CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_dct4_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_dct4_f32.c 00009 * 00010 * Description: Processing function of DCT4 & IDCT4 F32. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated. 00025 * -------------------------------------------------------------------- */ 00026 00027 #include "arm_math.h" 00028 00029 /** 00030 * @ingroup groupTransforms 00031 */ 00032 00033 /** 00034 * @defgroup DCT4_IDCT4 DCT Type IV Functions 00035 * Representation of signals by minimum number of values is important for storage and transmission. 00036 * The possibility of large discontinuity between the beginning and end of a period of a signal 00037 * in DFT can be avoided by extending the signal so that it is even-symmetric. 00038 * Discrete Cosine Transform (DCT) is constructed such that its energy is heavily concentrated in the lower part of the 00039 * spectrum and is very widely used in signal and image coding applications. 00040 * The family of DCTs (DCT type- 1,2,3,4) is the outcome of different combinations of homogeneous boundary conditions. 00041 * DCT has an excellent energy-packing capability, hence has many applications and in data compression in particular. 00042 * 00043 * DCT is essentially the Discrete Fourier Transform(DFT) of an even-extended real signal. 00044 * Reordering of the input data makes the computation of DCT just a problem of 00045 * computing the DFT of a real signal with a few additional operations. 00046 * This approach provides regular, simple, and very efficient DCT algorithms for practical hardware and software implementations. 00047 * 00048 * DCT type-II can be implemented using Fast fourier transform (FFT) internally, as the transform is applied on real values, Real FFT can be used. 00049 * DCT4 is implemented using DCT2 as their implementations are similar except with some added pre-processing and post-processing. 00050 * DCT2 implementation can be described in the following steps: 00051 * - Re-ordering input 00052 * - Calculating Real FFT 00053 * - Multiplication of weights and Real FFT output and getting real part from the product. 00054 * 00055 * This process is explained by the block diagram below: 00056 * \image html DCT4.gif "Discrete Cosine Transform - type-IV" 00057 * 00058 * \par Algorithm: 00059 * The N-point type-IV DCT is defined as a real, linear transformation by the formula: 00060 * \image html DCT4Equation.gif 00061 * where <code>k = 0,1,2,.....N-1</code> 00062 *\par 00063 * Its inverse is defined as follows: 00064 * \image html IDCT4Equation.gif 00065 * where <code>n = 0,1,2,.....N-1</code> 00066 *\par 00067 * The DCT4 matrices become involutory (i.e. they are self-inverse) by multiplying with an overall scale factor of sqrt(2/N). 00068 * The symmetry of the transform matrix indicates that the fast algorithms for the forward 00069 * and inverse transform computation are identical. 00070 * Note that the implementation of Inverse DCT4 and DCT4 is same, hence same process function can be used for both. 00071 * 00072 * \par Lengths supported by the transform: 00073 * As DCT4 internally uses Real FFT, it supports all the lengths supported by arm_rfft_f32(). 00074 * The library provides separate functions for Q15, Q31, and floating-point data types. 00075 * \par Instance Structure 00076 * The instances for Real FFT and FFT, cosine values table and twiddle factor table are stored in an instance data structure. 00077 * A separate instance structure must be defined for each transform. 00078 * There are separate instance structure declarations for each of the 3 supported data types. 00079 * 00080 * \par Initialization Functions 00081 * There is also an associated initialization function for each data type. 00082 * The initialization function performs the following operations: 00083 * - Sets the values of the internal structure fields. 00084 * - Initializes Real FFT as its process function is used internally in DCT4, by calling arm_rfft_init_f32(). 00085 * \par 00086 * Use of the initialization function is optional. 00087 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section. 00088 * To place an instance structure into a const data section, the instance structure must be manually initialized. 00089 * Manually initialize the instance structure as follows: 00090 * <pre> 00091 *arm_dct4_instance_f32 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft}; 00092 *arm_dct4_instance_q31 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft}; 00093 *arm_dct4_instance_q15 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft}; 00094 * </pre> 00095 * where \c N is the length of the DCT4; \c Nby2 is half of the length of the DCT4; 00096 * \c normalize is normalizing factor used and is equal to <code>sqrt(2/N)</code>; 00097 * \c pTwiddle points to the twiddle factor table; 00098 * \c pCosFactor points to the cosFactor table; 00099 * \c pRfft points to the real FFT instance; 00100 * \c pCfft points to the complex FFT instance; 00101 * The CFFT and RFFT structures also needs to be initialized, refer to arm_cfft_radix4_f32() 00102 * and arm_rfft_f32() respectively for details regarding static initialization. 00103 * 00104 * \par Fixed-Point Behavior 00105 * Care must be taken when using the fixed-point versions of the DCT4 transform functions. 00106 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. 00107 * Refer to the function specific documentation below for usage guidelines. 00108 */ 00109 00110 /** 00111 * @addtogroup DCT4_IDCT4 00112 * @{ 00113 */ 00114 00115 /** 00116 * @brief Processing function for the floating-point DCT4/IDCT4. 00117 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure. 00118 * @param[in] *pState points to state buffer. 00119 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. 00120 * @return none. 00121 */ 00122 00123 void arm_dct4_f32( 00124 const arm_dct4_instance_f32 * S, 00125 float32_t * pState, 00126 float32_t * pInlineBuffer) 00127 { 00128 uint32_t i; /* Loop counter */ 00129 float32_t *weights = S->pTwiddle; /* Pointer to the Weights table */ 00130 float32_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */ 00131 float32_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */ 00132 float32_t in; /* Temporary variable */ 00133 00134 00135 /* DCT4 computation involves DCT2 (which is calculated using RFFT) 00136 * along with some pre-processing and post-processing. 00137 * Computational procedure is explained as follows: 00138 * (a) Pre-processing involves multiplying input with cos factor, 00139 * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n)) 00140 * where, 00141 * r(n) -- output of preprocessing 00142 * u(n) -- input to preprocessing(actual Source buffer) 00143 * (b) Calculation of DCT2 using FFT is divided into three steps: 00144 * Step1: Re-ordering of even and odd elements of input. 00145 * Step2: Calculating FFT of the re-ordered input. 00146 * Step3: Taking the real part of the product of FFT output and weights. 00147 * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation: 00148 * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) 00149 * where, 00150 * Y4 -- DCT4 output, Y2 -- DCT2 output 00151 * (d) Multiplying the output with the normalizing factor sqrt(2/N). 00152 */ 00153 00154 /*-------- Pre-processing ------------*/ 00155 /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */ 00156 arm_scale_f32(pInlineBuffer, 2.0f, pInlineBuffer, S->N); 00157 arm_mult_f32(pInlineBuffer, cosFact, pInlineBuffer, S->N); 00158 00159 /* ---------------------------------------------------------------- 00160 * Step1: Re-ordering of even and odd elements as, 00161 * pState[i] = pInlineBuffer[2*i] and 00162 * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2 00163 ---------------------------------------------------------------------*/ 00164 00165 /* pS1 initialized to pState */ 00166 pS1 = pState; 00167 00168 /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */ 00169 pS2 = pState + (S->N - 1u); 00170 00171 /* pbuff initialized to input buffer */ 00172 pbuff = pInlineBuffer; 00173 00174 /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */ 00175 i = (uint32_t) S->Nby2 >> 2u; 00176 00177 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00178 ** a second loop below computes the remaining 1 to 3 samples. */ 00179 do 00180 { 00181 /* Re-ordering of even and odd elements */ 00182 /* pState[i] = pInlineBuffer[2*i] */ 00183 *pS1++ = *pbuff++; 00184 /* pState[N-i-1] = pInlineBuffer[2*i+1] */ 00185 *pS2-- = *pbuff++; 00186 00187 *pS1++ = *pbuff++; 00188 *pS2-- = *pbuff++; 00189 00190 *pS1++ = *pbuff++; 00191 *pS2-- = *pbuff++; 00192 00193 *pS1++ = *pbuff++; 00194 *pS2-- = *pbuff++; 00195 00196 /* Decrement the loop counter */ 00197 i--; 00198 } while(i > 0u); 00199 00200 /* pbuff initialized to input buffer */ 00201 pbuff = pInlineBuffer; 00202 00203 /* pS1 initialized to pState */ 00204 pS1 = pState; 00205 00206 /* Initializing the loop counter to N/4 instead of N for loop unrolling */ 00207 i = (uint32_t) S->N >> 2u; 00208 00209 /* Processing with loop unrolling 4 times as N is always multiple of 4. 00210 * Compute 4 outputs at a time */ 00211 do 00212 { 00213 /* Writing the re-ordered output back to inplace input buffer */ 00214 *pbuff++ = *pS1++; 00215 *pbuff++ = *pS1++; 00216 *pbuff++ = *pS1++; 00217 *pbuff++ = *pS1++; 00218 00219 /* Decrement the loop counter */ 00220 i--; 00221 } while(i > 0u); 00222 00223 00224 /* --------------------------------------------------------- 00225 * Step2: Calculate RFFT for N-point input 00226 * ---------------------------------------------------------- */ 00227 /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ 00228 arm_rfft_f32(S->pRfft, pInlineBuffer, pState); 00229 00230 /*---------------------------------------------------------------------- 00231 * Step3: Multiply the FFT output with the weights. 00232 *----------------------------------------------------------------------*/ 00233 arm_cmplx_mult_cmplx_f32(pState, weights, pState, S->N); 00234 00235 /* ----------- Post-processing ---------- */ 00236 /* DCT-IV can be obtained from DCT-II by the equation, 00237 * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) 00238 * Hence, Y4(0) = Y2(0)/2 */ 00239 /* Getting only real part from the output and Converting to DCT-IV */ 00240 00241 /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */ 00242 i = ((uint32_t) S->N - 1u) >> 2u; 00243 00244 /* pbuff initialized to input buffer. */ 00245 pbuff = pInlineBuffer; 00246 00247 /* pS1 initialized to pState */ 00248 pS1 = pState; 00249 00250 /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ 00251 in = *pS1++ * (float32_t) 0.5; 00252 /* input buffer acts as inplace, so output values are stored in the input itself. */ 00253 *pbuff++ = in; 00254 00255 /* pState pointer is incremented twice as the real values are located alternatively in the array */ 00256 pS1++; 00257 00258 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00259 ** a second loop below computes the remaining 1 to 3 samples. */ 00260 do 00261 { 00262 /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ 00263 /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ 00264 in = *pS1++ - in; 00265 *pbuff++ = in; 00266 /* points to the next real value */ 00267 pS1++; 00268 00269 in = *pS1++ - in; 00270 *pbuff++ = in; 00271 pS1++; 00272 00273 in = *pS1++ - in; 00274 *pbuff++ = in; 00275 pS1++; 00276 00277 in = *pS1++ - in; 00278 *pbuff++ = in; 00279 pS1++; 00280 00281 /* Decrement the loop counter */ 00282 i--; 00283 } while(i > 0u); 00284 00285 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00286 ** No loop unrolling is used. */ 00287 i = ((uint32_t) S->N - 1u) % 0x4u; 00288 00289 while(i > 0u) 00290 { 00291 /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ 00292 /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ 00293 in = *pS1++ - in; 00294 *pbuff++ = in; 00295 /* points to the next real value */ 00296 pS1++; 00297 00298 /* Decrement the loop counter */ 00299 i--; 00300 } 00301 00302 00303 /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ 00304 00305 /* Initializing the loop counter to N/4 instead of N for loop unrolling */ 00306 i = (uint32_t) S->N >> 2u; 00307 00308 /* pbuff initialized to the pInlineBuffer(now contains the output values) */ 00309 pbuff = pInlineBuffer; 00310 00311 /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */ 00312 do 00313 { 00314 /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ 00315 in = *pbuff; 00316 *pbuff++ = in * S->normalize; 00317 00318 in = *pbuff; 00319 *pbuff++ = in * S->normalize; 00320 00321 in = *pbuff; 00322 *pbuff++ = in * S->normalize; 00323 00324 in = *pbuff; 00325 *pbuff++ = in * S->normalize; 00326 00327 /* Decrement the loop counter */ 00328 i--; 00329 } while(i > 0u); 00330 00331 } 00332 00333 /** 00334 * @} end of DCT4_IDCT4 group 00335 */
Generated on Tue Jul 12 2022 14:13:52 by 1.7.2