CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_dot_prod_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_dot_prod_q31.c 00009 * 00010 * Description: Q31 dot product. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated. 00025 * 00026 * Version 0.0.7 2010/06/10 00027 * Misra-C changes done 00028 * -------------------------------------------------------------------- */ 00029 00030 #include "arm_math.h" 00031 00032 /** 00033 * @ingroup groupMath 00034 */ 00035 00036 /** 00037 * @addtogroup dot_prod 00038 * @{ 00039 */ 00040 00041 /** 00042 * @brief Dot product of Q31 vectors. 00043 * @param[in] *pSrcA points to the first input vector 00044 * @param[in] *pSrcB points to the second input vector 00045 * @param[in] blockSize number of samples in each vector 00046 * @param[out] *result output result returned here 00047 * @return none. 00048 * 00049 * <b>Scaling and Overflow Behavior:</b> 00050 * \par 00051 * The intermediate multiplications are in 1.31 x 1.31 = 2.62 format and these 00052 * are truncated to 2.48 format by discarding the lower 14 bits. 00053 * The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format. 00054 * There are 15 guard bits in the accumulator and there is no risk of overflow as long as 00055 * the length of the vectors is less than 2^16 elements. 00056 * The return result is in 16.48 format. 00057 */ 00058 00059 void arm_dot_prod_q31( 00060 q31_t * pSrcA, 00061 q31_t * pSrcB, 00062 uint32_t blockSize, 00063 q63_t * result) 00064 { 00065 q63_t sum = 0; /* Temporary result storage */ 00066 uint32_t blkCnt; /* loop counter */ 00067 00068 00069 /*loop Unrolling */ 00070 blkCnt = blockSize >> 2u; 00071 00072 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00073 ** a second loop below computes the remaining 1 to 3 samples. */ 00074 while(blkCnt > 0u) 00075 { 00076 /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ 00077 /* Calculate dot product and then store the result in a temporary buffer. */ 00078 sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u; 00079 sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u; 00080 sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u; 00081 sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u; 00082 00083 /* Decrement the loop counter */ 00084 blkCnt--; 00085 } 00086 00087 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00088 ** No loop unrolling is used. */ 00089 blkCnt = blockSize % 0x4u; 00090 00091 while(blkCnt > 0u) 00092 { 00093 /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ 00094 /* Calculate dot product and then store the result in a temporary buffer. */ 00095 sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u; 00096 00097 /* Decrement the loop counter */ 00098 blkCnt--; 00099 } 00100 00101 /* Store the result in the destination buffer in 16.48 format */ 00102 *result = sum; 00103 } 00104 00105 /** 00106 * @} end of dot_prod group 00107 */
Generated on Tue Jul 12 2022 14:13:52 by 1.7.2