Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of TVDctrller2017_brdRev1_ver6 by
TVDCTRL.cpp
- Committer:
- sift
- Date:
- 2017-07-08
- Revision:
- 29:a51cb2cf22ae
- Parent:
- 28:47e9531a3a9d
- Child:
- 30:c596a0f5d685
File content as of revision 29:a51cb2cf22ae:
#include "TVDCTRL.h" #include "MCP4922.h" #include "Steering.h" extern AnalogIn apsP; extern AnalogIn apsS; extern AnalogIn brake; extern DigitalOut LED[]; extern DigitalOut brakeSignal; extern DigitalOut indicatorLed; extern DigitalOut shutDown; extern DigitalIn sdState; extern InterruptIn rightMotorPulse; extern InterruptIn leftMotorPulse; extern InterruptIn rightTirePulse1; extern InterruptIn rightTirePulse2; extern InterruptIn leftTirePulse1; extern InterruptIn leftTirePulse2; extern MCP4922 mcp; extern Serial pc; extern AnalogOut STR2AN; extern CAN can; #define indicateSystem(x) (indicatorLed.write(x)) Timer RightPulseTimer; Timer LeftPulseTimer; Ticker ticker1; Ticker ticker2; #define myAbs(x) ((x>0)?(x):(-(x))) #define apsPVol() (apsP.read() * 3.3) #define apsSVol() (apsS.read() * 3.3) struct { unsigned int valA:12; unsigned int valB:12; } McpData; //各変数が一定値を超えた時点でエラー検出とする //2つのAPSの区別はつけないことにする struct errCounter_t errCounter= {0,0,0,0,0,0,0}; int readyToDriveFlag = 1; int gApsP=0, gApsS=0, gBrake=0; //現在のセンサ値 int rawApsP=0, rawApsS=0, rawBrake=0; //現在の補正無しのセンサ値 int gRightMotorTorque=0, gLeftMotorTorque=0; int getMotorTorque(Select rl) { return ((rl==LEFT) ? gLeftMotorTorque : gRightMotorTorque); } //エラーカウンタ外部参照用関数 //errCounter_t型変数のポインタを引数に取る void getCurrentErrCount(struct errCounter_t *ptr) { ptr->apsUnderVolt = errCounter.apsUnderVolt; ptr->apsExceedVolt = errCounter.apsExceedVolt; ptr->apsErrorTolerance = errCounter.apsErrorTolerance; ptr->apsStick = errCounter.apsStick; ptr->brakeUnderVolt = errCounter.brakeUnderVolt; ptr->brakeExceedVolt = errCounter.brakeExceedVolt; ptr->brakeFuzzyVolt = errCounter.brakeFuzzyVolt; ptr->brakeOverRide = errCounter.brakeOverRide; } //ブレーキONOFF判定関数 //Brake-ON:1 Brake-OFF:0 int isBrakeOn(void) { int brake = gBrake; int brakeOnOff = 0; if(brake > (BRK_ON_VOLTAGE - ERROR_TOLERANCE)) brakeOnOff = 1; if(brake < (BRK_OFF_VOLTAGE + ERROR_TOLERANCE)) brakeOnOff = 0; return brakeOnOff; } //センサ現在値外部参照関数 int getCurrentSensor(int sensor) { switch (sensor) { case APS_PRIMARY: return gApsP; case APS_SECONDARY: return gApsS; case BRAKE: return gBrake; default: return -1; } } //補正前センサ現在値外部参照関数 int getRawSensor(int sensor) { switch (sensor) { case APS_PRIMARY: return rawApsP; case APS_SECONDARY: return rawApsS; case BRAKE: return rawBrake; default: return -1; } } bool loadSensorFlag = false; //タイマー割り込みでコールされる void loadSensorsISR(void) { loadSensorFlag = true; } //センサ読み込み関数 void loadSensors(void) { if(true == loadSensorFlag) { loadSensorFlag = false; static int preApsP=0, preApsS=0; //過去のセンサ値 static int preBrake=0; int tmpApsP=0, tmpApsS=0, tmpBrake=0; //補正後のセンサ値 int tmpApsErrCountU=0, tmpApsErrCountE=0; //APSの一時的なエラーカウンタ //Low Pass Filter tmpApsP = (int)(apsP.read_u16()*ratioLPF + preApsP*(1.0f-ratioLPF)); tmpApsS = (int)(apsS.read_u16()*ratioLPF + preApsS*(1.0f-ratioLPF)); tmpBrake = (int)(brake.read_u16()*ratioLPF + preBrake*(1.0f-ratioLPF)); //生のセンサ値取得 rawApsP = tmpApsP; rawApsS = tmpApsS; rawBrake = tmpBrake; //センサーチェック //APS上限値チェック if(tmpApsP > APS_MAX_POSITION + ERROR_TOLERANCE) { tmpApsP = APS_MAX_POSITION; //異常時,上限値にクリップ tmpApsErrCountE++; } if(tmpApsS > APS_MAX_POSITION + ERROR_TOLERANCE) { tmpApsS = APS_MAX_POSITION; //異常時,上限値にクリップ tmpApsErrCountE++; } if(0 == tmpApsErrCountE) errCounter.apsExceedVolt = 0; //どちらも正常時エラーカウンタクリア else errCounter.apsExceedVolt += tmpApsErrCountE; //APS下限値チェック if(tmpApsP < APS_MIN_POSITION - ERROR_TOLERANCE) { tmpApsP = APS_MIN_POSITION; //下限値にクリップ tmpApsErrCountU++; } if(tmpApsS < APS_MIN_POSITION - ERROR_TOLERANCE) { tmpApsS = APS_MIN_POSITION; //下限値にクリップ tmpApsErrCountU++; } if(0 == tmpApsErrCountU) errCounter.apsUnderVolt = 0; //どちらも正常時エラーカウンタクリア else errCounter.apsUnderVolt += tmpApsErrCountU; //センサー偏差チェック if(myAbs(tmpApsP - tmpApsS) > APS_DEVIATION_TOLERANCE) { //偏差チェックには補正後の値(tmp)を使用 errCounter.apsErrorTolerance++; } else { errCounter.apsErrorTolerance = 0; } //小さい方にクリップ //APS値は好きな方を使いな if(tmpApsP > tmpApsS) { tmpApsP = tmpApsS; } else { tmpApsS = tmpApsP; } //Brake上限値チェック if(tmpBrake > BRK_ON_VOLTAGE + ERROR_TOLERANCE) { errCounter.brakeExceedVolt++; tmpBrake = BRK_ON_VOLTAGE; } else { errCounter.brakeExceedVolt = 0; } //Brake下限値チェック if(tmpBrake < BRK_OFF_VOLTAGE - ERROR_TOLERANCE) { errCounter.brakeUnderVolt++; tmpBrake = BRK_OFF_VOLTAGE; } else { errCounter.brakeUnderVolt = 0; } //brake範囲外電圧チェック if((tmpBrake < BRK_ON_VOLTAGE - ERROR_TOLERANCE) && (tmpBrake > BRK_OFF_VOLTAGE + ERROR_TOLERANCE)) { errCounter.brakeFuzzyVolt++; tmpBrake = BRK_OFF_VOLTAGE; } else { errCounter.brakeFuzzyVolt=0; } //APS固着チェック if((preApsP == tmpApsP) && (tmpApsP == APS_MAX_POSITION)) errCounter.apsStick++; else errCounter.apsStick=0; //ブレーキオーバーライドチェック if((isBrakeOn() == 1) && (tmpApsP >= APS_OVERRIDE25)) //Brake-ON and APS > 25% errCounter.brakeOverRide++; if(tmpApsP < APS_OVERRIDE05) //Brake-ON and APS < 5% errCounter.brakeOverRide=0; //センサ値取得 gApsP = tmpApsP; gApsS = tmpApsS; gBrake = tmpBrake; //未来の自分に期待 preApsP = rawApsP; preApsS = rawApsS; preBrake = rawBrake; } } volatile int gRightMotorPulseCounter = 0, gLeftMotorPulseCounter = 0; volatile bool pulseTimeISRFlag = false; void countRightMotorPulseISR(void) { gRightMotorPulseCounter++; } void countLeftMotorPulseISR(void) { gLeftMotorPulseCounter++; } void getPulseCounterISR(void) { pulseTimeISRFlag = true; } //default argument : switchWheel=false int getRPS(Select rl, bool switchWheel) { static int rightMotorPulse[100]= {0}, leftMotorPulse[100]= {0}; //過去1秒間のパルス数格納 static int sumRightMotorPulse, sumLeftMotorPulse; float rps; if(pulseTimeISRFlag == true) { for(int i=99; i>0; i--) { rightMotorPulse[i] = rightMotorPulse[i-1]; leftMotorPulse[i] = leftMotorPulse[i-1]; } rightMotorPulse[0] = gRightMotorPulseCounter; leftMotorPulse[0] = gLeftMotorPulseCounter; gRightMotorPulseCounter = 0; gLeftMotorPulseCounter = 0; sumRightMotorPulse = 0; sumLeftMotorPulse = 0; for(int i=0; i<100; i++) { sumRightMotorPulse += rightMotorPulse[i]; sumLeftMotorPulse += leftMotorPulse[i]; } pulseTimeISRFlag = false; } if(switchWheel == 0) { if(rl == RIGHT) rps = (float)sumRightMotorPulse / MOTOR_PULSE_NUM; //過去1秒間のモータパルス数を使ってRPS算出 else rps = (float)sumLeftMotorPulse / MOTOR_PULSE_NUM; //過去1秒間のモータパルス数を使ってRPS算出 } else { //こっちはタイヤ回転数 //そのうち対応 if(rl == RIGHT) rps = (float)sumRightMotorPulse / MOTOR_PULSE_NUM; //過去1秒間のモータパルス数を使ってRPS算出 else rps = (float)sumLeftMotorPulse / MOTOR_PULSE_NUM; //過去1秒間のモータパルス数を使ってRPS算出 } return (int)(rps / LSB_MOTORSPEED); //LSB変換 } float getVelocity(void) { return TIRE_DIAMETER*M_PI*(getRPS(RIGHT) + getRPS(LEFT))*LSB_MOTORSPEED/2.0f; } int distributeTorque_omega(float steering) { static float lastSteering=0.0f; float omega=0; int disTrq=0; steering = ratioLPF * steering + (1.0f - ratioLPF) * lastSteering; omega = lastSteering - steering; //舵角の差分算出 omega /= 0.01f; //制御周期で角速度演算 if(myAbs(omega) < 0.349f) { //20deg/s disTrq = 0; } else if(myAbs(omega) <= 8.727f) { //500deg/s disTrq = (int)((0xFFFF/45.0f * 5.0f) / (8.727f-0.349f) * (myAbs(omega) - 0.349f)); } else disTrq = (int)(0xFFFF/45.0f * 5.0f); lastSteering = steering; if(omega >= 0) disTrq = -disTrq; return disTrq; } int distributeTorque(float steering) { int disTrq = 0; const float deadband = (M_PI/180.0f)*5.0f; int steeringSign; if(steering > 0) steeringSign = 1; else steeringSign = -1; steering = myAbs(steering); if(steering < deadband) disTrq = 0; else if(steering < M_PI*0.5) { steering -= deadband; disTrq = (int)(MAX_DISTRIBUTION_TORQUE / (M_PI*0.5 - deadband) * steering); } else { disTrq = MAX_DISTRIBUTION_TORQUE; } return disTrq * steeringSign; } //rpm +++++ モータ回転数 //regSwitch +++++ 回生=1 力行=0 inline int calcMaxTorque(int rpm, bool regSwitch) { int maxTrq=0; //後で削除 rpm = 2000; //++++++++++++++++++++ if(regSwitch == 0) { if(rpm <3000) maxTrq = MAX_MOTOR_TORQUE_POWER; else if(rpm <= 11000) maxTrq = maxTorqueMap[(int)(rpm / 10.0)]; else maxTrq = MAX_REVOLUTION_TORQUE_POWER; } else { if(rpm < 600) { maxTrq = 0; } else if(rpm < 1250) { //+++++++++++++++++++++++++++++++++++++ //暫定処理 今後回生トルクマップも要作成 maxTrq = 0; //+++++++++++++++++++++++++++++++++++++ } else if(rpm <= 6000) { maxTrq = MAX_MOTOR_TORQUE_REGENERATIVE; } else if(rpm <= 11000) { //+++++++++++++++++++++++++++++++++++++ //暫定処理 今後回生トルクマップも要作成 maxTrq = MAX_REVOLUTION_TORQUE_REGENERATIVE; //+++++++++++++++++++++++++++++++++++++ } else { maxTrq = MAX_REVOLUTION_TORQUE_REGENERATIVE; } } return maxTrq; } //演算方法 //y = a(x - b) + c //x = 1/a * (y + ab - c) unsigned int calcTorqueToVoltage(int reqTorque, int rpm) { float slope = 0; //a int startPoint = 0; //b int intercept = 0; //c int outputVoltage=0; if(reqTorque > LINEAR_REGION_TORQUE_POWER) { //力行トルクがrpmに対して非線形となる領域 slope = (float)(calcMaxTorque(rpm, 0) - LINEAR_REGION_TORQUE_POWER)/(DACOUTPUT_MAX - LINEAR_REGION_VOLTAGE_POWER); startPoint = LINEAR_REGION_VOLTAGE_POWER; intercept = LINEAR_REGION_TORQUE_POWER; outputVoltage = (int)((reqTorque + slope*startPoint - intercept) / slope); } else if(reqTorque > 0) { //力行トルクがrpmに対して線形となる領域 slope = (float)LINEAR_REGION_TORQUE_POWER/(LINEAR_REGION_VOLTAGE_POWER - ZERO_TORQUE_VOLTAGE_P); startPoint = ZERO_TORQUE_VOLTAGE_P; intercept = 0; outputVoltage = (int)(reqTorque/slope + startPoint); } else if(0 == reqTorque) { outputVoltage = ZERO_TORQUE_VOLTAGE_NEUTRAL; //ニュートラル信号 } else if(reqTorque > LINEAR_REGION_TORQUE_REGENERATIVE) { //回生トルクがrpmに対して線形となる領域 slope = (float)(0 - LINEAR_REGION_TORQUE_REGENERATIVE)/(ZERO_TORQUE_VOLTAGE_REG - LINEAR_REGION_VOLTAGE_REGENERATIVE); startPoint = LINEAR_REGION_VOLTAGE_REGENERATIVE; intercept = LINEAR_REGION_TORQUE_REGENERATIVE; outputVoltage = (int)(reqTorque/slope + startPoint); } else { //回生トルクがrpmに対して非線形となる領域 slope = (float)(LINEAR_REGION_TORQUE_REGENERATIVE - calcMaxTorque(rpm, 1))/(LINEAR_REGION_VOLTAGE_REGENERATIVE - DACOUTPUT_MIN); startPoint = DACOUTPUT_MIN; intercept = calcMaxTorque(rpm, 1); outputVoltage = (int)((reqTorque + slope*startPoint - intercept) / slope); } if(outputVoltage > DACOUTPUT_MAX) outputVoltage = DACOUTPUT_MAX; if(outputVoltage < DACOUTPUT_MIN) outputVoltage = DACOUTPUT_MIN; return (unsigned int)(0xFFF*((double)outputVoltage/0xFFFF)); //DACの分解能に適応(16bit->12bit) } int calcRequestTorque(void) { int currentAPS; int requestTorque; currentAPS = ((gApsP>gApsS) ? gApsS : gApsP); //センサ値は小さい方を採用 if(currentAPS < APS_MIN_POSITION) currentAPS = 0; else currentAPS -= APS_MIN_POSITION; //オフセット修正 if(currentAPS <= APS_REG_RANGE) //デッドバンド内であれば要求トルク->0 requestTorque = (int)((float)(-MAX_OUTPUT_TORQUE_REGENERATIVE) / APS_REG_RANGE * currentAPS + MAX_OUTPUT_TORQUE_REGENERATIVE); else requestTorque = (int)((float)MAX_OUTPUT_TORQUE_POWER / APS_PWR_RANGE * (currentAPS - APS_REG_RANGE)); if(requestTorque > MAX_OUTPUT_TORQUE_POWER) requestTorque = MAX_OUTPUT_TORQUE_POWER; else if(requestTorque < MAX_OUTPUT_TORQUE_REGENERATIVE) requestTorque = MAX_OUTPUT_TORQUE_REGENERATIVE; if((errCounter.brakeOverRide > ERRCOUNTER_DECISION) || (readyToDriveFlag == 1)) requestTorque = 0; return requestTorque; } //トルク配分車速制限関数 //車速が低速域の場合,トルク配分0 float limitTorqueDistribution(void) { float limitRate; float currentVelocity = getVelocity() * 3.6f; //km/hで車速取得 if(currentVelocity < 5.0f) limitRate = 0.0f; else if(currentVelocity < 15.0f) limitRate = (currentVelocity - 5.0f) / (15.0f - 5.0f); else limitRate = 1.0f; return limitRate; } void driveTVD(int TVDmode, bool isRedyToDrive) { int requestTorque=0; //ドライバー要求トルク int distributionTrq=0; //分配トルク int disTrq_omega=0; int torqueRight, torqueLeft; //トルクの右左 static unsigned int preMcpA=0, preMcpB=0; loadSensors(); //APS,BRAKE更新 loadSteerAngle(); //舵角更新 if(isRedyToDrive && isBrakeOn()) readyToDriveFlag = 0; if((errCounter.apsUnderVolt > ERRCOUNTER_DECISION) || (errCounter.apsExceedVolt > ERRCOUNTER_DECISION) || (errCounter.apsErrorTolerance > ERRCOUNTER_DECISION) // || (errCounter.apsStick > ERRCOUNTER_DECISION) // || (errCounter.brakeUnderVolt > ERRCOUNTER_DECISION) // || (errCounter.brakeExceedVolt > ERRCOUNTER_DECISION) // || (errCounter.brakeFuzzyVolt > ERRCOUNTER_DECISION) ) { readyToDriveFlag = 1; } //+++++++++++++++++++ //後で削除すること! readyToDriveFlag = 0; //+++++++++++++++++++ indicateSystem(readyToDriveFlag | (errCounter.brakeOverRide > ERRCOUNTER_DECISION)); LED[0] = readyToDriveFlag | (errCounter.brakeOverRide > ERRCOUNTER_DECISION); requestTorque=calcRequestTorque(); //ドライバー要求トルク取得 distributionTrq = (int)(distributeTorque(M_PI * getSteerAngle() / 127.0f) / 2.0); //片モーターのトルク分配量計算 disTrq_omega = (int)(distributeTorque_omega(M_PI * getSteerAngle() / 127.0f) / 2.0); //微分制御 //distributionTrq = (int)(distributionTrq * limitTorqueDistribution()); //トルク配分の最低車速制限 torqueRight = requestTorque + distributionTrq; torqueLeft = requestTorque - distributionTrq; torqueRight += disTrq_omega; torqueLeft -= disTrq_omega; //アクセルべた踏みでトルクMAX、旋回より駆動を優先(加速番長モード) if(torqueLeft > MAX_OUTPUT_TORQUE_POWER) { //片モーター上限時最大値にクリップ torqueLeft = MAX_OUTPUT_TORQUE_POWER; torqueRight = requestTorque - (MAX_OUTPUT_TORQUE_POWER-requestTorque); } if(torqueRight > MAX_OUTPUT_TORQUE_POWER) { //片モーター上限時最大値にクリップ torqueRight = MAX_OUTPUT_TORQUE_POWER; torqueLeft = requestTorque - (MAX_OUTPUT_TORQUE_POWER-requestTorque); } McpData.valA = calcTorqueToVoltage(torqueRight, getRPS(RIGHT)); McpData.valB = calcTorqueToVoltage(torqueLeft, getRPS(LEFT)); preMcpA = (unsigned int)(McpData.valA * 0.456 + preMcpA * 0.544); preMcpB = (unsigned int)(McpData.valB * 0.456 + preMcpB * 0.544); mcp.writeA(preMcpA); //右モーター mcp.writeB(preMcpB); //左モーター } void initTVD(void) { RightPulseTimer.reset(); LeftPulseTimer.reset(); RightPulseTimer.start(); LeftPulseTimer.start(); rightMotorPulse.fall(&countRightMotorPulseISR); leftMotorPulse.fall(&countLeftMotorPulseISR); ticker1.attach(&loadSensorsISR, CONTROL_CYCLE_S); //制御周期毎にデータ読み込み(LPF演算のため) ticker2.attach(&getPulseCounterISR, CONTROL_CYCLE_S); // mcp.writeA(0); //右モーター mcp.writeB(0); //左モーター printf("MAX OUTPUT TORQUE:\t\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MAX_OUTPUT_TORQUE_POWER); printf("MAX OUTPUT TORQUE:\t\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MAX_OUTPUT_TORQUE_REGENERATIVE); printf("MAX DISTRIBUTION TORQUE:\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MAX_DISTRIBUTION_TORQUE); printf("MIN INNERWHEEL-MOTOR TORQUE:\t%1.2f[Nm]\r\n", 45.0/0xFFFF * MIN_INNERWHEEL_MOTOR_TORQUE); }