CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_biquad_cascade_df1_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_biquad_cascade_df1_q15.c 00009 * 00010 * Description: Processing function for the 00011 * Q15 Biquad cascade DirectFormI(DF1) filter. 00012 * 00013 * Target Processor: Cortex-M4/Cortex-M3 00014 * 00015 * Version 1.0.3 2010/11/29 00016 * Re-organized the CMSIS folders and updated documentation. 00017 * 00018 * Version 1.0.2 2010/11/11 00019 * Documentation updated. 00020 * 00021 * Version 1.0.1 2010/10/05 00022 * Production release and review comments incorporated. 00023 * 00024 * Version 1.0.0 2010/09/20 00025 * Production release and review comments incorporated. 00026 * 00027 * Version 0.0.5 2010/04/26 00028 * incorporated review comments and updated with latest CMSIS layer 00029 * 00030 * Version 0.0.3 2010/03/10 00031 * Initial version 00032 * -------------------------------------------------------------------- */ 00033 00034 #include "arm_math.h" 00035 00036 /** 00037 * @ingroup groupFilters 00038 */ 00039 00040 /** 00041 * @addtogroup BiquadCascadeDF1 00042 * @{ 00043 */ 00044 00045 /** 00046 * @brief Processing function for the Q15 Biquad cascade filter. 00047 * @param[in] *S points to an instance of the Q15 Biquad cascade structure. 00048 * @param[in] *pSrc points to the block of input data. 00049 * @param[out] *pDst points to the location where the output result is written. 00050 * @param[in] blockSize number of samples to process per call. 00051 * @return none. 00052 * 00053 * 00054 * <b>Scaling and Overflow Behavior:</b> 00055 * \par 00056 * The function is implemented using a 64-bit internal accumulator. 00057 * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result. 00058 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. 00059 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. 00060 * The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits. 00061 * Finally, the result is saturated to 1.15 format. 00062 * 00063 * \par 00064 * Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter. 00065 */ 00066 00067 void arm_biquad_cascade_df1_q15( 00068 const arm_biquad_casd_df1_inst_q15 * S, 00069 q15_t * pSrc, 00070 q15_t * pDst, 00071 uint32_t blockSize) 00072 { 00073 q15_t *pIn = pSrc; /* Source pointer */ 00074 q15_t *pOut = pDst; /* Destination pointer */ 00075 q31_t in; /* Temporary variable to hold input value */ 00076 q31_t out; /* Temporary variable to hold output value */ 00077 q15_t b0; /* Temporary variable to hold bo value */ 00078 q31_t b1, a1; /* Filter coefficients */ 00079 q31_t state_in, state_out; /* Filter state variables */ 00080 q63_t acc; /* Accumulator */ 00081 int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */ 00082 q15_t *pState = S->pState; /* State pointer */ 00083 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00084 q31_t *pState_q31; /* 32-bit state pointer for SIMD implementation */ 00085 uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */ 00086 00087 00088 00089 do 00090 { 00091 /* Initialize state pointer of type q31 */ 00092 pState_q31 = (q31_t *) (pState); 00093 00094 /* Read the b0 and 0 coefficients using SIMD */ 00095 b0 = *__SIMD32(pCoeffs)++; 00096 00097 /* Read the b1 and b2 coefficients using SIMD */ 00098 b1 = *__SIMD32(pCoeffs)++; 00099 00100 /* Read the a1 and a2 coefficients using SIMD */ 00101 a1 = *__SIMD32(pCoeffs)++; 00102 00103 /* Read the input state values from the state buffer: x[n-1], x[n-2] */ 00104 state_in = (q31_t) (*pState_q31++); 00105 00106 /* Read the output state values from the state buffer: y[n-1], y[n-2] */ 00107 state_out = (q31_t) (*pState_q31); 00108 00109 /* Apply loop unrolling and compute 2 output values simultaneously. */ 00110 /* The variable acc hold output values that are being computed: 00111 * 00112 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00113 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00114 */ 00115 sample = blockSize >> 1u; 00116 00117 /* First part of the processing with loop unrolling. Compute 2 outputs at a time. 00118 ** a second loop below computes the remaining 1 sample. */ 00119 while(sample > 0u) 00120 { 00121 00122 /* Read the input */ 00123 in = *__SIMD32(pIn)++; 00124 00125 /* out = b0 * x[n] + 0 * 0 */ 00126 out = (q31_t) b0 * ((q15_t) in); 00127 /* acc += b1 * x[n-1] + b2 * x[n-2] + out */ 00128 acc = __SMLALD(b1, state_in, out); 00129 /* acc += a1 * y[n-1] + a2 * y[n-2] */ 00130 acc = __SMLALD(a1, state_out, acc); 00131 00132 /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */ 00133 out = __SSAT((acc >> shift), 16); 00134 00135 /* Every time after the output is computed state should be updated. */ 00136 /* The states should be updated as: */ 00137 /* Xn2 = Xn1 */ 00138 /* Xn1 = Xn */ 00139 /* Yn2 = Yn1 */ 00140 /* Yn1 = acc */ 00141 /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ 00142 /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ 00143 state_in = __PKHBT(in, state_in, 16); 00144 state_out = __PKHBT(out, state_out, 16); 00145 00146 /* out = b0 * x[n] + 0 * 0 */ 00147 out = (q31_t) b0 * ((q15_t) (in >> 16)); 00148 /* acc += b1 * x[n-1] + b2 * x[n-2] + out */ 00149 acc = __SMLALD(b1, state_in, out); 00150 /* acc += a1 * y[n-1] + a2 * y[n-2] */ 00151 acc = __SMLALD(a1, state_out, acc); 00152 00153 /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */ 00154 out = __SSAT((acc >> shift), 16); 00155 00156 /* Store the output in the destination buffer. */ 00157 *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16); 00158 00159 /* Every time after the output is computed state should be updated. */ 00160 /* The states should be updated as: */ 00161 /* Xn2 = Xn1 */ 00162 /* Xn1 = Xn */ 00163 /* Yn2 = Yn1 */ 00164 /* Yn1 = acc */ 00165 /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ 00166 /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ 00167 state_in = __PKHBT(in >> 16, state_in, 16); 00168 state_out = __PKHBT(out, state_out, 16); 00169 00170 /* Decrement the loop counter */ 00171 sample--; 00172 00173 } 00174 00175 /* If the blockSize is not a multiple of 2, compute any remaining output samples here. 00176 ** No loop unrolling is used. */ 00177 00178 if((blockSize & 0x1u) != 0u) 00179 { 00180 /* Read the input */ 00181 in = *pIn++; 00182 00183 /* out = b0 * x[n] + 0 * 0 */ 00184 out = (q31_t) in *b0; 00185 /* acc = b1 * x[n-1] + b2 * x[n-2] + out */ 00186 acc = __SMLALD(b1, state_in, out); 00187 /* acc += a1 * y[n-1] + a2 * y[n-2] */ 00188 acc = __SMLALD(a1, state_out, acc); 00189 00190 /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */ 00191 out = __SSAT((acc >> shift), 16); 00192 00193 /* Store the output in the destination buffer. */ 00194 *pOut++ = (q15_t) out; 00195 00196 /* Every time after the output is computed state should be updated. */ 00197 /* The states should be updated as: */ 00198 /* Xn2 = Xn1 */ 00199 /* Xn1 = Xn */ 00200 /* Yn2 = Yn1 */ 00201 /* Yn1 = acc */ 00202 /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ 00203 /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ 00204 state_in = __PKHBT(in, state_in, 16); 00205 state_out = __PKHBT(out, state_out, 16); 00206 00207 } 00208 00209 /* The first stage goes from the input wire to the output wire. */ 00210 /* Subsequent numStages occur in-place in the output wire */ 00211 pIn = pDst; 00212 00213 /* Reset the output pointer */ 00214 pOut = pDst; 00215 00216 /* Store the updated state variables back into the state array */ 00217 *__SIMD32(pState)++ = __PKHBT(state_in, (state_in >> 16), 16); 00218 *__SIMD32(pState)++ = __PKHBT(state_out, (state_out >> 16), 16); 00219 00220 /* Decrement the loop counter */ 00221 stage--; 00222 00223 } while(stage > 0u); 00224 } 00225 00226 00227 /** 00228 * @} end of BiquadCascadeDF1 group 00229 */
Generated on Tue Jul 12 2022 14:13:52 by 1.7.2