Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of TVDctrller2017_brdRev1_ver6 by
Diff: TVDCTRL.cpp
- Revision:
- 2:9d69f27a3d3b
- Parent:
- 1:4d86ec2fe4b1
- Child:
- 3:821e2f07a260
--- a/TVDCTRL.cpp Sat Jul 09 12:04:47 2016 +0000 +++ b/TVDCTRL.cpp Sun Jul 24 02:48:39 2016 +0000 @@ -4,130 +4,287 @@ extern AnalogIn apsP; extern AnalogIn apsS; +extern AnalogIn brake; extern DigitalOut LED[]; extern InterruptIn rightMotorPulse; extern InterruptIn leftMotorPulse; extern DigitalOut MotorPulse[]; extern MCP4922 mcp; -static Ticker ticker; //static -> このファイル内でのみ有効 -static Timer timer; - -#define apsPVol() (apsP.read() * 3.3f) -#define apsSVol() (apsS.read() * 3.3f) +Timer RightPulseTimer; +Timer LeftPulseTimer; +Ticker ticker1; +Ticker ticker2; +Ticker ticker3; -const unsigned int APS_MIN_POSITION =(unsigned int)(0xFFFF/3.3f * 1.0f); //"正常時"最小入力電圧 -const unsigned int APS_MAX_POSITION =(unsigned int)(0xFFFF/3.3f * 1.27f); //"正常時"最大入力電圧 -const unsigned int APS_LOW_VOLTAGE =(unsigned int)(0xFFFF/3.3f * 0.35f); //"異常時"最低入力電圧 -const unsigned int APS_HIGH_VOLTAGE =(unsigned int)(0xFFFF/3.3f * 3.0f); //"異常時"最高入力電圧 -const unsigned int APS_DEADBAND =(unsigned int)((APS_MAX_POSITION - APS_MIN_POSITION) * 0.1f); //APS信号不感帯 -const unsigned int APS_VALID_RANGE =(APS_MAX_POSITION - APS_MIN_POSITION) - APS_DEADBAND; //APS信号有効範囲 - -const unsigned int MCP_REFERENCE =(unsigned int)(0xFFFF/3.3f * 3.3f); -const unsigned int DACOUTPUT_MIN =(unsigned int)(0xFFFF/3.3f * 0.49f); -const unsigned int DACOUTPUT_MAX =(unsigned int)(0xFFFF/3.3f * 2.45f); -const unsigned int DACOUTPUT_VALID_RANGE =DACOUTPUT_MAX - DACOUTPUT_MIN; -const unsigned int DACOUTPUT_LIMIT =(unsigned int)(0xFFFF/3.3f * 0.4f); +#define apsPVol() (apsP.read() * 3.3) +#define apsSVol() (apsS.read() * 3.3) struct { unsigned int valA:12; unsigned int valB:12; -} mcpData; - -unsigned int g_apsP=0, g_apsS=0, g_brake=0; //現在のセンサ値 -unsigned int rightTire=0, leftTire=0; //出力タイヤトルク -unsigned int currentAPS=0; -unsigned int currentRequestTorque=0; -unsigned int rightPulseTime=0, leftPulseTime=0; +} McpData; -struct { - unsigned int apsUnderVolt; //aps電圧不足 - unsigned int apsExceedVolt; //aps電圧超過 - unsigned int brakeUnderVolt; //brake電圧不足 - unsigned int brakeExceedVolt; //brake電圧超過 - unsigned int apsStick; //aps固着 -} errCounter={0,0,0,0,0}; +//各変数が一定値を超えた時点でエラー検出とする +//2つのAPSの区別はつけないことにする +volatile struct errCounter_t errCounter= {0,0,0,0,0,0,0}; -inline float convertVoltage(unsigned int count) +volatile int gApsP=0, gApsS=0, gBrake=0; //現在のセンサ値 +volatile int rawApsP=0, rawApsS=0, rawBrake=0; //現在の補正無しのセンサ値 + +float convertVoltage(int count) { return (count*(3.3f/0xFFFF)); } -int checkSensorPlausibility(void) +void getCurrentErrCount(struct errCounter_t *ptr) { - int plausibility = 1; + ptr->apsUnderVolt = errCounter.apsUnderVolt; + ptr->apsExceedVolt = errCounter.apsExceedVolt; + ptr->apsErrorTolerance = errCounter.apsErrorTolerance; + ptr->apsStick = errCounter.apsStick; + ptr->brakeUnderVolt = errCounter.brakeUnderVolt; + ptr->brakeExceedVolt = errCounter.brakeExceedVolt; + ptr->brakeFuzzyVolt = errCounter.brakeFuzzyVolt; + ptr->brakeOverRide = errCounter.brakeOverRide; +} - if(g_apsP < APS_MIN_POSITION) { - plausibility = 0; - LED[0] = 1; +int loadCurrentSensor(int sensor) +{ + switch (sensor) { + case APS_PRIMARY: + return gApsP; + case APS_SECONDARY: + return gApsS; + case BRAKE: + return gBrake; + default: + return -1; } - if(g_apsP > APS_MAX_POSITION) { - plausibility = 0; - LED[0] = 1; +} + +int loadRawSensor(int sensor) +{ + switch (sensor) { + case APS_PRIMARY: + return rawApsP; + case APS_SECONDARY: + return rawApsS; + case BRAKE: + return rawBrake; + default: + return -1; } - if(g_apsS < APS_MIN_POSITION) { - plausibility = 0; - LED[1] = 1; - } - if(g_apsS > APS_MAX_POSITION) { - plausibility = 0; - LED[1] = 1; - } +} + +int myAbs(int x) +{ + return (x<0)?-x:x; +} - return plausibility; +bool loadSensorFlag = false; + +//タイマー割り込みでコールされる +void loadSensorsISR(void) +{ + loadSensorFlag = true; } -inline void calcRequestTorque(void) +//関数内処理時間より短い時間のタイマーのセットは禁止 +void loadSensors(void) { - unsigned int currentAPS; + if(true == loadSensorFlag) { + loadSensorFlag = false; + static int preApsP=0, preApsS=0; //過去のセンサ値 + static int preBrake=0; + int tmpApsP=0, tmpApsS=0, tmpBrake=0; //補正後のセンサ値 + int tmpApsErrCountU=0, tmpApsErrCountE=0; //APSの一時的なエラーカウンタ + + //Low Pass Filter + tmpApsP = (int)(apsP.read_u16()*ratioLPF + preApsP*(1.0f-ratioLPF)); + tmpApsS = (int)(apsS.read_u16()*ratioLPF + preApsS*(1.0f-ratioLPF)); + tmpBrake = (int)(brake.read_u16()*ratioLPF + preBrake*(1.0f-ratioLPF)); + + //生のセンサ値取得 + rawApsP = tmpApsP; + rawApsS = tmpApsS; + rawBrake = tmpBrake; + + //センサーチェック + //APS上限値チェック + if(tmpApsP > APS_MAX_POSITION + ERROR_TOLERANCE) { + tmpApsP = APS_MAX_POSITION; //異常時,上限値にクリップ + tmpApsErrCountE++; + } + if(tmpApsS > APS_MAX_POSITION + ERROR_TOLERANCE) { + tmpApsS = APS_MAX_POSITION; //異常時,上限値にクリップ + tmpApsErrCountE++; + } + if(0 == tmpApsErrCountE) + errCounter.apsExceedVolt = 0; //どちらも正常時エラーカウンタクリア + else + errCounter.apsExceedVolt += tmpApsErrCountE; + + //APS下限値チェック + if(tmpApsP < APS_MIN_POSITION - ERROR_TOLERANCE) { + tmpApsP = APS_MIN_POSITION; //下限値にクリップ + tmpApsErrCountU++; + } + if(tmpApsS < APS_MIN_POSITION - ERROR_TOLERANCE) { + tmpApsS = APS_MIN_POSITION; //下限値にクリップ + tmpApsErrCountU++; + } + if(0 == tmpApsErrCountU) + errCounter.apsUnderVolt = 0; //どちらも正常時エラーカウンタクリア + else + errCounter.apsUnderVolt += tmpApsErrCountU; + + //センサー偏差チェック + if(myAbs(tmpApsP - tmpApsS) > APS_DEVIATION_TOLERANCE) { //偏差チェックには補正後の値(tmp)を使用 + errCounter.apsErrorTolerance++; + } else { + errCounter.apsErrorTolerance = 0; + } - currentAPS = ((g_apsP>g_apsS) ? g_apsS : g_apsP); //センサ値は小さい方を採用 - currentAPS -= APS_MIN_POSITION; //オフセット修正 + //小さい方にクリップ + //APS値は好きな方を使いな + if(tmpApsP > tmpApsS) { + tmpApsP = tmpApsS; + } else { + tmpApsS = tmpApsP; + } + + //Brake上限値チェック + if(tmpBrake > BRK_OFF_VOLTAGE + ERROR_TOLERANCE) { + errCounter.brakeExceedVolt++; + tmpBrake = BRK_OFF_VOLTAGE; + } else { + errCounter.brakeExceedVolt = 0; + } + + //Brake下限値チェック + if(tmpBrake < BRK_ON_VOLTAGE - ERROR_TOLERANCE) { + errCounter.brakeUnderVolt++; + tmpBrake = BRK_ON_VOLTAGE; + } else { + errCounter.brakeUnderVolt = 0; + } - if(currentAPS < APS_DEADBAND) //デッドバンド内であれば要求トルク->0 - currentRequestTorque = 0; - else - currentRequestTorque = (unsigned int)(((float)MAX_MOTOR_TORQUE / APS_VALID_RANGE) * (currentAPS - APS_DEADBAND)); + //brake範囲外電圧チェック + if((tmpBrake < BRK_OFF_VOLTAGE - ERROR_TOLERANCE) && (tmpBrake > BRK_ON_VOLTAGE + ERROR_TOLERANCE)) { + errCounter.brakeFuzzyVolt++; + tmpBrake = BRK_OFF_VOLTAGE; + } else { + errCounter.brakeFuzzyVolt=0; + } + + //APS固着チェック + if((preApsP == tmpApsP) && (tmpApsP == APS_MAX_POSITION)) + errCounter.apsStick++; + else + errCounter.apsStick=0; + + //ブレーキオーバーライドチェック + if((tmpApsP >= APS_OVERRIDE+APS_MIN_POSITION) && (tmpBrake > BRK_ON_VOLTAGE)) { + errCounter.brakeOverRide++; + } else { + errCounter.brakeOverRide=0; + } + + //センサ値取得 + gApsP = tmpApsP; + gApsS = tmpApsS; + gBrake = tmpBrake; + + //未来の自分に期待 + preApsP = rawApsP; + preApsS = rawApsS; + preBrake = rawBrake; + } } -void loadSensorsLPF(void) -{ - static unsigned int preApsP=0, preApsS=0; - - preApsP = (unsigned int)(apsP.read_u16()*ratioLPF + preApsP*(1.0f-ratioLPF)); - preApsS = (unsigned int)(apsS.read_u16()*ratioLPF + preApsS*(1.0f-ratioLPF)); - - g_apsP = preApsP; - g_apsS = preApsS; -} +int gRightPulseTime=100000, gLeftPulseTime=100000; +bool loadVelocityFlag = false; -int getVelocity(void) -{ - if(rightPulseTime > 100) - rightPulseTime = 100; - if(leftPulseTime > 100) - leftPulseTime = 100; - - //return (int)convPToV_533[(int)((rightPulseTime+leftPulseTime)/2.0f)]; - return (int)convPToV_533[rightPulseTime]; -} - -void countPulseR(void) +void countRightPulseISR(void) { //Do not use "printf" in interrupt!!! static int preTime=0; - int currentTime = timer.read_ms(); - rightPulseTime = currentTime - preTime; - preTime = currentTime; + int currentTime = RightPulseTimer.read_us(); + + gRightPulseTime = currentTime - preTime; + + if(gRightPulseTime < 1) //最低パルス時間にクリップ + gRightPulseTime = 1; + + if(currentTime < 1800000000) { + preTime = currentTime; + } else { //30分経過後 + RightPulseTimer.reset(); + preTime = 0; + } } -void countPulseL(void) +void countLeftPulseISR(void) { //Do not use "printf" in interrupt!!! static int preTime=0; - int currentTime = timer.read_ms(); - leftPulseTime = currentTime - preTime; - preTime = currentTime; + int currentTime = LeftPulseTimer.read_us(); + + gLeftPulseTime = currentTime - preTime; + + if(gLeftPulseTime < 1) //最低パルス時間にクリップ + gLeftPulseTime = 1; + + if(currentTime < 1800000000) { + preTime = currentTime; + } else { //30分経過後 + LeftPulseTimer.reset(); + preTime = 0; + } +} + +void loadVelocityISR(void) +{ + loadVelocityFlag = true; +} + +int getPulseTime(SelectMotor rl) +{ + static int preRightPulse, preLeftPulse; + + if(loadVelocityFlag == true) { + loadVelocityFlag = false; + + preRightPulse = (int)(gRightPulseTime*ratioLPF + preRightPulse*(1.0f-ratioLPF)); + preLeftPulse = (int)(gLeftPulseTime*ratioLPF + preLeftPulse*(1.0f-ratioLPF)); + } + + if(rl == RIGHT_MOTOR) + return preRightPulse; + else + return preLeftPulse; +} + +float getVelocity(void) +{ + int rightPulse=0, leftPulse=0; + int avePulseTime; + + rightPulse = getPulseTime(RIGHT_MOTOR); + leftPulse = getPulseTime(LEFT_MOTOR); + + if(rightPulse > 100000) + rightPulse = 100000; + if(leftPulse > 100000) + leftPulse = 100000; + + avePulseTime = (int)((rightPulse+leftPulse)/2.0f); + + if(avePulseTime < 1) //最低パルス時間にクリップ + avePulseTime = 1; + + return (M_PI*TIRE_DIAMETER / ((avePulseTime/1000000.0f)*TVD_GEAR_RATIO)); } void generatePulse(void) @@ -137,55 +294,152 @@ MotorPulse[0] = MotorPulse[1] = LED[0] = flag; } +int distributeTorque(float velocity, float steering) +{ + int disTor = 0; + float sqrtVelocity = velocity*velocity; + float Gy=0; + + Gy = (sqrtVelocity*steering) / ((1.0f+STABIRITY_FACTOR*sqrtVelocity)*WHEEL_BASE); + + if(Gy > 9.8f) + Gy = 9.8f; + + if(Gy < 1.0f) { + disTor = 0; + } else if(Gy < 4.9f) { + disTor = ((float)MAX_DISTRIBUTION_TORQUE / (9.8f-4.9f) * Gy); + } else { //0.5G以上は配分一定 + disTor = MAX_DISTRIBUTION_TORQUE; + } + + return disTor; +} + +//トルク値線形補間関数 +int interpolateLinear(int torque, int currentMaxTorque) +{ + return (int)( ((double)(DACOUTPUT_MAX-LINEAR_REGION_VOLTAGE)/(currentMaxTorque-LINEAR_REGION_TORQUE)) * torque ) + LINEAR_REGION_VOLTAGE; +} + +unsigned int calcTorqueToVoltage(int torque, SelectMotor rl) +{ + int outputVoltage=0; + int pulseTime=0; + int rpm=0; + int index=0; + + if(torque <= LINEAR_REGION_TORQUE) { //要求トルク<=2.5Nmの時 + outputVoltage = (int)((double)LINEAR_REGION_VOLTAGE/LINEAR_REGION_TORQUE * torque); + } else { + pulseTime = getPulseTime(rl); + rpm = (int)((1.0/pulseTime) * 1000.0 * 60.0); //pulseTime:[ms] + + if(rpm < 3000) { //3000rpm未満は回転数による出力制限がない領域 + outputVoltage = interpolateLinear(torque, MAX_MOTOR_TORQUE); + //outputVoltage = (int)((DACOUTPUT_MAX-LINEAR_REGION_VOLTAGE)/(MAX_MOTOR_TORQUE-LINEAR_REGION_TORQUE) * torque) + LINEAR_REGION_VOLTAGE; + } else if(rpm <=11000) { + index = (int)((rpm - 3000)/10.0); //マップは10rpm刻みに作成 + + if(calcMaxTorque[index] < torque) { //要求トルクが現在の回転数での最大値を超えている時 + outputVoltage = DACOUTPUT_VALID_RANGE; //現在の回転数での最大トルクにクリップ + } else { + outputVoltage = interpolateLinear(torque, calcMaxTorque[index]); + //outputVoltage = (int)((DACOUTPUT_MAX-LINEAR_REGION_VOLTAGE)/(calcMaxTorque[index]-LINEAR_REGION_TORQUE) * torque) + LINEAR_REGION_VOLTAGE; + } + } else if(rpm < 12000) { + if(MAX_REVOLUTION_TORQUE < torque) { //要求トルクが現在の回転数での最大値を超えている時 + outputVoltage = DACOUTPUT_VALID_RANGE; + } else { + outputVoltage = interpolateLinear(torque, MAX_REVOLUTION_TORQUE); + //outputVoltage = (int)((float)(DACOUTPUT_MAX-LINEAR_REGION_VOLTAGE)/(MAX_REVOLUTION_TORQUE-LINEAR_REGION_TORQUE) * torque) + LINEAR_REGION_VOLTAGE; + } + } else { + outputVoltage = 0; //回転上限のため出力停止 + } + } + + outputVoltage += DACOUTPUT_MIN; //最低入力電圧でかさ上げ + + return (unsigned int)(FIX_DACOUTFORM * outputVoltage); //DACの分解能に適応(16bit->12bit) +} + +int calcRequestTorque(void) +{ + int currentAPS; + int requestTorque; + + currentAPS = ((gApsP>gApsS) ? gApsS : gApsP); //センサ値は小さい方を採用 + if(currentAPS < APS_MIN_POSITION) + currentAPS = 0; + else + currentAPS -= APS_MIN_POSITION; //オフセット修正 + + if(currentAPS < APS_DEADBAND) //デッドバンド内であれば要求トルク->0 + requestTorque = 0; + else + requestTorque = (int)(((double)MAX_OUTPUT_TORQUE / APS_VALID_RANGE) * (currentAPS - APS_DEADBAND)); + + if(requestTorque > MAX_MOTOR_TORQUE) + requestTorque = MAX_MOTOR_TORQUE; + else if(requestTorque < 0) + requestTorque = 0; + + return requestTorque; +} + void driveTVD(void) { - //仮に等配分のみ - mcpData.valA = (unsigned int)(((float)DACOUTPUT_VALID_RANGE / MAX_MOTOR_TORQUE) * currentRequestTorque) + DACOUTPUT_MIN; - mcpData.valB = (unsigned int)(((float)DACOUTPUT_VALID_RANGE / MAX_MOTOR_TORQUE) * currentRequestTorque) + DACOUTPUT_MIN; + int requestTorque=calcRequestTorque(); //ドライバーリクエストトルク + int distributionTor=0; //分配トルク + float torqueHigh, torqueLow; + + loadSensors(); //APS,BRAKE更新 + loadSteerAngle(); //舵角更新 + getPulseTime(RIGHT_MOTOR); //車速更新(更新時は片方指定コールでOK) + + //distributionTor = distributeTorque(getVelocity(), MAX_STEER_ANGLE / M_PI * getSteerAngle()); //トルク分配量計算 + distributionTor = distributeTorque(0, MAX_STEER_ANGLE / M_PI * getSteerAngle()); //トルク分配量計算 + distributionTor /= 2.0f; + + if(requestTorque + distributionTor > MAX_OUTPUT_TORQUE) //片モーター上限時最大値にクリップ + torqueHigh = MAX_OUTPUT_TORQUE; + else + torqueHigh = requestTorque + distributionTor; - mcp.writeA(mcpData.valA); - mcp.writeB(mcpData.valB); + if(requestTorque - distributionTor < 0) { + torqueLow = 0; + torqueHigh = (int)(requestTorque*2.0); //片モーター下限値時,反対のモーターも出力クリップ + } else + torqueLow = requestTorque - distributionTor; + + if(getSteerDirection()) { + //steer left + McpData.valA = calcTorqueToVoltage(torqueHigh, RIGHT_MOTOR); + McpData.valB = calcTorqueToVoltage(torqueLow, LEFT_MOTOR); + } else { + //steer right + McpData.valA = calcTorqueToVoltage(torqueLow, RIGHT_MOTOR); + McpData.valB = calcTorqueToVoltage(torqueHigh, LEFT_MOTOR); + } + + mcp.writeA(McpData.valA); //右モーター + mcp.writeB(McpData.valB); //左モーター } void initTVD(void) { rightMotorPulse.mode(PullUp); leftMotorPulse.mode(PullUp); - rightMotorPulse.fall(&countPulseR); - leftMotorPulse.fall(&countPulseL); - - timer.reset(); - timer.start(); - - ticker.attach(&loadSensorsLPF, 0.001); //サンプリング周期1msec - ticker.attach(&generatePulse, 0.025); -} - - - - -//APS信号をモーターコントローラの入力電圧に変換 -//fixVoltageを通してから使うこと -inline float fixSpecifiedOutputData(float aps) -{ - float temp; + rightMotorPulse.fall(&countRightPulseISR); + leftMotorPulse.fall(&countLeftPulseISR); - aps = ((aps<APS_MIN_POSITION) ? 0.0f : (aps-APS_MIN_POSITION)); //オフセット修正 + RightPulseTimer.reset(); + LeftPulseTimer.reset(); + RightPulseTimer.start(); + LeftPulseTimer.start(); - /* - if(aps < APS_DEADBAND) - temp = 0.0f; - else { - aps -= APS_DEADBAND; - temp = (aps * (DACOUTPUT_VALID_RANGE/(APS_VALID_RANGE))); - temp *= LIMIT; - } - - temp += DACOUTPUT_MIN; - */ - - //temp = (aps * (1.1f/(APS_MAX_VOLTAGE-APS_MIN_VOLTAGE))); - - return temp/3.3f; + ticker1.attach(&loadSensorsISR, 0.01f); //サンプリング周期10msec + //ticker2.attach(&generatePulse, 0.03f); + ticker3.attach(&loadVelocityISR, 0.01f); } -