CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_conv_fast_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_conv_fast_q15.c 00009 * 00010 * Description: Fast Q15 Convolution. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated. 00025 * -------------------------------------------------------------------- */ 00026 00027 #include "arm_math.h" 00028 00029 /** 00030 * @ingroup groupFilters 00031 */ 00032 00033 /** 00034 * @addtogroup Conv 00035 * @{ 00036 */ 00037 00038 /** 00039 * @brief Convolution of Q15 sequences (fast version). 00040 * @param[in] *pSrcA points to the first input sequence. 00041 * @param[in] srcALen length of the first input sequence. 00042 * @param[in] *pSrcB points to the second input sequence. 00043 * @param[in] srcBLen length of the second input sequence. 00044 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. 00045 * @return none. 00046 * 00047 * <b>Scaling and Overflow Behavior:</b> 00048 * 00049 * \par 00050 * This fast version uses a 32-bit accumulator with 2.30 format. 00051 * The accumulator maintains full precision of the intermediate multiplication results 00052 * but provides only a single guard bit. There is no saturation on intermediate additions. 00053 * Thus, if the accumulator overflows it wraps around and distorts the result. 00054 * The input signals should be scaled down to avoid intermediate overflows. 00055 * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows, 00056 * as maximum of min(srcALen, srcBLen) number of additions are carried internally. 00057 * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result. 00058 * 00059 * \par 00060 * See <code>arm_conv_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. 00061 */ 00062 00063 void arm_conv_fast_q15( 00064 q15_t * pSrcA, 00065 uint32_t srcALen, 00066 q15_t * pSrcB, 00067 uint32_t srcBLen, 00068 q15_t * pDst) 00069 { 00070 q15_t *pIn1; /* inputA pointer */ 00071 q15_t *pIn2; /* inputB pointer */ 00072 q15_t *pOut = pDst; /* output pointer */ 00073 q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ 00074 q15_t *px; /* Intermediate inputA pointer */ 00075 q15_t *py; /* Intermediate inputB pointer */ 00076 q15_t *pSrc1, *pSrc2; /* Intermediate pointers */ 00077 q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ 00078 uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */ 00079 q31_t *pb; /* 32 bit pointer for inputB buffer */ 00080 00081 00082 /* The algorithm implementation is based on the lengths of the inputs. */ 00083 /* srcB is always made to slide across srcA. */ 00084 /* So srcBLen is always considered as shorter or equal to srcALen */ 00085 if(srcALen >= srcBLen) 00086 { 00087 /* Initialization of inputA pointer */ 00088 pIn1 = pSrcA; 00089 00090 /* Initialization of inputB pointer */ 00091 pIn2 = pSrcB; 00092 } 00093 else 00094 { 00095 /* Initialization of inputA pointer */ 00096 pIn1 = pSrcB; 00097 00098 /* Initialization of inputB pointer */ 00099 pIn2 = pSrcA; 00100 00101 /* srcBLen is always considered as shorter or equal to srcALen */ 00102 j = srcBLen; 00103 srcBLen = srcALen; 00104 srcALen = j; 00105 } 00106 00107 /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ 00108 /* The function is internally 00109 * divided into three stages according to the number of multiplications that has to be 00110 * taken place between inputA samples and inputB samples. In the first stage of the 00111 * algorithm, the multiplications increase by one for every iteration. 00112 * In the second stage of the algorithm, srcBLen number of multiplications are done. 00113 * In the third stage of the algorithm, the multiplications decrease by one 00114 * for every iteration. */ 00115 00116 /* The algorithm is implemented in three stages. 00117 The loop counters of each stage is initiated here. */ 00118 blockSize1 = srcBLen - 1u; 00119 blockSize2 = srcALen - (srcBLen - 1u); 00120 blockSize3 = blockSize1; 00121 00122 /* -------------------------- 00123 * Initializations of stage1 00124 * -------------------------*/ 00125 00126 /* sum = x[0] * y[0] 00127 * sum = x[0] * y[1] + x[1] * y[0] 00128 * .... 00129 * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] 00130 */ 00131 00132 /* In this stage the MAC operations are increased by 1 for every iteration. 00133 The count variable holds the number of MAC operations performed */ 00134 count = 1u; 00135 00136 /* Working pointer of inputA */ 00137 px = pIn1; 00138 00139 /* Working pointer of inputB */ 00140 py = pIn2; 00141 00142 00143 /* ------------------------ 00144 * Stage1 process 00145 * ----------------------*/ 00146 00147 /* For loop unrolling by 4, this stage is divided into two. */ 00148 /* First part of this stage computes the MAC operations less than 4 */ 00149 /* Second part of this stage computes the MAC operations greater than or equal to 4 */ 00150 00151 /* The first part of the stage starts here */ 00152 while((count < 4u) && (blockSize1 > 0u)) 00153 { 00154 /* Accumulator is made zero for every iteration */ 00155 sum = 0; 00156 00157 /* Loop over number of MAC operations between 00158 * inputA samples and inputB samples */ 00159 k = count; 00160 00161 while(k > 0u) 00162 { 00163 /* Perform the multiply-accumulates */ 00164 sum = __SMLAD(*px++, *py--, sum); 00165 00166 /* Decrement the loop counter */ 00167 k--; 00168 } 00169 00170 /* Store the result in the accumulator in the destination buffer. */ 00171 *pOut++ = (q15_t) (sum >> 15); 00172 00173 /* Update the inputA and inputB pointers for next MAC calculation */ 00174 py = pIn2 + count; 00175 px = pIn1; 00176 00177 /* Increment the MAC count */ 00178 count++; 00179 00180 /* Decrement the loop counter */ 00181 blockSize1--; 00182 } 00183 00184 /* The second part of the stage starts here */ 00185 /* The internal loop, over count, is unrolled by 4 */ 00186 /* To, read the last two inputB samples using SIMD: 00187 * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */ 00188 py = py - 1; 00189 00190 while(blockSize1 > 0u) 00191 { 00192 /* Accumulator is made zero for every iteration */ 00193 sum = 0; 00194 00195 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00196 k = count >> 2u; 00197 00198 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00199 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00200 while(k > 0u) 00201 { 00202 /* Perform the multiply-accumulates */ 00203 /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */ 00204 sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); 00205 /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */ 00206 sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); 00207 00208 /* Decrement the loop counter */ 00209 k--; 00210 } 00211 00212 /* For the next MAC operations, the pointer py is used without SIMD 00213 * So, py is incremented by 1 */ 00214 py = py + 1u; 00215 00216 /* If the count is not a multiple of 4, compute any remaining MACs here. 00217 ** No loop unrolling is used. */ 00218 k = count % 0x4u; 00219 00220 while(k > 0u) 00221 { 00222 /* Perform the multiply-accumulates */ 00223 sum = __SMLAD(*px++, *py--, sum); 00224 00225 /* Decrement the loop counter */ 00226 k--; 00227 } 00228 00229 /* Store the result in the accumulator in the destination buffer. */ 00230 *pOut++ = (q15_t) (sum >> 15); 00231 00232 /* Update the inputA and inputB pointers for next MAC calculation */ 00233 py = pIn2 + (count - 1u); 00234 px = pIn1; 00235 00236 /* Increment the MAC count */ 00237 count++; 00238 00239 /* Decrement the loop counter */ 00240 blockSize1--; 00241 } 00242 00243 /* -------------------------- 00244 * Initializations of stage2 00245 * ------------------------*/ 00246 00247 /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] 00248 * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] 00249 * .... 00250 * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] 00251 */ 00252 00253 /* Working pointer of inputA */ 00254 px = pIn1; 00255 00256 /* Working pointer of inputB */ 00257 pSrc2 = pIn2 + (srcBLen - 1u); 00258 py = pSrc2; 00259 00260 /* Initialize inputB pointer of type q31 */ 00261 pb = (q31_t *) (py - 1u); 00262 00263 /* count is the index by which the pointer pIn1 to be incremented */ 00264 count = 1u; 00265 00266 00267 /* -------------------- 00268 * Stage2 process 00269 * -------------------*/ 00270 00271 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. 00272 * So, to loop unroll over blockSize2, 00273 * srcBLen should be greater than or equal to 4 */ 00274 if(srcBLen >= 4u) 00275 { 00276 /* Loop unroll over blockSize2, by 4 */ 00277 blkCnt = blockSize2 >> 2u; 00278 00279 while(blkCnt > 0u) 00280 { 00281 /* Set all accumulators to zero */ 00282 acc0 = 0; 00283 acc1 = 0; 00284 acc2 = 0; 00285 acc3 = 0; 00286 00287 00288 /* read x[0], x[1] samples */ 00289 x0 = *(q31_t *) (px++); 00290 /* read x[1], x[2] samples */ 00291 x1 = *(q31_t *) (px++); 00292 00293 00294 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00295 k = srcBLen >> 2u; 00296 00297 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00298 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00299 do 00300 { 00301 /* Read the last two inputB samples using SIMD: 00302 * y[srcBLen - 1] and y[srcBLen - 2] */ 00303 c0 = *(pb--); 00304 00305 /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */ 00306 acc0 = __SMLADX(x0, c0, acc0); 00307 00308 /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */ 00309 acc1 = __SMLADX(x1, c0, acc1); 00310 00311 /* Read x[2], x[3] */ 00312 x2 = *(q31_t *) (px++); 00313 00314 /* Read x[3], x[4] */ 00315 x3 = *(q31_t *) (px++); 00316 00317 /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */ 00318 acc2 = __SMLADX(x2, c0, acc2); 00319 00320 /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */ 00321 acc3 = __SMLADX(x3, c0, acc3); 00322 00323 /* Read y[srcBLen - 3] and y[srcBLen - 4] */ 00324 c0 = *(pb--); 00325 00326 /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */ 00327 acc0 = __SMLADX(x2, c0, acc0); 00328 00329 /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */ 00330 acc1 = __SMLADX(x3, c0, acc1); 00331 00332 /* Read x[4], x[5] */ 00333 x0 = *(q31_t *) (px++); 00334 00335 /* Read x[5], x[6] */ 00336 x1 = *(q31_t *) (px++); 00337 00338 /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */ 00339 acc2 = __SMLADX(x0, c0, acc2); 00340 00341 /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */ 00342 acc3 = __SMLADX(x1, c0, acc3); 00343 00344 } while(--k); 00345 00346 /* For the next MAC operations, SIMD is not used 00347 * So, the 16 bit pointer if inputB, py is updated */ 00348 py = (q15_t *) pb; 00349 py = py + 1; 00350 00351 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00352 ** No loop unrolling is used. */ 00353 k = srcBLen % 0x4u; 00354 00355 if(k == 1u) 00356 { 00357 /* Read y[srcBLen - 5] */ 00358 c0 = *(py); 00359 00360 /* Read x[7] */ 00361 x3 = *(q31_t *) px++; 00362 00363 /* Perform the multiply-accumulates */ 00364 acc0 = __SMLAD(x0, c0, acc0); 00365 acc1 = __SMLAD(x1, c0, acc1); 00366 acc2 = __SMLADX(x1, c0, acc2); 00367 acc3 = __SMLADX(x3, c0, acc3); 00368 } 00369 00370 if(k == 2u) 00371 { 00372 /* Read y[srcBLen - 5], y[srcBLen - 6] */ 00373 c0 = *(pb); 00374 00375 /* Read x[7], x[8] */ 00376 x3 = *(q31_t *) px++; 00377 00378 /* Read x[9] */ 00379 x2 = *(q31_t *) px++; 00380 00381 /* Perform the multiply-accumulates */ 00382 acc0 = __SMLADX(x0, c0, acc0); 00383 acc1 = __SMLADX(x1, c0, acc1); 00384 acc2 = __SMLADX(x3, c0, acc2); 00385 acc3 = __SMLADX(x2, c0, acc3); 00386 } 00387 00388 if(k == 3u) 00389 { 00390 /* Read y[srcBLen - 5], y[srcBLen - 6] */ 00391 c0 = *pb--; 00392 00393 /* Read x[7], x[8] */ 00394 x3 = *(q31_t *) px++; 00395 00396 /* Read x[9] */ 00397 x2 = *(q31_t *) px++; 00398 00399 /* Perform the multiply-accumulates */ 00400 acc0 = __SMLADX(x0, c0, acc0); 00401 acc1 = __SMLADX(x1, c0, acc1); 00402 acc2 = __SMLADX(x3, c0, acc2); 00403 acc3 = __SMLADX(x2, c0, acc3); 00404 00405 /* Read y[srcBLen - 7] */ 00406 c0 = (q15_t) (*pb >> 16); 00407 00408 /* Read x[10] */ 00409 x3 = *(q31_t *) px++; 00410 00411 /* Perform the multiply-accumulates */ 00412 acc0 = __SMLADX(x1, c0, acc0); 00413 acc1 = __SMLAD(x2, c0, acc1); 00414 acc2 = __SMLADX(x2, c0, acc2); 00415 acc3 = __SMLADX(x3, c0, acc3); 00416 } 00417 00418 /* Store the results in the accumulators in the destination buffer. */ 00419 *__SIMD32(pOut)++ = __PKHBT((acc0 >> 15), (acc1 >> 15), 16); 00420 *__SIMD32(pOut)++ = __PKHBT((acc2 >> 15), (acc3 >> 15), 16); 00421 00422 /* Update the inputA and inputB pointers for next MAC calculation */ 00423 px = pIn1 + (count * 4u); 00424 py = pSrc2; 00425 pb = (q31_t *) (py - 1); 00426 00427 /* Increment the pointer pIn1 index, count by 1 */ 00428 count++; 00429 00430 /* Decrement the loop counter */ 00431 blkCnt--; 00432 } 00433 00434 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. 00435 ** No loop unrolling is used. */ 00436 blkCnt = blockSize2 % 0x4u; 00437 00438 while(blkCnt > 0u) 00439 { 00440 /* Accumulator is made zero for every iteration */ 00441 sum = 0; 00442 00443 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00444 k = srcBLen >> 2u; 00445 00446 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00447 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00448 while(k > 0u) 00449 { 00450 /* Perform the multiply-accumulates */ 00451 sum += ((q31_t) * px++ * *py--); 00452 sum += ((q31_t) * px++ * *py--); 00453 sum += ((q31_t) * px++ * *py--); 00454 sum += ((q31_t) * px++ * *py--); 00455 00456 /* Decrement the loop counter */ 00457 k--; 00458 } 00459 00460 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00461 ** No loop unrolling is used. */ 00462 k = srcBLen % 0x4u; 00463 00464 while(k > 0u) 00465 { 00466 /* Perform the multiply-accumulates */ 00467 sum += ((q31_t) * px++ * *py--); 00468 00469 /* Decrement the loop counter */ 00470 k--; 00471 } 00472 00473 /* Store the result in the accumulator in the destination buffer. */ 00474 *pOut++ = (q15_t) (sum >> 15); 00475 00476 /* Update the inputA and inputB pointers for next MAC calculation */ 00477 px = pIn1 + count; 00478 py = pSrc2; 00479 00480 /* Increment the pointer pIn1 index, count by 1 */ 00481 count++; 00482 00483 /* Decrement the loop counter */ 00484 blkCnt--; 00485 } 00486 } 00487 else 00488 { 00489 /* If the srcBLen is not a multiple of 4, 00490 * the blockSize2 loop cannot be unrolled by 4 */ 00491 blkCnt = blockSize2; 00492 00493 while(blkCnt > 0u) 00494 { 00495 /* Accumulator is made zero for every iteration */ 00496 sum = 0; 00497 00498 /* srcBLen number of MACS should be performed */ 00499 k = srcBLen; 00500 00501 while(k > 0u) 00502 { 00503 /* Perform the multiply-accumulate */ 00504 sum += ((q31_t) * px++ * *py--); 00505 00506 /* Decrement the loop counter */ 00507 k--; 00508 } 00509 00510 /* Store the result in the accumulator in the destination buffer. */ 00511 *pOut++ = (q15_t) (sum >> 15); 00512 00513 /* Update the inputA and inputB pointers for next MAC calculation */ 00514 px = pIn1 + count; 00515 py = pSrc2; 00516 00517 /* Increment the MAC count */ 00518 count++; 00519 00520 /* Decrement the loop counter */ 00521 blkCnt--; 00522 } 00523 } 00524 00525 00526 /* -------------------------- 00527 * Initializations of stage3 00528 * -------------------------*/ 00529 00530 /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] 00531 * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] 00532 * .... 00533 * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] 00534 * sum += x[srcALen-1] * y[srcBLen-1] 00535 */ 00536 00537 /* In this stage the MAC operations are decreased by 1 for every iteration. 00538 The blockSize3 variable holds the number of MAC operations performed */ 00539 00540 /* Working pointer of inputA */ 00541 pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); 00542 px = pSrc1; 00543 00544 /* Working pointer of inputB */ 00545 pSrc2 = pIn2 + (srcBLen - 1u); 00546 pIn2 = pSrc2 - 1u; 00547 py = pIn2; 00548 00549 /* ------------------- 00550 * Stage3 process 00551 * ------------------*/ 00552 00553 /* For loop unrolling by 4, this stage is divided into two. */ 00554 /* First part of this stage computes the MAC operations greater than 4 */ 00555 /* Second part of this stage computes the MAC operations less than or equal to 4 */ 00556 00557 /* The first part of the stage starts here */ 00558 j = blockSize3 >> 2u; 00559 00560 while((j > 0u) && (blockSize3 > 0u)) 00561 { 00562 /* Accumulator is made zero for every iteration */ 00563 sum = 0; 00564 00565 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00566 k = blockSize3 >> 2u; 00567 00568 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00569 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00570 while(k > 0u) 00571 { 00572 /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied 00573 * with y[srcBLen - 1], y[srcBLen - 2] respectively */ 00574 sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); 00575 /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied 00576 * with y[srcBLen - 3], y[srcBLen - 4] respectively */ 00577 sum = __SMLADX(*__SIMD32(px)++, *__SIMD32(py)--, sum); 00578 00579 /* Decrement the loop counter */ 00580 k--; 00581 } 00582 00583 /* For the next MAC operations, the pointer py is used without SIMD 00584 * So, py is incremented by 1 */ 00585 py = py + 1u; 00586 00587 /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. 00588 ** No loop unrolling is used. */ 00589 k = blockSize3 % 0x4u; 00590 00591 while(k > 0u) 00592 { 00593 /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */ 00594 sum = __SMLAD(*px++, *py--, sum); 00595 00596 /* Decrement the loop counter */ 00597 k--; 00598 } 00599 00600 /* Store the result in the accumulator in the destination buffer. */ 00601 *pOut++ = (q15_t) (sum >> 15); 00602 00603 /* Update the inputA and inputB pointers for next MAC calculation */ 00604 px = ++pSrc1; 00605 py = pIn2; 00606 00607 /* Decrement the loop counter */ 00608 blockSize3--; 00609 00610 j--; 00611 } 00612 00613 /* The second part of the stage starts here */ 00614 /* SIMD is not used for the next MAC operations, 00615 * so pointer py is updated to read only one sample at a time */ 00616 py = py + 1u; 00617 00618 while(blockSize3 > 0u) 00619 { 00620 /* Accumulator is made zero for every iteration */ 00621 sum = 0; 00622 00623 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00624 k = blockSize3; 00625 00626 while(k > 0u) 00627 { 00628 /* Perform the multiply-accumulates */ 00629 /* sum += x[srcALen-1] * y[srcBLen-1] */ 00630 sum = __SMLAD(*px++, *py--, sum); 00631 00632 /* Decrement the loop counter */ 00633 k--; 00634 } 00635 00636 /* Store the result in the accumulator in the destination buffer. */ 00637 *pOut++ = (q15_t) (sum >> 15); 00638 00639 /* Update the inputA and inputB pointers for next MAC calculation */ 00640 px = ++pSrc1; 00641 py = pSrc2; 00642 00643 /* Decrement the loop counter */ 00644 blockSize3--; 00645 } 00646 00647 } 00648 00649 /** 00650 * @} end of Conv group 00651 */
Generated on Tue Jul 12 2022 14:13:52 by 1.7.2