CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_fir_decimate_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_decimate_q31.c 00009 * 00010 * Description: Q31 FIR Decimator. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated 00025 * 00026 * Version 0.0.7 2010/06/10 00027 * Misra-C changes done 00028 * -------------------------------------------------------------------- */ 00029 00030 #include "arm_math.h" 00031 00032 /** 00033 * @ingroup groupFilters 00034 */ 00035 00036 /** 00037 * @addtogroup FIR_decimate 00038 * @{ 00039 */ 00040 00041 /** 00042 * @brief Processing function for the Q31 FIR decimator. 00043 * @param[in] *S points to an instance of the Q31 FIR decimator structure. 00044 * @param[in] *pSrc points to the block of input data. 00045 * @param[out] *pDst points to the block of output data 00046 * @param[in] blockSize number of input samples to process per call. 00047 * @return none 00048 * 00049 * <b>Scaling and Overflow Behavior:</b> 00050 * \par 00051 * The function is implemented using an internal 64-bit accumulator. 00052 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. 00053 * Thus, if the accumulator result overflows it wraps around rather than clip. 00054 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (where log2 is read as log to the base 2). 00055 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. 00056 * 00057 * \par 00058 * Refer to the function <code>arm_fir_decimate_fast_q31()</code> for a faster but less precise implementation of this function. 00059 */ 00060 00061 void arm_fir_decimate_q31( 00062 const arm_fir_decimate_instance_q31 * S, 00063 q31_t * pSrc, 00064 q31_t * pDst, 00065 uint32_t blockSize) 00066 { 00067 q31_t *pState = S->pState; /* State pointer */ 00068 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00069 q31_t *pStateCurnt; /* Points to the current sample of the state */ 00070 q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ 00071 q31_t *px; /* Temporary pointers for state buffer */ 00072 q31_t *pb; /* Temporary pointers for coefficient buffer */ 00073 q63_t sum0; /* Accumulator */ 00074 uint32_t numTaps = S->numTaps; /* Number of taps */ 00075 uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00076 00077 00078 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00079 /* pStateCurnt points to the location where the new input data should be written */ 00080 pStateCurnt = S->pState + (numTaps - 1u); 00081 00082 /* Total number of output samples to be computed */ 00083 blkCnt = outBlockSize; 00084 00085 while(blkCnt > 0u) 00086 { 00087 /* Copy decimation factor number of new input samples into the state buffer */ 00088 i = S->M; 00089 00090 do 00091 { 00092 *pStateCurnt++ = *pSrc++; 00093 00094 } while(--i); 00095 00096 /* Set accumulator to zero */ 00097 sum0 = 0; 00098 00099 /* Initialize state pointer */ 00100 px = pState; 00101 00102 /* Initialize coeff pointer */ 00103 pb = pCoeffs; 00104 00105 /* Loop unrolling. Process 4 taps at a time. */ 00106 tapCnt = numTaps >> 2; 00107 00108 /* Loop over the number of taps. Unroll by a factor of 4. 00109 ** Repeat until we've computed numTaps-4 coefficients. */ 00110 while(tapCnt > 0u) 00111 { 00112 /* Read the b[numTaps-1] coefficient */ 00113 c0 = *(pb++); 00114 00115 /* Read x[n-numTaps-1] sample */ 00116 x0 = *(px++); 00117 00118 /* Perform the multiply-accumulate */ 00119 sum0 += (q63_t) x0 *c0; 00120 00121 /* Read the b[numTaps-2] coefficient */ 00122 c0 = *(pb++); 00123 00124 /* Read x[n-numTaps-2] sample */ 00125 x0 = *(px++); 00126 00127 /* Perform the multiply-accumulate */ 00128 sum0 += (q63_t) x0 *c0; 00129 00130 /* Read the b[numTaps-3] coefficient */ 00131 c0 = *(pb++); 00132 00133 /* Read x[n-numTaps-3] sample */ 00134 x0 = *(px++); 00135 00136 /* Perform the multiply-accumulate */ 00137 sum0 += (q63_t) x0 *c0; 00138 00139 /* Read the b[numTaps-4] coefficient */ 00140 c0 = *(pb++); 00141 00142 /* Read x[n-numTaps-4] sample */ 00143 x0 = *(px++); 00144 00145 /* Perform the multiply-accumulate */ 00146 sum0 += (q63_t) x0 *c0; 00147 00148 /* Decrement the loop counter */ 00149 tapCnt--; 00150 } 00151 00152 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00153 tapCnt = numTaps % 0x4u; 00154 00155 while(tapCnt > 0u) 00156 { 00157 /* Read coefficients */ 00158 c0 = *(pb++); 00159 00160 /* Fetch 1 state variable */ 00161 x0 = *(px++); 00162 00163 /* Perform the multiply-accumulate */ 00164 sum0 += (q63_t) x0 *c0; 00165 00166 /* Decrement the loop counter */ 00167 tapCnt--; 00168 } 00169 00170 /* Advance the state pointer by the decimation factor 00171 * to process the next group of decimation factor number samples */ 00172 pState = pState + S->M; 00173 00174 /* The result is in the accumulator, store in the destination buffer. */ 00175 *pDst++ = (q31_t) (sum0 >> 31); 00176 00177 /* Decrement the loop counter */ 00178 blkCnt--; 00179 } 00180 00181 /* Processing is complete. 00182 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00183 ** This prepares the state buffer for the next function call. */ 00184 00185 /* Points to the start of the state buffer */ 00186 pStateCurnt = S->pState; 00187 00188 i = (numTaps - 1u) >> 2u; 00189 00190 /* copy data */ 00191 while(i > 0u) 00192 { 00193 *pStateCurnt++ = *pState++; 00194 *pStateCurnt++ = *pState++; 00195 *pStateCurnt++ = *pState++; 00196 *pStateCurnt++ = *pState++; 00197 00198 /* Decrement the loop counter */ 00199 i--; 00200 } 00201 00202 i = (numTaps - 1u) % 0x04u; 00203 00204 /* copy data */ 00205 while(i > 0u) 00206 { 00207 *pStateCurnt++ = *pState++; 00208 00209 /* Decrement the loop counter */ 00210 i--; 00211 } 00212 } 00213 00214 /** 00215 * @} end of FIR_decimate group 00216 */
Generated on Tue Jul 12 2022 14:13:53 by 1.7.2