FIR Lattice filter. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated 00025 * 00026 * Version 0.0.7 2010/06/10 00027 * Misra-C changes done 00028 * -------------------------------------------------------------------- */ 00029 00030 #include "arm_math.h" 00031 00032 /** 00033 * @ingroup groupFilters 00034 */ 00035 00036 /** 00037 * @defgroup FIR_Lattice Finite Impulse Response (FIR) Lattice Filters 00038 * 00039 * This set of functions implements Finite Impulse Response (FIR) lattice filters 00040 * for Q15, Q31 and floating-point data types. Lattice filters are used in a 00041 * variety of adaptive filter applications. The filter structure is feedforward and 00042 * the net impulse response is finite length. 00043 * The functions operate on blocks 00044 * of input and output data and each call to the function processes 00045 * <code>blockSize</code> samples through the filter. <code>pSrc</code> and 00046 * <code>pDst</code> point to input and output arrays containing <code>blockSize</code> values. 00047 * 00048 * \par Algorithm: 00049 * \image html FIRLattice.gif "Finite Impulse Response Lattice filter" 00050 * The following difference equation is implemented: 00051 * <pre> 00052 * f0[n] = g0[n] = x[n] 00053 * fm[n] = fm-1[n] + km * gm-1[n-1] for m = 1, 2, ...M 00054 * gm[n] = km * fm-1[n] + gm-1[n-1] for m = 1, 2, ...M 00055 * y[n] = fM[n] 00056 * </pre> 00057 * \par 00058 * <code>pCoeffs</code> points to tha array of reflection coefficients of size <code>numStages</code>. 00059 * Reflection Coefficients are stored in the following order. 00060 * \par 00061 * <pre> 00062 * {k1, k2, ..., kM} 00063 * </pre> 00064 * where M is number of stages 00065 * \par 00066 * <code>pState</code> points to a state array of size <code>numStages</code>. 00067 * The state variables (g values) hold previous inputs and are stored in the following order. 00068 * <pre> 00069 * {g0[n], g1[n], g2[n] ...gM-1[n]} 00070 * </pre> 00071 * The state variables are updated after each block of data is processed; the coefficients are untouched. 00072 * \par Instance Structure 00073 * The coefficients and state variables for a filter are stored together in an instance data structure. 00074 * A separate instance structure must be defined for each filter. 00075 * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared. 00076 * There are separate instance structure declarations for each of the 3 supported data types. 00077 * 00078 * \par Initialization Functions 00079 * There is also an associated initialization function for each data type. 00080 * The initialization function performs the following operations: 00081 * - Sets the values of the internal structure fields. 00082 * - Zeros out the values in the state buffer. 00083 * 00084 * \par 00085 * Use of the initialization function is optional. 00086 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section. 00087 * To place an instance structure into a const data section, the instance structure must be manually initialized. 00088 * Set the values in the state buffer to zeros and then manually initialize the instance structure as follows: 00089 * <pre> 00090 *arm_fir_lattice_instance_f32 S = {numStages, pState, pCoeffs}; 00091 *arm_fir_lattice_instance_q31 S = {numStages, pState, pCoeffs}; 00092 *arm_fir_lattice_instance_q15 S = {numStages, pState, pCoeffs}; 00093 * </pre> 00094 * \par 00095 * where <code>numStages</code> is the number of stages in the filter; <code>pState</code> is the address of the state buffer; 00096 * <code>pCoeffs</code> is the address of the coefficient buffer. 00097 * \par Fixed-Point Behavior 00098 * Care must be taken when using the fixed-point versions of the FIR Lattice filter functions. 00099 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. 00100 * Refer to the function specific documentation below for usage guidelines. 00101 */ 00102 00103 /** 00104 * @addtogroup FIR_Lattice 00105 * @{ 00106 */ 00107 00108 00109 /** 00110 * @brief Processing function for the floating-point FIR lattice filter. 00111 * @param[in] *S points to an instance of the floating-point FIR lattice structure. 00112 * @param[in] *pSrc points to the block of input data. 00113 * @param[out] *pDst points to the block of output data 00114 * @param[in] blockSize number of samples to process. 00115 * @return none. 00116 */ 00117 00118 void arm_fir_lattice_f32( 00119 const arm_fir_lattice_instance_f32 * S, 00120 float32_t * pSrc, 00121 float32_t * pDst, 00122 uint32_t blockSize) 00123 { 00124 float32_t *pState; /* State pointer */ 00125 float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00126 float32_t *px; /* temporary state pointer */ 00127 float32_t *pk; /* temporary coefficient pointer */ 00128 float32_t fcurr1, fnext1, gcurr1, gnext1; /* temporary variables for first sample in loop unrolling */ 00129 float32_t fcurr2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */ 00130 float32_t fcurr3, fnext3, gnext3; /* temporary variables for third sample in loop unrolling */ 00131 float32_t fcurr4, fnext4, gnext4; /* temporary variables for fourth sample in loop unrolling */ 00132 uint32_t numStages = S->numStages; /* Number of stages in the filter */ 00133 uint32_t blkCnt, stageCnt; /* temporary variables for counts */ 00134 00135 gcurr1 = 0.0f; 00136 pState = &S->pState[0]; 00137 00138 blkCnt = blockSize >> 2; 00139 00140 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00141 a second loop below computes the remaining 1 to 3 samples. */ 00142 while(blkCnt > 0u) 00143 { 00144 00145 /* Read two samples from input buffer */ 00146 /* f0(n) = x(n) */ 00147 fcurr1 = *pSrc++; 00148 fcurr2 = *pSrc++; 00149 00150 /* Initialize coeff pointer */ 00151 pk = (pCoeffs); 00152 00153 /* Initialize state pointer */ 00154 px = pState; 00155 00156 /* Read g0(n-1) from state */ 00157 gcurr1 = *px; 00158 00159 /* Process first sample for first tap */ 00160 /* f1(n) = f0(n) + K1 * g0(n-1) */ 00161 fnext1 = fcurr1 + ((*pk) * gcurr1); 00162 /* g1(n) = f0(n) * K1 + g0(n-1) */ 00163 gnext1 = (fcurr1 * (*pk)) + gcurr1; 00164 00165 /* Process second sample for first tap */ 00166 /* for sample 2 processing */ 00167 fnext2 = fcurr2 + ((*pk) * fcurr1); 00168 gnext2 = (fcurr2 * (*pk)) + fcurr1; 00169 00170 /* Read next two samples from input buffer */ 00171 /* f0(n+2) = x(n+2) */ 00172 fcurr3 = *pSrc++; 00173 fcurr4 = *pSrc++; 00174 00175 /* Copy only last input samples into the state buffer 00176 which will be used for next four samples processing */ 00177 *px++ = fcurr4; 00178 00179 /* Process third sample for first tap */ 00180 fnext3 = fcurr3 + ((*pk) * fcurr2); 00181 gnext3 = (fcurr3 * (*pk)) + fcurr2; 00182 00183 /* Process fourth sample for first tap */ 00184 fnext4 = fcurr4 + ((*pk) * fcurr3); 00185 gnext4 = (fcurr4 * (*pk++)) + fcurr3; 00186 00187 /* Update of f values for next coefficient set processing */ 00188 fcurr1 = fnext1; 00189 fcurr2 = fnext2; 00190 fcurr3 = fnext3; 00191 fcurr4 = fnext4; 00192 00193 /* Loop unrolling. Process 4 taps at a time . */ 00194 stageCnt = (numStages - 1u) >> 2u; 00195 00196 /* Loop over the number of taps. Unroll by a factor of 4. 00197 ** Repeat until we've computed numStages-3 coefficients. */ 00198 00199 /* Process 2nd, 3rd, 4th and 5th taps ... here */ 00200 while(stageCnt > 0u) 00201 { 00202 /* Read g1(n-1), g3(n-1) .... from state */ 00203 gcurr1 = *px; 00204 00205 /* save g1(n) in state buffer */ 00206 *px++ = gnext4; 00207 00208 /* Process first sample for 2nd, 6th .. tap */ 00209 /* Sample processing for K2, K6.... */ 00210 /* f2(n) = f1(n) + K2 * g1(n-1) */ 00211 fnext1 = fcurr1 + ((*pk) * gcurr1); 00212 /* Process second sample for 2nd, 6th .. tap */ 00213 /* for sample 2 processing */ 00214 fnext2 = fcurr2 + ((*pk) * gnext1); 00215 /* Process third sample for 2nd, 6th .. tap */ 00216 fnext3 = fcurr3 + ((*pk) * gnext2); 00217 /* Process fourth sample for 2nd, 6th .. tap */ 00218 fnext4 = fcurr4 + ((*pk) * gnext3); 00219 00220 /* g2(n) = f1(n) * K2 + g1(n-1) */ 00221 /* Calculation of state values for next stage */ 00222 gnext4 = (fcurr4 * (*pk)) + gnext3; 00223 gnext3 = (fcurr3 * (*pk)) + gnext2; 00224 gnext2 = (fcurr2 * (*pk)) + gnext1; 00225 gnext1 = (fcurr1 * (*pk++)) + gcurr1; 00226 00227 00228 /* Read g2(n-1), g4(n-1) .... from state */ 00229 gcurr1 = *px; 00230 00231 /* save g2(n) in state buffer */ 00232 *px++ = gnext4; 00233 00234 /* Sample processing for K3, K7.... */ 00235 /* Process first sample for 3rd, 7th .. tap */ 00236 /* f3(n) = f2(n) + K3 * g2(n-1) */ 00237 fcurr1 = fnext1 + ((*pk) * gcurr1); 00238 /* Process second sample for 3rd, 7th .. tap */ 00239 fcurr2 = fnext2 + ((*pk) * gnext1); 00240 /* Process third sample for 3rd, 7th .. tap */ 00241 fcurr3 = fnext3 + ((*pk) * gnext2); 00242 /* Process fourth sample for 3rd, 7th .. tap */ 00243 fcurr4 = fnext4 + ((*pk) * gnext3); 00244 00245 /* Calculation of state values for next stage */ 00246 /* g3(n) = f2(n) * K3 + g2(n-1) */ 00247 gnext4 = (fnext4 * (*pk)) + gnext3; 00248 gnext3 = (fnext3 * (*pk)) + gnext2; 00249 gnext2 = (fnext2 * (*pk)) + gnext1; 00250 gnext1 = (fnext1 * (*pk++)) + gcurr1; 00251 00252 00253 /* Read g1(n-1), g3(n-1) .... from state */ 00254 gcurr1 = *px; 00255 00256 /* save g3(n) in state buffer */ 00257 *px++ = gnext4; 00258 00259 /* Sample processing for K4, K8.... */ 00260 /* Process first sample for 4th, 8th .. tap */ 00261 /* f4(n) = f3(n) + K4 * g3(n-1) */ 00262 fnext1 = fcurr1 + ((*pk) * gcurr1); 00263 /* Process second sample for 4th, 8th .. tap */ 00264 /* for sample 2 processing */ 00265 fnext2 = fcurr2 + ((*pk) * gnext1); 00266 /* Process third sample for 4th, 8th .. tap */ 00267 fnext3 = fcurr3 + ((*pk) * gnext2); 00268 /* Process fourth sample for 4th, 8th .. tap */ 00269 fnext4 = fcurr4 + ((*pk) * gnext3); 00270 00271 /* g4(n) = f3(n) * K4 + g3(n-1) */ 00272 /* Calculation of state values for next stage */ 00273 gnext4 = (fcurr4 * (*pk)) + gnext3; 00274 gnext3 = (fcurr3 * (*pk)) + gnext2; 00275 gnext2 = (fcurr2 * (*pk)) + gnext1; 00276 gnext1 = (fcurr1 * (*pk++)) + gcurr1; 00277 00278 /* Read g2(n-1), g4(n-1) .... from state */ 00279 gcurr1 = *px; 00280 00281 /* save g4(n) in state buffer */ 00282 *px++ = gnext4; 00283 00284 /* Sample processing for K5, K9.... */ 00285 /* Process first sample for 5th, 9th .. tap */ 00286 /* f5(n) = f4(n) + K5 * g4(n-1) */ 00287 fcurr1 = fnext1 + ((*pk) * gcurr1); 00288 /* Process second sample for 5th, 9th .. tap */ 00289 fcurr2 = fnext2 + ((*pk) * gnext1); 00290 /* Process third sample for 5th, 9th .. tap */ 00291 fcurr3 = fnext3 + ((*pk) * gnext2); 00292 /* Process fourth sample for 5th, 9th .. tap */ 00293 fcurr4 = fnext4 + ((*pk) * gnext3); 00294 00295 /* Calculation of state values for next stage */ 00296 /* g5(n) = f4(n) * K5 + g4(n-1) */ 00297 gnext4 = (fnext4 * (*pk)) + gnext3; 00298 gnext3 = (fnext3 * (*pk)) + gnext2; 00299 gnext2 = (fnext2 * (*pk)) + gnext1; 00300 gnext1 = (fnext1 * (*pk++)) + gcurr1; 00301 00302 stageCnt--; 00303 } 00304 00305 /* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */ 00306 stageCnt = (numStages - 1u) % 0x4u; 00307 00308 while(stageCnt > 0u) 00309 { 00310 gcurr1 = *px; 00311 00312 /* save g value in state buffer */ 00313 *px++ = gnext4; 00314 00315 /* Process four samples for last three taps here */ 00316 fnext1 = fcurr1 + ((*pk) * gcurr1); 00317 fnext2 = fcurr2 + ((*pk) * gnext1); 00318 fnext3 = fcurr3 + ((*pk) * gnext2); 00319 fnext4 = fcurr4 + ((*pk) * gnext3); 00320 00321 /* g1(n) = f0(n) * K1 + g0(n-1) */ 00322 gnext4 = (fcurr4 * (*pk)) + gnext3; 00323 gnext3 = (fcurr3 * (*pk)) + gnext2; 00324 gnext2 = (fcurr2 * (*pk)) + gnext1; 00325 gnext1 = (fcurr1 * (*pk++)) + gcurr1; 00326 00327 /* Update of f values for next coefficient set processing */ 00328 fcurr1 = fnext1; 00329 fcurr2 = fnext2; 00330 fcurr3 = fnext3; 00331 fcurr4 = fnext4; 00332 00333 stageCnt--; 00334 00335 } 00336 00337 /* The results in the 4 accumulators, store in the destination buffer. */ 00338 /* y(n) = fN(n) */ 00339 *pDst++ = fcurr1; 00340 *pDst++ = fcurr2; 00341 *pDst++ = fcurr3; 00342 *pDst++ = fcurr4; 00343 00344 blkCnt--; 00345 } 00346 00347 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00348 ** No loop unrolling is used. */ 00349 blkCnt = blockSize % 0x4u; 00350 00351 while(blkCnt > 0u) 00352 { 00353 /* f0(n) = x(n) */ 00354 fcurr1 = *pSrc++; 00355 00356 /* Initialize coeff pointer */ 00357 pk = (pCoeffs); 00358 00359 /* Initialize state pointer */ 00360 px = pState; 00361 00362 /* read g2(n) from state buffer */ 00363 gcurr1 = *px; 00364 00365 /* for sample 1 processing */ 00366 /* f1(n) = f0(n) + K1 * g0(n-1) */ 00367 fnext1 = fcurr1 + ((*pk) * gcurr1); 00368 /* g1(n) = f0(n) * K1 + g0(n-1) */ 00369 gnext1 = (fcurr1 * (*pk++)) + gcurr1; 00370 00371 /* save g1(n) in state buffer */ 00372 *px++ = fcurr1; 00373 00374 /* f1(n) is saved in fcurr1 00375 for next stage processing */ 00376 fcurr1 = fnext1; 00377 00378 stageCnt = (numStages - 1u); 00379 00380 /* stage loop */ 00381 while(stageCnt > 0u) 00382 { 00383 /* read g2(n) from state buffer */ 00384 gcurr1 = *px; 00385 00386 /* save g1(n) in state buffer */ 00387 *px++ = gnext1; 00388 00389 /* Sample processing for K2, K3.... */ 00390 /* f2(n) = f1(n) + K2 * g1(n-1) */ 00391 fnext1 = fcurr1 + ((*pk) * gcurr1); 00392 /* g2(n) = f1(n) * K2 + g1(n-1) */ 00393 gnext1 = (fcurr1 * (*pk++)) + gcurr1; 00394 00395 /* f1(n) is saved in fcurr1 00396 for next stage processing */ 00397 fcurr1 = fnext1; 00398 00399 stageCnt--; 00400 00401 } 00402 00403 /* y(n) = fN(n) */ 00404 *pDst++ = fcurr1; 00405 00406 blkCnt--; 00407 00408 } 00409 } 00410 00411 /** 00412 * @} end of FIR_Lattice group 00413 */
Generated on Tue Jul 12 2022 14:13:53 by 1.7.2