CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_conv_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_conv_q31.c 00009 * 00010 * Description: Q31 Convolution. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated 00025 * 00026 * Version 0.0.7 2010/06/10 00027 * Misra-C changes done 00028 * 00029 * -------------------------------------------------------------------- */ 00030 00031 #include "arm_math.h" 00032 00033 /** 00034 * @ingroup groupFilters 00035 */ 00036 00037 /** 00038 * @addtogroup Conv 00039 * @{ 00040 */ 00041 00042 /** 00043 * @brief Convolution of Q31 sequences. 00044 * @param[in] *pSrcA points to the first input sequence. 00045 * @param[in] srcALen length of the first input sequence. 00046 * @param[in] *pSrcB points to the second input sequence. 00047 * @param[in] srcBLen length of the second input sequence. 00048 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. 00049 * @return none. 00050 * 00051 * @details 00052 * <b>Scaling and Overflow Behavior:</b> 00053 * 00054 * \par 00055 * The function is implemented using an internal 64-bit accumulator. 00056 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. 00057 * There is no saturation on intermediate additions. 00058 * Thus, if the accumulator overflows it wraps around and distorts the result. 00059 * The input signals should be scaled down to avoid intermediate overflows. 00060 * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows, 00061 * as maximum of min(srcALen, srcBLen) number of additions are carried internally. 00062 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result. 00063 * 00064 * \par 00065 * See <code>arm_conv_fast_q31()</code> for a faster but less precise implementation of this function. 00066 */ 00067 00068 void arm_conv_q31( 00069 q31_t * pSrcA, 00070 uint32_t srcALen, 00071 q31_t * pSrcB, 00072 uint32_t srcBLen, 00073 q31_t * pDst) 00074 { 00075 q31_t *pIn1; /* inputA pointer */ 00076 q31_t *pIn2; /* inputB pointer */ 00077 q31_t *pOut = pDst; /* output pointer */ 00078 q31_t *px; /* Intermediate inputA pointer */ 00079 q31_t *py; /* Intermediate inputB pointer */ 00080 q31_t *pSrc1, *pSrc2; /* Intermediate pointers */ 00081 q63_t sum; /* Accumulator */ 00082 q63_t acc0, acc1, acc2, acc3; /* Accumulator */ 00083 q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ 00084 uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */ 00085 00086 00087 /* The algorithm implementation is based on the lengths of the inputs. */ 00088 /* srcB is always made to slide across srcA. */ 00089 /* So srcBLen is always considered as shorter or equal to srcALen */ 00090 if(srcALen >= srcBLen) 00091 { 00092 /* Initialization of inputA pointer */ 00093 pIn1 = pSrcA; 00094 00095 /* Initialization of inputB pointer */ 00096 pIn2 = pSrcB; 00097 } 00098 else 00099 { 00100 /* Initialization of inputA pointer */ 00101 pIn1 = (q31_t *) pSrcB; 00102 00103 /* Initialization of inputB pointer */ 00104 pIn2 = (q31_t *) pSrcA; 00105 00106 /* srcBLen is always considered as shorter or equal to srcALen */ 00107 j = srcBLen; 00108 srcBLen = srcALen; 00109 srcALen = j; 00110 } 00111 00112 /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ 00113 /* The function is internally 00114 * divided into three stages according to the number of multiplications that has to be 00115 * taken place between inputA samples and inputB samples. In the first stage of the 00116 * algorithm, the multiplications increase by one for every iteration. 00117 * In the second stage of the algorithm, srcBLen number of multiplications are done. 00118 * In the third stage of the algorithm, the multiplications decrease by one 00119 * for every iteration. */ 00120 00121 /* The algorithm is implemented in three stages. 00122 The loop counters of each stage is initiated here. */ 00123 blockSize1 = srcBLen - 1u; 00124 blockSize2 = srcALen - (srcBLen - 1u); 00125 blockSize3 = blockSize1; 00126 00127 /* -------------------------- 00128 * Initializations of stage1 00129 * -------------------------*/ 00130 00131 /* sum = x[0] * y[0] 00132 * sum = x[0] * y[1] + x[1] * y[0] 00133 * .... 00134 * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] 00135 */ 00136 00137 /* In this stage the MAC operations are increased by 1 for every iteration. 00138 The count variable holds the number of MAC operations performed */ 00139 count = 1u; 00140 00141 /* Working pointer of inputA */ 00142 px = pIn1; 00143 00144 /* Working pointer of inputB */ 00145 py = pIn2; 00146 00147 00148 /* ------------------------ 00149 * Stage1 process 00150 * ----------------------*/ 00151 00152 /* The first stage starts here */ 00153 while(blockSize1 > 0u) 00154 { 00155 /* Accumulator is made zero for every iteration */ 00156 sum = 0; 00157 00158 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00159 k = count >> 2u; 00160 00161 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00162 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00163 while(k > 0u) 00164 { 00165 /* x[0] * y[srcBLen - 1] */ 00166 sum += (q63_t) * px++ * (*py--); 00167 /* x[1] * y[srcBLen - 2] */ 00168 sum += (q63_t) * px++ * (*py--); 00169 /* x[2] * y[srcBLen - 3] */ 00170 sum += (q63_t) * px++ * (*py--); 00171 /* x[3] * y[srcBLen - 4] */ 00172 sum += (q63_t) * px++ * (*py--); 00173 00174 /* Decrement the loop counter */ 00175 k--; 00176 } 00177 00178 /* If the count is not a multiple of 4, compute any remaining MACs here. 00179 ** No loop unrolling is used. */ 00180 k = count % 0x4u; 00181 00182 while(k > 0u) 00183 { 00184 /* Perform the multiply-accumulate */ 00185 sum += (q63_t) * px++ * (*py--); 00186 00187 /* Decrement the loop counter */ 00188 k--; 00189 } 00190 00191 /* Store the result in the accumulator in the destination buffer. */ 00192 *pOut++ = (q31_t) (sum >> 31); 00193 00194 /* Update the inputA and inputB pointers for next MAC calculation */ 00195 py = pIn2 + count; 00196 px = pIn1; 00197 00198 /* Increment the MAC count */ 00199 count++; 00200 00201 /* Decrement the loop counter */ 00202 blockSize1--; 00203 } 00204 00205 /* -------------------------- 00206 * Initializations of stage2 00207 * ------------------------*/ 00208 00209 /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] 00210 * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] 00211 * .... 00212 * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] 00213 */ 00214 00215 /* Working pointer of inputA */ 00216 px = pIn1; 00217 00218 /* Working pointer of inputB */ 00219 pSrc2 = pIn2 + (srcBLen - 1u); 00220 py = pSrc2; 00221 00222 /* count is index by which the pointer pIn1 to be incremented */ 00223 count = 1u; 00224 00225 /* ------------------- 00226 * Stage2 process 00227 * ------------------*/ 00228 00229 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. 00230 * So, to loop unroll over blockSize2, 00231 * srcBLen should be greater than or equal to 4 */ 00232 if(srcBLen >= 4u) 00233 { 00234 /* Loop unroll over blockSize2, by 4 */ 00235 blkCnt = blockSize2 >> 2u; 00236 00237 while(blkCnt > 0u) 00238 { 00239 /* Set all accumulators to zero */ 00240 acc0 = 0; 00241 acc1 = 0; 00242 acc2 = 0; 00243 acc3 = 0; 00244 00245 /* read x[0], x[1], x[2] samples */ 00246 x0 = *(px++); 00247 x1 = *(px++); 00248 x2 = *(px++); 00249 00250 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00251 k = srcBLen >> 2u; 00252 00253 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00254 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00255 do 00256 { 00257 /* Read y[srcBLen - 1] sample */ 00258 c0 = *(py--); 00259 00260 /* Read x[3] sample */ 00261 x3 = *(px++); 00262 00263 /* Perform the multiply-accumulates */ 00264 /* acc0 += x[0] * y[srcBLen - 1] */ 00265 acc0 += ((q63_t) x0 * c0); 00266 /* acc1 += x[1] * y[srcBLen - 1] */ 00267 acc1 += ((q63_t) x1 * c0); 00268 /* acc2 += x[2] * y[srcBLen - 1] */ 00269 acc2 += ((q63_t) x2 * c0); 00270 /* acc3 += x[3] * y[srcBLen - 1] */ 00271 acc3 += ((q63_t) x3 * c0); 00272 00273 /* Read y[srcBLen - 2] sample */ 00274 c0 = *(py--); 00275 00276 /* Read x[4] sample */ 00277 x0 = *(px++); 00278 00279 /* Perform the multiply-accumulate */ 00280 /* acc0 += x[1] * y[srcBLen - 2] */ 00281 acc0 += ((q63_t) x1 * c0); 00282 /* acc1 += x[2] * y[srcBLen - 2] */ 00283 acc1 += ((q63_t) x2 * c0); 00284 /* acc2 += x[3] * y[srcBLen - 2] */ 00285 acc2 += ((q63_t) x3 * c0); 00286 /* acc3 += x[4] * y[srcBLen - 2] */ 00287 acc3 += ((q63_t) x0 * c0); 00288 00289 /* Read y[srcBLen - 3] sample */ 00290 c0 = *(py--); 00291 00292 /* Read x[5] sample */ 00293 x1 = *(px++); 00294 00295 /* Perform the multiply-accumulates */ 00296 /* acc0 += x[2] * y[srcBLen - 3] */ 00297 acc0 += ((q63_t) x2 * c0); 00298 /* acc1 += x[3] * y[srcBLen - 2] */ 00299 acc1 += ((q63_t) x3 * c0); 00300 /* acc2 += x[4] * y[srcBLen - 2] */ 00301 acc2 += ((q63_t) x0 * c0); 00302 /* acc3 += x[5] * y[srcBLen - 2] */ 00303 acc3 += ((q63_t) x1 * c0); 00304 00305 /* Read y[srcBLen - 4] sample */ 00306 c0 = *(py--); 00307 00308 /* Read x[6] sample */ 00309 x2 = *(px++); 00310 00311 /* Perform the multiply-accumulates */ 00312 /* acc0 += x[3] * y[srcBLen - 4] */ 00313 acc0 += ((q63_t) x3 * c0); 00314 /* acc1 += x[4] * y[srcBLen - 4] */ 00315 acc1 += ((q63_t) x0 * c0); 00316 /* acc2 += x[5] * y[srcBLen - 4] */ 00317 acc2 += ((q63_t) x1 * c0); 00318 /* acc3 += x[6] * y[srcBLen - 4] */ 00319 acc3 += ((q63_t) x2 * c0); 00320 00321 } while(--k); 00322 00323 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00324 ** No loop unrolling is used. */ 00325 k = srcBLen % 0x4u; 00326 00327 while(k > 0u) 00328 { 00329 /* Read y[srcBLen - 5] sample */ 00330 c0 = *(py--); 00331 00332 /* Read x[7] sample */ 00333 x3 = *(px++); 00334 00335 /* Perform the multiply-accumulates */ 00336 /* acc0 += x[4] * y[srcBLen - 5] */ 00337 acc0 += ((q63_t) x0 * c0); 00338 /* acc1 += x[5] * y[srcBLen - 5] */ 00339 acc1 += ((q63_t) x1 * c0); 00340 /* acc2 += x[6] * y[srcBLen - 5] */ 00341 acc2 += ((q63_t) x2 * c0); 00342 /* acc3 += x[7] * y[srcBLen - 5] */ 00343 acc3 += ((q63_t) x3 * c0); 00344 00345 /* Reuse the present samples for the next MAC */ 00346 x0 = x1; 00347 x1 = x2; 00348 x2 = x3; 00349 00350 /* Decrement the loop counter */ 00351 k--; 00352 } 00353 00354 /* Store the results in the accumulators in the destination buffer. */ 00355 *pOut++ = (q31_t) (acc0 >> 31); 00356 *pOut++ = (q31_t) (acc1 >> 31); 00357 *pOut++ = (q31_t) (acc2 >> 31); 00358 *pOut++ = (q31_t) (acc3 >> 31); 00359 00360 /* Update the inputA and inputB pointers for next MAC calculation */ 00361 px = pIn1 + (count * 4u); 00362 py = pSrc2; 00363 00364 /* Increment the pointer pIn1 index, count by 1 */ 00365 count++; 00366 00367 /* Decrement the loop counter */ 00368 blkCnt--; 00369 } 00370 00371 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. 00372 ** No loop unrolling is used. */ 00373 blkCnt = blockSize2 % 0x4u; 00374 00375 while(blkCnt > 0u) 00376 { 00377 /* Accumulator is made zero for every iteration */ 00378 sum = 0; 00379 00380 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00381 k = srcBLen >> 2u; 00382 00383 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00384 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00385 while(k > 0u) 00386 { 00387 /* Perform the multiply-accumulates */ 00388 sum += (q63_t) * px++ * (*py--); 00389 sum += (q63_t) * px++ * (*py--); 00390 sum += (q63_t) * px++ * (*py--); 00391 sum += (q63_t) * px++ * (*py--); 00392 00393 /* Decrement the loop counter */ 00394 k--; 00395 } 00396 00397 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00398 ** No loop unrolling is used. */ 00399 k = srcBLen % 0x4u; 00400 00401 while(k > 0u) 00402 { 00403 /* Perform the multiply-accumulate */ 00404 sum += (q63_t) * px++ * (*py--); 00405 00406 /* Decrement the loop counter */ 00407 k--; 00408 } 00409 00410 /* Store the result in the accumulator in the destination buffer. */ 00411 *pOut++ = (q31_t) (sum >> 31); 00412 00413 /* Update the inputA and inputB pointers for next MAC calculation */ 00414 px = pIn1 + count; 00415 py = pSrc2; 00416 00417 /* Increment the MAC count */ 00418 count++; 00419 00420 /* Decrement the loop counter */ 00421 blkCnt--; 00422 } 00423 } 00424 else 00425 { 00426 /* If the srcBLen is not a multiple of 4, 00427 * the blockSize2 loop cannot be unrolled by 4 */ 00428 blkCnt = blockSize2; 00429 00430 while(blkCnt > 0u) 00431 { 00432 /* Accumulator is made zero for every iteration */ 00433 sum = 0; 00434 00435 /* srcBLen number of MACS should be performed */ 00436 k = srcBLen; 00437 00438 while(k > 0u) 00439 { 00440 /* Perform the multiply-accumulate */ 00441 sum += (q63_t) * px++ * (*py--); 00442 00443 /* Decrement the loop counter */ 00444 k--; 00445 } 00446 00447 /* Store the result in the accumulator in the destination buffer. */ 00448 *pOut++ = (q31_t) (sum >> 31); 00449 00450 /* Update the inputA and inputB pointers for next MAC calculation */ 00451 px = pIn1 + count; 00452 py = pSrc2; 00453 00454 /* Increment the MAC count */ 00455 count++; 00456 00457 /* Decrement the loop counter */ 00458 blkCnt--; 00459 } 00460 } 00461 00462 00463 /* -------------------------- 00464 * Initializations of stage3 00465 * -------------------------*/ 00466 00467 /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] 00468 * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] 00469 * .... 00470 * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] 00471 * sum += x[srcALen-1] * y[srcBLen-1] 00472 */ 00473 00474 /* In this stage the MAC operations are decreased by 1 for every iteration. 00475 The blockSize3 variable holds the number of MAC operations performed */ 00476 00477 /* Working pointer of inputA */ 00478 pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); 00479 px = pSrc1; 00480 00481 /* Working pointer of inputB */ 00482 pSrc2 = pIn2 + (srcBLen - 1u); 00483 py = pSrc2; 00484 00485 /* ------------------- 00486 * Stage3 process 00487 * ------------------*/ 00488 00489 while(blockSize3 > 0u) 00490 { 00491 /* Accumulator is made zero for every iteration */ 00492 sum = 0; 00493 00494 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00495 k = blockSize3 >> 2u; 00496 00497 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00498 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00499 while(k > 0u) 00500 { 00501 /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ 00502 sum += (q63_t) * px++ * (*py--); 00503 /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ 00504 sum += (q63_t) * px++ * (*py--); 00505 /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ 00506 sum += (q63_t) * px++ * (*py--); 00507 /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ 00508 sum += (q63_t) * px++ * (*py--); 00509 00510 /* Decrement the loop counter */ 00511 k--; 00512 } 00513 00514 /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. 00515 ** No loop unrolling is used. */ 00516 k = blockSize3 % 0x4u; 00517 00518 while(k > 0u) 00519 { 00520 /* Perform the multiply-accumulate */ 00521 sum += (q63_t) * px++ * (*py--); 00522 00523 /* Decrement the loop counter */ 00524 k--; 00525 } 00526 00527 /* Store the result in the accumulator in the destination buffer. */ 00528 *pOut++ = (q31_t) (sum >> 31); 00529 00530 /* Update the inputA and inputB pointers for next MAC calculation */ 00531 px = ++pSrc1; 00532 py = pSrc2; 00533 00534 /* Decrement the loop counter */ 00535 blockSize3--; 00536 } 00537 00538 } 00539 00540 /** 00541 * @} end of Conv group 00542 */
Generated on Tue Jul 12 2022 14:13:52 by 1.7.2