Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of TVDctrller2017_brdRev1_ver6 by
TVDCTRL.cpp
- Committer:
- sift
- Date:
- 2016-08-06
- Revision:
- 10:87ad65eef0e9
- Parent:
- 9:220e4e77e056
- Child:
- 11:88701a5e7eae
File content as of revision 10:87ad65eef0e9:
#include "TVDCTRL.h" #include "MCP4922.h" #include "Steering.h" extern AnalogIn apsP; extern AnalogIn apsS; extern AnalogIn brake; extern DigitalOut LED[]; extern InterruptIn rightMotorPulse; extern InterruptIn leftMotorPulse; extern DigitalOut MotorPulse[]; extern MCP4922 mcp; extern Serial pc; Timer RightPulseTimer; Timer LeftPulseTimer; Ticker ticker1; Ticker ticker2; Ticker ticker3; #define apsPVol() (apsP.read() * 3.3) #define apsSVol() (apsS.read() * 3.3) struct { unsigned int valA:12; unsigned int valB:12; } McpData; //各変数が一定値を超えた時点でエラー検出とする //2つのAPSの区別はつけないことにする volatile struct errCounter_t errCounter= {0,0,0,0,0,0,0}; volatile int gApsP=0, gApsS=0, gBrake=0; //現在のセンサ値 volatile int rawApsP=0, rawApsS=0, rawBrake=0; //現在の補正無しのセンサ値 void getCurrentErrCount(struct errCounter_t *ptr) { ptr->apsUnderVolt = errCounter.apsUnderVolt; ptr->apsExceedVolt = errCounter.apsExceedVolt; ptr->apsErrorTolerance = errCounter.apsErrorTolerance; ptr->apsStick = errCounter.apsStick; ptr->brakeUnderVolt = errCounter.brakeUnderVolt; ptr->brakeExceedVolt = errCounter.brakeExceedVolt; ptr->brakeFuzzyVolt = errCounter.brakeFuzzyVolt; ptr->brakeOverRide = errCounter.brakeOverRide; } int getCurrentSensor(int sensor) { switch (sensor) { case APS_PRIMARY: return gApsP; case APS_SECONDARY: return gApsS; case BRAKE: return gBrake; default: return -1; } } int getRawSensor(int sensor) { switch (sensor) { case APS_PRIMARY: return rawApsP; case APS_SECONDARY: return rawApsS; case BRAKE: return rawBrake; default: return -1; } } int myAbs(int x) { return (x<0)?-x:x; } bool loadSensorFlag = false; //タイマー割り込みでコールされる void loadSensorsISR(void) { loadSensorFlag = true; } //関数内処理時間より短い時間のタイマーのセットは禁止 void loadSensors(void) { if(true == loadSensorFlag) { loadSensorFlag = false; static int preApsP=0, preApsS=0; //過去のセンサ値 static int preBrake=0; int tmpApsP=0, tmpApsS=0, tmpBrake=0; //補正後のセンサ値 int tmpApsErrCountU=0, tmpApsErrCountE=0; //APSの一時的なエラーカウンタ //Low Pass Filter tmpApsP = (int)(apsP.read_u16()*ratioLPF + preApsP*(1.0f-ratioLPF)); tmpApsS = (int)(apsS.read_u16()*ratioLPF + preApsS*(1.0f-ratioLPF)); tmpBrake = (int)(brake.read_u16()*ratioLPF + preBrake*(1.0f-ratioLPF)); //生のセンサ値取得 rawApsP = tmpApsP; rawApsS = tmpApsS; rawBrake = tmpBrake; //センサーチェック //APS上限値チェック if(tmpApsP > APS_MAX_POSITION + ERROR_TOLERANCE) { tmpApsP = APS_MAX_POSITION; //異常時,上限値にクリップ tmpApsErrCountE++; } if(tmpApsS > APS_MAX_POSITION + ERROR_TOLERANCE) { tmpApsS = APS_MAX_POSITION; //異常時,上限値にクリップ tmpApsErrCountE++; } if(0 == tmpApsErrCountE) errCounter.apsExceedVolt = 0; //どちらも正常時エラーカウンタクリア else errCounter.apsExceedVolt += tmpApsErrCountE; //APS下限値チェック if(tmpApsP < APS_MIN_POSITION - ERROR_TOLERANCE) { tmpApsP = APS_MIN_POSITION; //下限値にクリップ tmpApsErrCountU++; } if(tmpApsS < APS_MIN_POSITION - ERROR_TOLERANCE) { tmpApsS = APS_MIN_POSITION; //下限値にクリップ tmpApsErrCountU++; } if(0 == tmpApsErrCountU) errCounter.apsUnderVolt = 0; //どちらも正常時エラーカウンタクリア else errCounter.apsUnderVolt += tmpApsErrCountU; //センサー偏差チェック if(myAbs(tmpApsP - tmpApsS) > APS_DEVIATION_TOLERANCE) { //偏差チェックには補正後の値(tmp)を使用 errCounter.apsErrorTolerance++; } else { errCounter.apsErrorTolerance = 0; } //小さい方にクリップ //APS値は好きな方を使いな if(tmpApsP > tmpApsS) { tmpApsP = tmpApsS; } else { tmpApsS = tmpApsP; } //Brake上限値チェック if(tmpBrake > BRK_OFF_VOLTAGE + ERROR_TOLERANCE) { errCounter.brakeExceedVolt++; tmpBrake = BRK_OFF_VOLTAGE; } else { errCounter.brakeExceedVolt = 0; } //Brake下限値チェック if(tmpBrake < BRK_ON_VOLTAGE - ERROR_TOLERANCE) { errCounter.brakeUnderVolt++; tmpBrake = BRK_ON_VOLTAGE; } else { errCounter.brakeUnderVolt = 0; } //brake範囲外電圧チェック if((tmpBrake < BRK_OFF_VOLTAGE - ERROR_TOLERANCE) && (tmpBrake > BRK_ON_VOLTAGE + ERROR_TOLERANCE)) { errCounter.brakeFuzzyVolt++; tmpBrake = BRK_OFF_VOLTAGE; } else { errCounter.brakeFuzzyVolt=0; } //APS固着チェック if((preApsP == tmpApsP) && (tmpApsP == APS_MAX_POSITION)) errCounter.apsStick++; else errCounter.apsStick=0; //ブレーキオーバーライドチェック if((tmpApsP >= APS_OVERRIDE+APS_MIN_POSITION) && (tmpBrake > BRK_ON_VOLTAGE)) { errCounter.brakeOverRide++; } else { errCounter.brakeOverRide=0; } //センサ値取得 gApsP = tmpApsP; gApsS = tmpApsS; gBrake = tmpBrake; //未来の自分に期待 preApsP = rawApsP; preApsS = rawApsS; preBrake = rawBrake; } } volatile int gRightPulseTime=100000, gLeftPulseTime=100000; volatile bool pulseTimeISRFlag = false; void countRightPulseISR(void) { //Do not use "printf" in interrupt!!! static int preTime=0; int currentTime = RightPulseTimer.read_us(); gRightPulseTime = currentTime - preTime; if(gRightPulseTime < MAX_PULSE_TIME) //12000rpm上限より早い場合 gRightPulseTime = MAX_PULSE_TIME; if(currentTime < 1800000000) { preTime = currentTime; } else { //30分経過後 RightPulseTimer.reset(); preTime = 0; } } void countLeftPulseISR(void) { //Do not use "printf" in interrupt!!! static int preTime=0; int currentTime = LeftPulseTimer.read_us(); gLeftPulseTime = currentTime - preTime; if(gLeftPulseTime < MAX_PULSE_TIME) //12000rpm上限より早い場合 gLeftPulseTime = MAX_PULSE_TIME; if(currentTime < 1800000000) { preTime = currentTime; } else { //30分経過後 LeftPulseTimer.reset(); preTime = 0; } } void getPulseTimeISR(void) { pulseTimeISRFlag = true; } int getPulseTime(SelectMotor rl) { static int preRightPulse, preLeftPulse; if(pulseTimeISRFlag == true) { pulseTimeISRFlag = false; if(gRightPulseTime > 100000) gRightPulseTime = 100000; if(gLeftPulseTime > 100000) gLeftPulseTime = 100000; preRightPulse = (int)(gRightPulseTime*ratioLPF_V + preRightPulse*(1.0f-ratioLPF_V)); preLeftPulse = (int)(gLeftPulseTime*ratioLPF_V + preLeftPulse*(1.0f-ratioLPF_V)); } if(rl == RIGHT_MOTOR) return preRightPulse; else return preLeftPulse; } float getVelocity(void) { int rightPulse=0, leftPulse=0; int avePulseTime; rightPulse = getPulseTime(RIGHT_MOTOR); leftPulse = getPulseTime(LEFT_MOTOR); avePulseTime = (int)((rightPulse+leftPulse)/2.0); if(avePulseTime < MAX_PULSE_TIME) //最低パルス時間にクリップ avePulseTime = MAX_PULSE_TIME; return (M_PI*TIRE_DIAMETER / ((avePulseTime/1000000.0)*TVD_GEAR_RATIO)); } void generatePulse(void) { static bool flag = false; flag = !flag; MotorPulse[0] = MotorPulse[1] = LED[0] = flag; } int distributeTorque(float velocity, float steering) { int disTrq = 0; double sqrtVelocity = (double)velocity*velocity; double Gy=0; Gy = (sqrtVelocity*steering) / ((1.0+STABIRITY_FACTOR*sqrtVelocity)*WHEEL_BASE); if(Gy > 9.8) Gy = 9.8; if(Gy < 0.98) { disTrq = 0; } else if(Gy < 4.9) { disTrq = (int)(MAX_DISTRIBUTION_TORQUE / (4.9-0.98) * (Gy-0.98)); } else { //0.5G以上は配分一定 disTrq = MAX_DISTRIBUTION_TORQUE; } return disTrq; } //トルク値線形補間関数 inline int interpolateLinear(int torque, int currentMaxTorque) { return (int)(((double)(DACOUTPUT_MAX-LINEAR_REGION_VOLTAGE)/(currentMaxTorque-LINEAR_REGION_TORQUE)) * (torque-LINEAR_REGION_TORQUE)) + LINEAR_REGION_VOLTAGE-DACOUTPUT_MIN; } unsigned int calcTorqueToVoltage(int torque, SelectMotor rl) { int outputVoltage=0; int rpm=0; int currentMaxTorque=0; if(torque <= LINEAR_REGION_TORQUE) { //要求トルク<=2.5Nmの時 outputVoltage = (int)((double)(LINEAR_REGION_VOLTAGE-DACOUTPUT_MIN)/LINEAR_REGION_TORQUE * torque); } else { rpm = (int)(1.0/getPulseTime(rl)*1000000.0 * 60.0); //pulseTime:[us] //rpm = 12000; if(rpm < 3000) { //3000rpm未満は回転数による出力制限がないフラットな領域 outputVoltage = interpolateLinear(torque, MAX_MOTOR_TORQUE); } else { if(rpm <= 11000) { int index = (int)((rpm - 3000)/10.0); //マップは10rpm刻みに作成 currentMaxTorque = calcMaxTorque[index]; } else { currentMaxTorque = MAX_REVOLUTION_TORQUE; //回転数上限時の最大トルク } if(currentMaxTorque < torque) { //要求トルクが現在の回転数での最大値を超えている時 outputVoltage = DACOUTPUT_VALID_RANGE; //現在の回転数での最大トルクにクリップ } else { outputVoltage = interpolateLinear(torque, currentMaxTorque); } } } outputVoltage += DACOUTPUT_MIN; //最低入力電圧でかさ上げ return (unsigned int)(0xFFF*((double)outputVoltage/0xFFFF)); //DACの分解能に適応(16bit->12bit) } int calcRequestTorque(void) { int currentAPS; int requestTorque; currentAPS = ((gApsP>gApsS) ? gApsS : gApsP); //センサ値は小さい方を採用 if(currentAPS < APS_MIN_POSITION) currentAPS = 0; else currentAPS -= APS_MIN_POSITION; //オフセット修正 if(currentAPS < APS_DEADBAND) //デッドバンド内であれば要求トルク->0 requestTorque = 0; else requestTorque = (int)(((double)MAX_OUTPUT_TORQUE / APS_VALID_RANGE) * (currentAPS - APS_DEADBAND)); if(requestTorque > MAX_OUTPUT_TORQUE) requestTorque = MAX_OUTPUT_TORQUE; else if(requestTorque < 0) requestTorque = 0; return requestTorque; } void driveTVD(void) { int requestTorque=0; //ドライバー要求トルク int distributionTrq=0; //分配トルク int torqueHigh, torqueLow; //トルクの大きい方小さい方 loadSensors(); //APS,BRAKE更新 loadSteerAngle(); //舵角更新 //getPulseTime(RIGHT_MOTOR); //車速更新(更新時は片方指定コールでOK) requestTorque=calcRequestTorque(); //ドライバー要求トルク取得 distributionTrq = distributeTorque(getVelocity(), MAX_STEER_ANGLE / M_PI * getSteerAngle()); //トルク分配量計算 //distributionTrq = distributeTorque(50.0f, MAX_STEER_ANGLE / M_PI * getSteerAngle()); //トルク分配量計算 distributionTrq /= 2.0; //デバッグ中 distributionTrq = 0; if(requestTorque + distributionTrq > MAX_OUTPUT_TORQUE) //片モーター上限時最大値にクリップ torqueHigh = MAX_OUTPUT_TORQUE; else torqueHigh = requestTorque + distributionTrq; if(requestTorque - distributionTrq < 0) { torqueLow = 0; torqueHigh = (int)(requestTorque*2.0); //片モーター下限値時,反対のモーターも出力クリップ } else torqueLow = requestTorque - distributionTrq; if(getSteerDirection()) { //steer left McpData.valA = calcTorqueToVoltage(torqueHigh, RIGHT_MOTOR); McpData.valB = calcTorqueToVoltage(torqueLow, LEFT_MOTOR); } else { //steer right McpData.valA = calcTorqueToVoltage(torqueLow, RIGHT_MOTOR); McpData.valB = calcTorqueToVoltage(torqueHigh, LEFT_MOTOR); } mcp.writeA(McpData.valA); //右モーター mcp.writeB(McpData.valB); //左モーター } void initTVD(void) { rightMotorPulse.mode(PullUp); leftMotorPulse.mode(PullUp); rightMotorPulse.fall(&countRightPulseISR); leftMotorPulse.fall(&countLeftPulseISR); RightPulseTimer.reset(); LeftPulseTimer.reset(); RightPulseTimer.start(); LeftPulseTimer.start(); ticker1.attach(&loadSensorsISR, 0.01f); //サンプリング周期10msec //ticker2.attach(&generatePulse, 0.03f); ticker3.attach(&getPulseTimeISR, 0.01f); mcp.writeA(0); //右モーター mcp.writeB(0); //左モーター }