CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_fir_decimate_fast_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_decimate_fast_q31.c 00009 * 00010 * Description: Fast Q31 FIR Decimator. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated. 00025 * -------------------------------------------------------------------- */ 00026 00027 #include "arm_math.h" 00028 00029 /** 00030 * @ingroup groupFilters 00031 */ 00032 00033 /** 00034 * @addtogroup FIR_decimate 00035 * @{ 00036 */ 00037 00038 /** 00039 * @brief Processing function for the Q31 FIR decimator (fast variant). 00040 * @param[in] *S points to an instance of the Q31 FIR decimator structure. 00041 * @param[in] *pSrc points to the block of input data. 00042 * @param[out] *pDst points to the block of output data 00043 * @param[in] blockSize number of input samples to process per call. 00044 * @return none 00045 * 00046 * <b>Scaling and Overflow Behavior:</b> 00047 * 00048 * \par 00049 * This function is optimized for speed at the expense of fixed-point precision and overflow protection. 00050 * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. 00051 * These intermediate results are added to a 2.30 accumulator. 00052 * Finally, the accumulator is saturated and converted to a 1.31 result. 00053 * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result. 00054 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (where log2 is read as log to the base 2). 00055 * 00056 * \par 00057 * Refer to the function <code>arm_fir_decimate_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision. 00058 * Both the slow and the fast versions use the same instance structure. 00059 * Use the function <code>arm_fir_decimate_init_q31()</code> to initialize the filter structure. 00060 */ 00061 00062 void arm_fir_decimate_fast_q31( 00063 arm_fir_decimate_instance_q31 * S, 00064 q31_t * pSrc, 00065 q31_t * pDst, 00066 uint32_t blockSize) 00067 { 00068 q31_t *pState = S->pState; /* State pointer */ 00069 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00070 q31_t *pStateCurnt; /* Points to the current sample of the state */ 00071 q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ 00072 q31_t *px; /* Temporary pointers for state buffer */ 00073 q31_t *pb; /* Temporary pointers for coefficient buffer */ 00074 q63_t sum0; /* Accumulator */ 00075 uint32_t numTaps = S->numTaps; /* Number of taps */ 00076 uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00077 00078 00079 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00080 /* pStateCurnt points to the location where the new input data should be written */ 00081 pStateCurnt = S->pState + (numTaps - 1u); 00082 00083 /* Total number of output samples to be computed */ 00084 blkCnt = outBlockSize; 00085 00086 while(blkCnt > 0u) 00087 { 00088 /* Copy decimation factor number of new input samples into the state buffer */ 00089 i = S->M; 00090 00091 do 00092 { 00093 *pStateCurnt++ = *pSrc++; 00094 00095 } while(--i); 00096 00097 /* Set accumulator to zero */ 00098 sum0 = 0; 00099 00100 /* Initialize state pointer */ 00101 px = pState; 00102 00103 /* Initialize coeff pointer */ 00104 pb = pCoeffs; 00105 00106 /* Loop unrolling. Process 4 taps at a time. */ 00107 tapCnt = numTaps >> 2; 00108 00109 /* Loop over the number of taps. Unroll by a factor of 4. 00110 ** Repeat until we've computed numTaps-4 coefficients. */ 00111 while(tapCnt > 0u) 00112 { 00113 /* Read the b[numTaps-1] coefficient */ 00114 c0 = *(pb++); 00115 00116 /* Read x[n-numTaps-1] sample */ 00117 x0 = *(px++); 00118 00119 /* Perform the multiply-accumulate */ 00120 sum0 = (q31_t) ((((q63_t) x0 * c0) + (sum0 << 32)) >> 32); 00121 00122 /* Read the b[numTaps-2] coefficient */ 00123 c0 = *(pb++); 00124 00125 /* Read x[n-numTaps-2] sample */ 00126 x0 = *(px++); 00127 00128 /* Perform the multiply-accumulate */ 00129 sum0 = (q31_t) ((((q63_t) x0 * c0) + (sum0 << 32)) >> 32); 00130 00131 /* Read the b[numTaps-3] coefficient */ 00132 c0 = *(pb++); 00133 00134 /* Read x[n-numTaps-3] sample */ 00135 x0 = *(px++); 00136 00137 /* Perform the multiply-accumulate */ 00138 sum0 = (q31_t) ((((q63_t) x0 * c0) + (sum0 << 32)) >> 32); 00139 00140 /* Read the b[numTaps-4] coefficient */ 00141 c0 = *(pb++); 00142 00143 /* Read x[n-numTaps-4] sample */ 00144 x0 = *(px++); 00145 00146 /* Perform the multiply-accumulate */ 00147 sum0 = (q31_t) ((((q63_t) x0 * c0) + (sum0 << 32)) >> 32); 00148 00149 /* Decrement the loop counter */ 00150 tapCnt--; 00151 } 00152 00153 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00154 tapCnt = numTaps % 0x4u; 00155 00156 while(tapCnt > 0u) 00157 { 00158 /* Read coefficients */ 00159 c0 = *(pb++); 00160 00161 /* Fetch 1 state variable */ 00162 x0 = *(px++); 00163 00164 /* Perform the multiply-accumulate */ 00165 sum0 = (q31_t) ((((q63_t) x0 * c0) + (sum0 << 32)) >> 32); 00166 00167 /* Decrement the loop counter */ 00168 tapCnt--; 00169 } 00170 00171 /* Advance the state pointer by the decimation factor 00172 * to process the next group of decimation factor number samples */ 00173 pState = pState + S->M; 00174 00175 /* The result is in the accumulator, store in the destination buffer. */ 00176 *pDst++ = (q31_t) (sum0 << 1); 00177 00178 /* Decrement the loop counter */ 00179 blkCnt--; 00180 } 00181 00182 /* Processing is complete. 00183 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00184 ** This prepares the state buffer for the next function call. */ 00185 00186 /* Points to the start of the state buffer */ 00187 pStateCurnt = S->pState; 00188 00189 i = (numTaps - 1u) >> 2u; 00190 00191 /* copy data */ 00192 while(i > 0u) 00193 { 00194 *pStateCurnt++ = *pState++; 00195 *pStateCurnt++ = *pState++; 00196 *pStateCurnt++ = *pState++; 00197 *pStateCurnt++ = *pState++; 00198 00199 /* Decrement the loop counter */ 00200 i--; 00201 } 00202 00203 i = (numTaps - 1u) % 0x04u; 00204 00205 /* copy data */ 00206 while(i > 0u) 00207 { 00208 *pStateCurnt++ = *pState++; 00209 00210 /* Decrement the loop counter */ 00211 i--; 00212 } 00213 } 00214 00215 /** 00216 * @} end of FIR_decimate group 00217 */
Generated on Tue Jul 12 2022 14:13:53 by 1.7.2