CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details
Dependents: K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more
arm_biquad_cascade_df1_fast_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_biquad_cascade_df1_fast_q31.c 00009 * 00010 * Description: Processing function for the 00011 * Q31 Fast Biquad cascade DirectFormI(DF1) filter. 00012 * 00013 * Target Processor: Cortex-M4/Cortex-M3 00014 * 00015 * Version 1.0.3 2010/11/29 00016 * Re-organized the CMSIS folders and updated documentation. 00017 * 00018 * Version 1.0.2 2010/11/11 00019 * Documentation updated. 00020 * 00021 * Version 1.0.1 2010/10/05 00022 * Production release and review comments incorporated. 00023 * 00024 * Version 1.0.0 2010/09/20 00025 * Production release and review comments incorporated. 00026 * 00027 * Version 0.0.9 2010/08/27 00028 * Initial version 00029 * 00030 * -------------------------------------------------------------------- */ 00031 00032 #include "arm_math.h" 00033 00034 /** 00035 * @ingroup groupFilters 00036 */ 00037 00038 /** 00039 * @addtogroup BiquadCascadeDF1 00040 * @{ 00041 */ 00042 00043 /** 00044 * @details 00045 * 00046 * @param[in] *S points to an instance of the Q31 Biquad cascade structure. 00047 * @param[in] *pSrc points to the block of input data. 00048 * @param[out] *pDst points to the block of output data. 00049 * @param[in] blockSize number of samples to process per call. 00050 * @return none. 00051 * 00052 * <b>Scaling and Overflow Behavior:</b> 00053 * \par 00054 * This function is optimized for speed at the expense of fixed-point precision and overflow protection. 00055 * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. 00056 * These intermediate results are added to a 2.30 accumulator. 00057 * Finally, the accumulator is saturated and converted to a 1.31 result. 00058 * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result. 00059 * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function 00060 * arm_biquad_cascade_df1_init_q31() to initialize filter structure. 00061 * 00062 * \par 00063 * Refer to the function <code>arm_biquad_cascade_df1_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure. 00064 * Use the function <code>arm_biquad_cascade_df1_init_q31()</code> to initialize the filter structure. 00065 */ 00066 00067 void arm_biquad_cascade_df1_fast_q31( 00068 const arm_biquad_casd_df1_inst_q31 * S, 00069 q31_t * pSrc, 00070 q31_t * pDst, 00071 uint32_t blockSize) 00072 { 00073 q31_t *pIn = pSrc; /* input pointer initialization */ 00074 q31_t *pOut = pDst; /* output pointer initialization */ 00075 q31_t *pState = S->pState; /* pState pointer initialization */ 00076 q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */ 00077 q31_t acc; /* accumulator */ 00078 q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */ 00079 q31_t b0, b1, b2, a1, a2; /* Filter coefficients */ 00080 q31_t Xn; /* temporary input */ 00081 int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */ 00082 uint32_t sample, stage = S->numStages; /* loop counters */ 00083 00084 00085 do 00086 { 00087 /* Reading the coefficients */ 00088 b0 = *pCoeffs++; 00089 b1 = *pCoeffs++; 00090 b2 = *pCoeffs++; 00091 a1 = *pCoeffs++; 00092 a2 = *pCoeffs++; 00093 00094 /* Reading the state values */ 00095 Xn1 = pState[0]; 00096 Xn2 = pState[1]; 00097 Yn1 = pState[2]; 00098 Yn2 = pState[3]; 00099 00100 /* Apply loop unrolling and compute 4 output values simultaneously. */ 00101 /* The variables acc ... acc3 hold output values that are being computed: 00102 * 00103 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] 00104 */ 00105 00106 sample = blockSize >> 2u; 00107 00108 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00109 ** a second loop below computes the remaining 1 to 3 samples. */ 00110 while(sample > 0u) 00111 { 00112 /* Read the input */ 00113 Xn = *pIn++; 00114 00115 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00116 /* acc = b0 * x[n] */ 00117 acc = (q31_t) (((q63_t) b0 * Xn) >> 32); 00118 /* acc += b1 * x[n-1] */ 00119 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32); 00120 /* acc += b[2] * x[n-2] */ 00121 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32); 00122 /* acc += a1 * y[n-1] */ 00123 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32); 00124 /* acc += a2 * y[n-2] */ 00125 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32); 00126 00127 /* The result is converted to 1.31 , Yn2 variable is reused */ 00128 Yn2 = acc << shift; 00129 00130 /* Store the output in the destination buffer. */ 00131 *pOut++ = Yn2; 00132 00133 /* Read the second input */ 00134 Xn2 = *pIn++; 00135 00136 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00137 /* acc = b0 * x[n] */ 00138 acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32); 00139 /* acc += b1 * x[n-1] */ 00140 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32); 00141 /* acc += b[2] * x[n-2] */ 00142 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32); 00143 /* acc += a1 * y[n-1] */ 00144 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32); 00145 /* acc += a2 * y[n-2] */ 00146 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32); 00147 00148 /* The result is converted to 1.31, Yn1 variable is reused */ 00149 Yn1 = acc << shift; 00150 00151 /* Store the output in the destination buffer. */ 00152 *pOut++ = Yn1; 00153 00154 /* Read the third input */ 00155 Xn1 = *pIn++; 00156 00157 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00158 /* acc = b0 * x[n] */ 00159 acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32); 00160 /* acc += b1 * x[n-1] */ 00161 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32); 00162 /* acc += b[2] * x[n-2] */ 00163 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32); 00164 /* acc += a1 * y[n-1] */ 00165 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32); 00166 /* acc += a2 * y[n-2] */ 00167 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32); 00168 00169 /* The result is converted to 1.31, Yn2 variable is reused */ 00170 Yn2 = acc << shift; 00171 00172 /* Store the output in the destination buffer. */ 00173 *pOut++ = Yn2; 00174 00175 /* Read the forth input */ 00176 Xn = *pIn++; 00177 00178 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00179 /* acc = b0 * x[n] */ 00180 acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32); 00181 /* acc += b1 * x[n-1] */ 00182 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32); 00183 /* acc += b[2] * x[n-2] */ 00184 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32); 00185 /* acc += a1 * y[n-1] */ 00186 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32); 00187 /* acc += a2 * y[n-2] */ 00188 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32); 00189 00190 /* The result is converted to 1.31, Yn1 variable is reused */ 00191 Yn1 = acc << shift; 00192 00193 /* Every time after the output is computed state should be updated. */ 00194 /* The states should be updated as: */ 00195 /* Xn2 = Xn1 */ 00196 /* Xn1 = Xn */ 00197 /* Yn2 = Yn1 */ 00198 /* Yn1 = acc */ 00199 Xn2 = Xn1; 00200 Xn1 = Xn; 00201 00202 /* Store the output in the destination buffer. */ 00203 *pOut++ = Yn1; 00204 00205 /* decrement the loop counter */ 00206 sample--; 00207 } 00208 00209 /* If the blockSize is not a multiple of 4, compute any remaining output samples here. 00210 ** No loop unrolling is used. */ 00211 sample = (blockSize & 0x3u); 00212 00213 while(sample > 0u) 00214 { 00215 /* Read the input */ 00216 Xn = *pIn++; 00217 00218 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ 00219 /* acc = b0 * x[n] */ 00220 acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32); 00221 /* acc += b1 * x[n-1] */ 00222 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32); 00223 /* acc += b[2] * x[n-2] */ 00224 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32); 00225 /* acc += a1 * y[n-1] */ 00226 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32); 00227 /* acc += a2 * y[n-2] */ 00228 acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32); 00229 /* The result is converted to 1.31 */ 00230 acc = acc << shift; 00231 00232 /* Every time after the output is computed state should be updated. */ 00233 /* The states should be updated as: */ 00234 /* Xn2 = Xn1 */ 00235 /* Xn1 = Xn */ 00236 /* Yn2 = Yn1 */ 00237 /* Yn1 = acc */ 00238 Xn2 = Xn1; 00239 Xn1 = Xn; 00240 Yn2 = Yn1; 00241 Yn1 = acc; 00242 00243 /* Store the output in the destination buffer. */ 00244 *pOut++ = acc; 00245 00246 /* decrement the loop counter */ 00247 sample--; 00248 } 00249 00250 /* The first stage goes from the input buffer to the output buffer. */ 00251 /* Subsequent stages occur in-place in the output buffer */ 00252 pIn = pDst; 00253 00254 /* Reset to destination pointer */ 00255 pOut = pDst; 00256 00257 /* Store the updated state variables back into the pState array */ 00258 *pState++ = Xn1; 00259 *pState++ = Xn2; 00260 *pState++ = Yn1; 00261 *pState++ = Yn2; 00262 00263 } while(--stage); 00264 } 00265 00266 /** 00267 * @} end of BiquadCascadeDF1 group 00268 */
Generated on Tue Jul 12 2022 14:13:52 by 1.7.2